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Abstract

We address the problem of recognizing sequences of human interaction patterns in meetings, with the goal
of structuring them in semantic terms. The investigated patterns are inherently group-based (defined by the
individual activities of meeting participants, and their interplay), and multimodal (as captured by cameras and
microphones). By defining a proper set of individual actions, group actions can be modeled as a two-layer
process, one that models basic individual activities from low-level audio-visual features, and another one that
models the interactions. We propose a two-layer Hidden Markov Model (HMM) framework that implements
such concept in a principled manner, and that has advantages over previous works. First, by decomposing
the problem hierarchically, learning is performed on low-dimensional observation spaces, which results in
simpler models. Second, our framework is easier to interpret, as both individual and group actions have a
clear meaning, and thus easier to improve. Third, different HMM models can be used in each layer, to better
reflect the nature of each subproblem. Our framework is general and extensible, and we illustrate it with a set of
eight group actions, using a public five-hour meeting corpus. Experiments and comparison with a single-layer
HMM baseline system show its validity.

1 Introduction

Devising computational frameworks to automatically infer human behavior from sensors constitutes an open
problem in many domains. Moving beyond the person-centered paradigm [23], recent work has started to
explore multi-person scenarios, where not only individual but also group actions or interactions become relevant
[6, 9, 20, 1].

Group activity plays a key role in meetings [24, 16], and this is documented by a significant amount of work
in social psychology [14]. Viewed as a whole, a group shares information, engages in discussions, and makes
decisions, proceeding through diverse communication phases both in single meetings and during the course of
a long-term teamwork [14]. Recognizing group actions is therefore useful for browsing and retrieval purposes
[24, 12], e.g., to structure a meeting into a sequence of high-level items.

Interaction in meetings is inherently group-based [14] and multimodal [10]. In the first place, we can view
a meeting as a continuous sequence of mutually exclusive group actions taken from an exhaustive set [12, 4].
Each of these group actions involves multiple simultaneous participants, and is thus implicitly constrained by
the actions of the individuals. In the second place, as the principal modality in meetings, speech has recently
been studied in the context of interaction modeling [8, 25, 4]. However, work analyzing the benefits of modeling
individual and group actions using multiple modalities has been limited [1, 12, 13, 21], despite the fact that
actions in meetings, both at the individual (e.g., note-taking or talking), and at the group level (e.g. dictating)
are often defined by the joint occurrence of specific audio and visual patterns.

In this paper, we present a two-layer HMM framework for group action recognition in meetings. The
fundamental idea is that, by defining an adequate set of individual actions, we can decompose the group action
recognition problem into two levels, from individual to group actions. Both layers use ergodic HMMs or
extensions. The goal of the lower layer is to recognize individual actions of participants using low-level audio-
visual (AV) features. The output of this layer provides the input to the second layer, which models interactions.
Individual actions naturally constitute the link between the low-level audio-visual features and high-level group
actions. Similar to continuous speech recognition, we perform group action recognition directly on the data
sequence, deriving the segmentation of group actions in the process. Our approach is general, extensible, and
brings improvement over previous work, which reflects on the results obtained on a public meeting corpus, for
a set of eight group actions based on multimodal turn-taking patterns.

The paper is organized as follows. Section 2 reviews related work. Section 3 introduces our approach. Sec-
tion 4 and Section 5 describe the meeting data, and the feature extraction process. Experiments and discussion
are presented in Section 6. Conclusions are drawn in Section 7.
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2 Related Work

Current approaches to automatic activity recognition define models for specific activities that suit the goal in
a particular domain, and use statistical methods for recognition. Predominately, the recognition of individual
actions [23], or interaction involving few people [20, 9] has been investigated using visual features [23, 20, 9],
although some work on the speech community can also be categorized as interaction recognition [8, 25]. To
our knowledge however, little work has been conducted on recognition of group-based, multi-modal actions
from multiple audio-visual streams captured by cameras and microphones [1, 12, 13]. [1] described automatic
discovery of “influence” in a lounge room where people played interactive debating games. Our previous
work presented different sequence models to recognize turn-taking patterns in a formal meeting room scenario,
where people discuss around a table and use a white-board and a projector screen [13, 12].

