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Abstract. Statistical significance tests are often used in machine learning to compare the per-
formance of two learning algorithms or two models. However, in most cases, one of the underlying
assumptions behind these tests is that the error measure used to assess the performance of one
model/algorithm is computed as the sum of errors obtained on each example of the test set. This
is however not the case for several well-known measures such as F1, used in text categorization,
or DCF, used in person authentication. We propose here a practical methodology to either adapt
the existing tests or develop non-parametric solutions for such bizarre measures. We furthermore
assess the quality of these tests on a real-life large dataset.
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abstract

1 Introduction

In Machine Learning like in Physics, Biology or Psychology, when a result is presented, in order to
make it reliable, the question of its statistical significance should be addressed. Indeed, the level of
confidence we have in a result should be part of the report. In Machine Learning, for example, when
comparing two trained models on a common test set, we would like to know if the better performance
we obtained for model A (as compared to model B) is only an artifact of the test set or if it is a more
general result.

Several researchers (see for instance [1] and [4]) have proposed statistical tests suited for 2-class
classification tasks where the performance is measured in terms of the classification error (ratio of the
number of errors and the number of examples), which enables the use of assumptions based on the
fact that the error can be seen as a sum of random variables over the examples.

However in a wide range of domains, 2-class classification tasks are solved within a domain specific
framework which differs from the general framework in their choice of performance measure; instead
of using the classification error, some find it more convenient to first consider separately the error
(or performance) of each class and combine them in some way. These bizarre measures can therefore
not be considered as sums of random variables over the examples, thus the usual assumptions are no
longer correct, and most of the currently proposed tests cannot be applied directly.

Following the taxonomy of questions of interest defined by Dietterich in [1], we can differentiate
between statistical tests that analyze learning algorithms and statistical tests that analyze classifiers.
In the first case, one intends to be robust to possible variations of the train and test sets, while in the
latter, one intends to be only robust to variations of the test set. While the methods discussed in this
paper can be applied alternatively to both approaches, we will concentrate here on the second one, as
it is more tractable (for the empirical section) while still corresponding to real life situations where
the training set is fixed and one wants to compare two solutions (such as during a competition).

We thus propose in this paper a practical methodology to apply statistical tests to bizarre perfor-
mance measures such as the well-known F1 measure used in text categorization or the so-called DCF
measure used in person authentication. Moreover, using a very large dataset (the extended Reuters
dataset [5]), we propose to verify how reliable these tests are on real data.

In the following section we quickly recall some of the currently used statistical significance tests
for 2-class classification tasks and introduce the problem of bizarre measures. In section 3, we present
one kind of measure for which the usual tests can in fact be adapted quite easily using some simple
algebra, while section 4 gives an example of a performance measure for which such adaptation is
simply not possible and a non-parametric approach is thus proposed. Finally, in section 5 we present
the results of an experiment done with real data in order to assess the quality of the non-parametric
test proposed in section 4.

2 Statistical Significance Tests for 2-Class Classification Tasks

Let us first remind the basic classification framework in which statistical significance tests are used
in machine learning. We consider comparing two models A and B on a two-class classification task
where the goal is to classify input examples xi into the corresponding class yi ∈ {−1, 1}, using already
trained models fA(xi) or fB(xi). One can estimate their respective performance on some test data by
counting the number of utterances of each possible outcome: either the obtained class corresponds to
the desired class, or not. Let Ne be the number of errors of a model and N the total number of test
examples; the classification error C can thus be seen as a proportion of errors:

C =
Ne

N
. (1)
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The difference between two models A and B can then be written as

D = CA − CB =
Ne,A − Ne,B

N
(2)

where Ne,A is the number of errors of model A while Ne,B is the number of errors of model B.
The usual starting point of most statistical tests is to define the so-called null hypothesis which

considers the two models as equivalent, and then verifies how probable this hypothesis is. Hence,
assuming that D is an instance of some random variable D which follows some distribution, we are
interested in

p(|D| < |CA − CB |) = δ (3)

where δ represents the risk of selecting the alternate hypothesis (the two models are different) while
the null hypothesis is in fact true. This can in general be estimated easily when the distribution of
D is known. In the simplest case, known as the proportion test, one assumes (reasonably) that the
decision taken by each model on each example can be modeled by a Binomial, and further assumes
(wrongly) that CA and CB are independent. When N is large, this leads to estimate D as a Normal
distribution with zero mean and standard deviation σD

σD =

√

2C̄(1 − C̄)

N
(4)

where C̄ = CA−CB

2
is the average classification error.

In order to get rid of the wrong independence assumption between CA and CB , [7] proposes to
only