Regarding statistical models, most of the existing work has used Hidden Markov Models (HMMs) [22,
23] and extensions, including coupled HMMs, input-output HMMs, multi-stream HMMs, and asynchronous
HMMs . (see [18] for a recent review of models). Although the basic HMM, a discrete state-space model with
an efficient learning algorithm, works well for temporally correlated sequential data, it is challenged by a large
number of parameters, and the risk of over-fitting when learned from limited data [19]. This situation might
occur in the case of multimodal group action recognition where, in the simplest case, possibly large vectors of
AV features from each participant are concatenated to define the observation space [12, 13].

The above problem is general, and has been addressed using hierarchical representations [26, 4, 19]. In
[26], an approach for unsupervised discovery of multilevel video structures using hierarchical HMMs was
proposed, in the context of sports videos. In this model, the higher-level structure elements usually correspond
to semantic events, while the lower-level states represents variations occurring within the same event. In [4],
two methods for meeting structuring from audio were presented, using multilevel Dynamic Bayesian Networks
(DBNs). However, in both [26, 4], the low-level actions have no obvious interpretation, and the number of
low-level actions is a model parameter learned during training, or set by hand, which makes the structure of
the models difficult to interpret. In [19], layered HMMs were proposed to model multimodal office activities
at various time granularities. The lowest layer captured video, audio, keyboard and mouse activity features;
the middle layer classifies AV features into basic events like “speech”,“music”, “one person”, “nobody” ,
etc. Finally, the highest layer uses outputs of previous layers to recognize office activities with longer temporal
extent.

The solution we present to the problem of group action recognition is novel. Unlike previous work [12, 13],
our framework explicitly models actions at different semantic levels (from individual to group level) at the same
time scale. This layered structure coincides with the structure of meetings as modeled in social psychology,
that is, that meetings comprise individual actions and interactions [14]. Our goal -modeling group activity- is
also different than that of [19]. Since the two HMM layers are trained independently, our framework is easy to
interpret and improve at different levels, and we have studied a number of models suitable for multimodal data.
Overall, our work has a number of advantages, as described in the next section.

3 Group Action Recognition

In this section, we first introduce our computational framework. We then apply it to a specific set of individual
and group actions. Finally, we describe some specific details.

3.1 Framework Overview

In our framework, we distinguish group actions (which belong to the whole set of participants) from individual
actions (belonging to specific persons). Our ultimate goal is the recognition of group activity, and so individual
actions should act as the bridge between group actions and low-level features, thus decomposing the problem
in stages. The definition of both action sets is thus clearly intertwined.

Let I-HMM denote the lower recognition layer (individual action), and G-HMM denote the upper layer
(group action). I-HMM receives as input AV features extracted from each participant, and outputs recognition
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results, either as soft or hard decisions (see section 3.3). In turn, G-HMM receives as input the output from
I-HMM, and a set of group features, directly extracted from the raw streams, which are not associated to any
particular individual. In our framework, each layer is trained independently, and can be substituted by any of
the HMM variants that might capture better the characteristics of the data, more specifically asynchrony [2], or
different noise conditions [5] between the audio and visual streams. Our approach is summarized in Fig.1.

1. (Audio-Visual Feature Extraction)
1-1. extract individual-level AV features
1-2. extract group-level AV features

2. (Individual Action Recognition)
2-1. given individual features for each person, train I-HMM

selecting best model by cross-validation
2-2. output individual action recognition results

3. (Group Action Recognition)
3-1. construct a feature space by concatenating

individual action results and group-level features
3-2. train G-HMM selecting best model by cross-validation
3-3. output group action recognition results

Figure 1: Two-layer HMM framework

Compared with a single-layer HMM, our approach has the following advantages: (1) a single-layer HMM
is defined on a possibly large observation space, which might face the problem of over-fitting with limited
training data. It is important to notice that the amount of training data becomes an issue in meetings where
data labeling is not a cheap task. In contrast, the layers in our approach are defined over small-dimensional
observation spaces, resulting in more stable performance in cases of limited amount of training data. (2) The
I-HMMs are person-independent, and in practice can be trained with much more data from different persons,
as each meeting provides multiple individual streams of training data. Better generalization performance can
then be expected. (3) The G-HMMs are less sensitive to variations in the low-level features because their
observations are the outputs of the individual action recognizers, which are expected to be well trained. (4) The
two layers are trained independently. Thus, we can explore different HMM combination systems. In particular,
we can replace the baseline I-HMMs with models that are more suitable for multi-modal asynchronous data
sequences, with the goal of gaining understanding of the nature of the data (see Section 3.3). The framework
is thus easier to interpret and to improve separately at each level. (5) Our framework is general and extensible
to recognize new group actions defined in the future.

3.2 Definition of Actions

As an implementation of the proposed framework, we define a set of group actions and individual actions
in this section. On one hand, a group of ������� group actions are defined based on multi-modal turn-
taking patterns. The list is defined in Table 1. These group actions are multimodal, and commonly found in
meetings. For modeling purposes, they are assumed to define a partition (i.e., the action set is non-overlapping
and exhaustive). This set is richer compared to the one that we defined in [13], as it includes simultaneous
occurrence of actions, like “monologue � note-taking” which could occur during real situations, like dictating
or minute-taking .

On the other hand, we define a small set of ���	��
 multimodal individual actions which, as stated earlier,
will help bridge the gap between group actions and low-level AV features. The list appears in Table 2. While
the list of potentially interesting individual actions in meetings is large, our ultimate goal is recognition of the
group-level actions defined in Table 1. It is interesting to note that, although at first glance one would not think
of “speaking” or “writing” as multimodal, joint sound and visual patterns do occur in these cases and are
useful in recognition, as the results in later sections confirm.
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Table 1: Description of group actions
Action Description

Discussion most participants engaged in conversations
one participant speaking

Monologue
continuously without interruption

Monologue+ one participant speaking continuously
Note-taking others taking notes.
Note-taking most participants taking notes

one participant presenting
Presentation

using the projector screen
Presentation+ one participant presenting using
Note-taking projector screen, others taking notes

one participant speaking
White-board

using the white-board
White-board+ one participant speaking using
Note-taking white-board, others taking notes

Table 2: Description of individual actions
Action Description

Speaking one participant speaking
Writing one participant taking notes

Idle one participant neither speaking nor writing

Finally, meeting rooms can be equipped with white-boards or projector screens which are shared by the
group. Extracting features from these group devices also helps recognize group actions. They constitute the
group features described in the previous subsection. Their detailed description will be presented in section 5.

The logical relations between individual actions, group actions, and group features are summarized in
Table 3. The group actions can be seen as combinations of individual actions plus states of group devices. For
example, “presentation � note-taking” can be decomposed into “speaking” by one individual, with more than
one “writing” participant, while the group device of projector screen is in use. Needless to say, our approach
is not rule-based, but Table 3 is useful to conceptually relate the two layers.

Table 3: Relationships between group actions, individual actions and group features. Symbol � ��� � indicates
that the white-board or projector screen are in use when the corresponding group action takes place. Symbol
�
� � � indicates that the number of participants for the corresponding action is not certain.

Individual Actions Group Features
Group Actions speaking writing idle white-board projector screen

discussion � 2 / /
monologue 1 0 /

monologue+note-taking 1 ��� 1 /
note-taking 0 � 2 0
presentation 1 0 / �

presentation+note-taking 1 ��� 1 / �
white-board 1 0 / �

white-board+note-taking 1 ��� 1 / �
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3.3 Implementing the Two-layer Framework

In this section, we present some details about the architecture of our framework.
In the first place, we investigate three models for the lower-layer I-HMM, each of which attempts to model

specific properties of the data (for space reasons, we refer to each model only briefly, please refer to the original
references for details):

Early Integration, where a basic HMM [22] is trained on combined AV features. This method involves
aligning and synchronizing AV features to form one concatenated set of features which is then treated as a
single stream of data.

Audio-Visual Multi-Stream, which combines the audio-only and visual-only streams. Each stream is mod-
eled independently. The final classification is based on the the fusion of the outputs of both modalities by
estimating their joint occurrence [5].

Audio-Visual Asynchronous, which also combines audio-only and visual-only streams, by learning the joint
distribution of pairs of sequences when these sequences are not synchronized and are not of the same length or
rate [2].

In the second place, a mechanism to link the two HMM layers has to be specified. There are two approaches
to do so, based on different I-HMM outputs. Let � � � � � � �������	�	� � � 
���
���� 
 � denote a vector in a continuous
space of dimension equal to the number of individual actions, which indicates the degree of confidence in the
recognition of each individual action at time � for a sequence � � � ��� � � ��� �����	��� � � . In the first approach, the
individual action model with the highest probability outputs a value of � , while all other models output a zero
value. The vector � � generated in this way is used as input to G-HMM. We refer to it as hard decision. The
second approach directly outputs the probability � � � for each individual action model � � ��� ��� �����	�	� � � , as
input feature vector to G-HMM, � � � ��� �� for all

�
. We refer to it as soft decision.

In soft decision, the probability � � � of model � � given a sequence � � � , is computed in the following way.

Let us define the forward variable  �"! � � 
$#&%('�*) � � � �+�-, � � ! 
 , which is the probability of having generated the
sequence � � � and being in the state

!
at time � in standard Baum-Welch algorithm [22]. For multi-stream HMM

and asynchronous HMM,  �.! � � 
 can be replaced by corresponding factor [5, 2]. Given that the probabilities of
all states sum up to one, / 
102-3 � ) � , � ��4 
 �5� ( �76 is the number of all states for all models), the probability) � , � � !98 � � ��
 of state

!
given a sequence � � � is:

) � , � � !98 � � � 
 � ) � , � � ! � � � � 
) � � � � 
 � ) � , � � ! � � � � 
/ 
:02-3 � ) � , � �;4 � � � � 
 (1)

�  �.! � � 
/ 
:02-3 �  � 4 � � 

�

(2)

With this, the probability � � � of model � � given a sequence � � � is then computed as:

� � � �=<>.?A@CB ) � , � � !98 � � � 
 �D<>.?A@CB  �"! � � 
/ 
 02-3 �  � 4 � � 
 (3)

where
!

is the state in model � � , which is a subset of the states of all models, and � 6 is the total number
of all states. The probability � � � of model � � is the sum of the probabilities of all states in model � � . We
concatenate the individual recognition vectors from all participants, together with the group-level features, into
a ( � �FE �HG � � �JI )-dimensional vector (where �7G is the number of participants, and ����I is the dimension
of the group features) as observations to G-HMM for group action recognition.

4 Meeting Database

We used the public meeting corpus we first described in [12], which was collected in a meeting room equipped
with synchronized multi-channel audio and video recorders1. The sensors include three fixed cameras and

1http://mmm.idiap.ch/
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Figure 2: Multi-camera meeting room and visual feature extraction

twelve microphones [15]. Two cameras have an upper-body, frontal view of two participants including part
of the table. A third wide-view camera captures the projector screen and white-board. The multi-camera
meeting room and visual feature extraction is shown in Fig.2. Audio was recorded using lapel microphones
for all participants, and an eight-microphone array place in the center of the table. The corpus consists of 59
short meetings at five-minute average duration, with four participants per meeting. The group action structure
was scripted before recording, so part of the group actions labels we define were already available as part of
the public corpus. However, we needed to relabel the rest of the group actions (e.g. monologues into either
monologues or monologues � note-taking), and to label the entire corpus in terms of individual actions. All
ground-truth was produced using Anvil, a publicly available video annotation tool 2.

5 Multi-Modal Feature Extraction

In this section, we describe the process to extract the two types of AV features used in this work: person-specific
AV features and group-level AV features. The former are extracted from individual participants. The latter are
extracted from the whiteboard and projector screen regions.

5.1 Person-Specific AV Features

Person-specific visual features were extracted from the cameras that have a close view of the participants.
Person-specific audio features were extracted from the lapel microphones attached to each person, and from
the microphone array. The complete set of features is listed in Table 4.

Person-specific visual features. For each video frame, the raw image is converted to a skin-color likelihood
image, using a 5-component skin-color Gaussian mixture model (GMM). We use the chromatic color space,
known to be less variant to the skin color of different people [27]. The chromatic colors are defined by a
normalization process: � �

�
��� � ���

���
� ���� � ��� . Skin pixels were then classified based on thresholding

of the skin likelihood. A morphological postprocessing step was performed to remove noise. The skin-color
likelihood image is the input to a connected-component algorithm (flood filling) that extracts blobs. All blobs
whose areas are smaller than a given threshold were removed. We use 2-D blob features to represent each
participant in the meeting, assuming that the extracted blobs correspond to human faces and hands. First, we
use a multi-view face detector to verify blobs corresponding to the face. The blob with the highest confidence
output by the face detector is recognized as the face. Among the remaining blobs, the one that has the rightmost
centroid horizontal position is identified as the right hand (we only extracted features from the right hands
since the participants in the corpus are predominately right-handed). For each person, the detected face blob is
represented by its vertical centroid position and eccentricity [23]. The hand blob is represented by its horizontal

2http://www.dfki.de/ kipp/anvil/
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Table 4: Audio-visual feature list
Description

SRP-PHAT from each seat
Audio speech relative pitch

speech energy
Person- speech rate
Specific head vertical centroid
Features head eccentricity

right hand horizontal centroid
Visual

right hand angle
right hand eccentricity
head and hand motion

SRP-PHAT from white-board
Group

Audio
SRP-PHAT from projector screen

Features mean difference from white-board
Visual

mean difference from projector screen

centroid position, eccentricity, and angle. Additionally, the motion magnitude for head and right hand are also
extracted and summed into one single feature.

Person-specific audio features. Using the microphone array and the lapels, we extracted two types of
person-specific audio features. On one hand, speech activity was estimated at four seated locations, from the
microphone array waveforms. The seated locations were fixed 3-D vectors measured on-site. The speech
activity measure was SRP-PHAT [3], which is a continuous, bounded value that indicates the activity at a
particular location. On the other hand, three acoustic features were estimated from each lapel waveform:
energy, pitch and speaking rate. We computed these features on speech segments, setting a value of zero on
silence segments. Speech segments were detected using the microphone array, because it is well suited for
multiparty speech. We used the SIFT algorithm [11] to extract pitch, and a combination of estimators [17] to
extract speaking rate.

5.2 Group AV Features

Group AV features were extracted from the white-board and projector screen regions, and are listed in Table 4.
Group visual features. These were extracted from the camera that looks towards the white-board and

projector screen area. We first get difference images between a reference background image and the image at
each time, in the white-board and projector screen regions (see Fig.2). On these difference images, we use the
average intensity over a grid of ����E ��� blocks as features.

Group audio features. These are SRP-PHAT features extracted using the microphone array from two loca-
tions corresponding to the white-board and projector screen.

6 Experiments

In this section, we first describe the measures used to evaluate our results, and then present results for both
individual action recognition and group action recognition.

6.1 Performance Measures

We use the action error rate (AER) and the frame error rate (FER) as measures to evaluate the results of group
action recognition and individual action recognition, respectively.

AER is equivalent to the word error rate widely used in speech recognition, and is defined as the sum of
insertion (Ins), deletion (Del), and substitution (Subs) errors, divided by the total number of actions in the
ground-truth, ����� � 6��
	�� ��
���� � ��� ���� ��� ����� � > � � � E �����! . For group action recognition, we have � � � � possible actions
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Table 5: Number of individual actions in different sets
Individual Action Train Test

Speaking 1088 897
Writing 363 390

Idle 1426 1349

Total 2877 2636

which in many cases have no clear-cut temporal boundaries. Furthermore, at least five actions occur in each
meeting in the corpus. We believe that AER is a thus good measure to evaluate group action recognition, as we
are more interested in the recognition of the correct action sequence rather than the precise time alignment of
the recognized action segments.

However, AER overlooks the time alignment between recognized and target action segments. For individual
action recognition, there are only � � � 
 possible actions. Furthermore, some streams (participants) in the
corpus consist of only two individual actions (e.g., a person who talks only once during the course of a meeting).
AER might not provide a meaningful assessment in such cases. In this view, we adopt FER as the performance
measure for individual action recognition. FER is defined as one minus the ratio between the number of
correctly recognized frames and the number of total frames, � ��� � � ��� � ����� � � ��� � ��� � �� � ��� � � � ��� � � 
 E �����! . This
measure reflects well the accuracy of the boundaries (begin and end time) of the recognized actions, compared
to manually labeled action boundaries.

With limited number of training and testing actions, results are likely to vary due to the random initialization
of the training procedure (based on Expectation-Maximization [22]). For this reason, and to assess consistency
in the results, we report the mean and standard deviation (STD) for AER and FER, computed over 10 runs.

Finally, we also use confusion matrices, whose rows and columns index the recognized and ground-truth
actions, respectively; The element 	 > 2 of the confusion matrix corresponds to either the percentage (for indi-
vidual actions) or the instances (for group actions) of action j recognized as action i. The confusion matrix for
group actions is based on AER, so there are substitution, insertion, and deletion errors. For individual actions,
there are neither insertions nor deletions because the peformance measure is FER.

6.2 Experiments Protocol

For both individual and group action recognition, we use 6-fold cross-validation on the training set to select
the best parameters. For cross-validation, we split the training set into a training set and a validation set. For
individual action recognition, we split the training streams according to person identities. There are no people
overlapping across training, validation, and test sets. For group actions, there is no overlap in participants
between training and test sets. We intend the models to be person-independent, so they can be used for future
meetings without need for re-training. After the best model parameters are selected, we train models on the
whole training set and apply them on the test set.

From the 59 meetings, 30 are used as training data, and the remaining 29 are used for testing. The number
of individual actions and group actions in the different data sets are summarized in Table 6-6. The number of
individual actions is much larger than that of group actions. There are two reasons. First, for individual action
recognition, there are four participants for each meeting. Therefore, there are 
�� E�
 � �
� � streams for training
and ��� E�
 � �A��� streams for testing. Second, the duration of individual actions is typically shorter than that
of group actions.

6.3 Individual Action Recognition

Three HMM methods were tested for individual action recognition.
Early integration. Normal HMM trained on three feature sets: audio-only, visual-only. and audio-visual.
Audio-Visual multi-stream. Multi-stream HMM combining individual audio and visual streams.
Audio-Visual asynchronous: Asynchronous HMM combining individual audio and visual streams.
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Table 6: Number of group actions in different sets
Group Action Train Test

discussion 48 49
monologue 26 26

monologue + note-taking 17 23
note-taking 6 3
presentation 6 9

presentation + note-taking 5 9
white-board 5 1

white-board + note-taking 11 19

Total 124 139

Table 7: Results of individual action recognition
Method Features FER (%) STD

Visual 34.17 3.64
Early Integration Audio 23.48 2.70

Audio-Visual 9.98 2.65
MS-HMM (0.5, 0.5) Audio-Visual 14.12% 2.93
MS-HMM (0.8, 0.2) Audio-Visual 8.58% 1.76
Asynchronous HMM Audio-Visual 7.42% 1.13

Multi-stream HMMs allow us to give different weights to different modalities. Following [13], two sets of
weights were tested: (0.5, 0.5) and (0.8, 0.2) for audio and video, respectively. For asynchronous HMM, the
allowed asynchrony ranges from 0.2 seconds to 2.2 seconds. Results are presented in Table 7 in terms of FER
mean and standard deviation, obtained over 10 runs.

From Table 7, we observe that all methods using AV features got less than 15% FER, which is about 10%
improvement over using audio-only features, and about 20% improvement over using visual-only features.
Asynchronous HMM produced the best result. Given that the total number of frames is over 
 


� � ��� , the im-
provement using asynchronous HMM over the other HMM methods is statistically significant with a confidence
level above 99%, using a standard proportion test [7]. The improvement suggests that there exist asynchronous
effects between the audio and visual modalities. Additionally, the multi-stream HMM with larger weight on
audio outperformed the equal-weight scheme. This is not completely surprising given the fact the predominant
role of audio in the defined actions.

The confusion matrix for early integration AV HMM, corresponding to a randomly chosen single run, is
shown in Table 8. In summary, “speaking” is well detected, “writing” is generally well-detected but tends to
get confused with “idle”, which in turn is the action with the highest FER. This is likely due to the catch-all
role that this action plays. In practice, “idle” includes all other possible AV patterns, (e.g. pointing, laughing,
etc.), which makes its modeling more difficult, compared with the other two well-defined actions.

Table 8: Confusion matrix of recognized individual actions; early-integration HMM, using AV features
Speaking Writing Idle

Speaking 96.60% 1.62% 1.17%
Writing 0.16% 90.80% 17.33%

Idle 3.24% 7.58% 81.50%
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Table 9: Results of group action recognition
Method Features AER STD

Visual-Only 48.20 % 3.78
Single-Layer Audio-Only 36.70% 4.12

Audio-Visual 23.74% 2.97
Visual-Only 42.45% 2.85
Audio-Only 32.37% 2.10

Two-Layer
A-HMM hard decision 17.85% 2.87
A-HMM soft decision 15.11% 1.48

6.4 Group Action Recognition

Using the outputs from I-HMM and the group-level features, concatenated as described in Section 3.3, we
investigated the following cases for recognition of group actions:

Early integration, visual-only, soft decision. A normal HMM is trained using the combination of the results
of the I-HMM trained on visual-only features, and the visual group features. The soft decision criteria is used.

Early integration, audio-only, soft decision. Same as above, but replacing visual-only by audio-only infor-
mation.

Asynchronous HMM (A-HMM), AV, soft decision. We use the asynchronous HMM for individual action
layer and audio-visual features. The soft decision criteria is used.

Asynchronous HMM, AV, hard decision. Same as above, but changing the criteria to link two HMM layers.
As baseline methods for comparison, we use single-layer HMMs, using low-level audio-only, visual-only,

and AV features as observations [12], and trained by cross-validation following the same experimental protocol.
The results appear in Table 9, in terms of AER mean and standard deviation over 10 runs.

We observe from Table 9 that the use of AV features outperformed the use of single modalities for both
single-layer HMM and two-layer HMM methods. This results supports the hypothesis that the group actions
we defined are inherently multimodal. Furthermore, the two-layer HMM method using AV features improved
the performance by over 8% compared to the AV single-layer HMM. Given the small number of group actions
in the corpus, a standard proportion test indicates that the difference in performance between AV single-layer
and two-layer HMMs using soft decision is significant at the 96% level. Additionally, the standard deviation
for the two-layer approach is half the baseline’s, which suggests that our approach might be more robust to
variations in initialization, given the fact that each HMM stage in our approach is trained using an observation
space of relatively low dimension. Regarding hard vs. soft decision, soft decision produced a slightly better
result, although not statistically significant. However, the standard deviation using soft-decision is again around
half the corresponding to hard-decision. Overall, the soft decision two-layer HMM appears to be favored by
the results.

The confusion matrix for AV, soft-decision, two-layer HMM for a randomly chosen single run is shown
in Table 10. Empty cells represent zero values. We see that most substitution errors come from confusions
between actions with and without note-taking. This might be mainly because several instances of “writing”
could not be reliably detected as individual actions, as mentioned in the previous subsection. On the other hand,
“discussion” and “note-taking” actions can be recognized reasonably well.
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Table 10: Confusion matrix of recognized group actions for two-layer HMM frame using soft decision

discussion monologue mono+note note-taking presentation pres+note white-board wb+note DEL
discussion 47
monologue 21 4 1
mono+note 1 3 19
note-taking 2 1
presentation 6 3 1
pres+note 1 5

white-board 1 1 1 1 2
wb+note 1 17

INS 2 1

7 Conclusions and Future Work

In this paper, meetings were defined as sequences of multi-modal group actions. We addressed the problem
of modeling and recognizing such group actions, proposing a two-layer HMM framework to decompose the
group action recognition problem into two layers. The first layer maps low-level AV features into individual
actions. The second layer uses results from the first layer as input to recognize group actions. Experiments
on a public 59-meeting corpus demonstrate the effectiveness of the proposed framework to recognize a set
of eight multimodal turn-taking actions, compared to a baseline, single-layer HMM system. We believe our
methodology to be promising. In the short-term, we will explore its applicability to other sets of group actions.
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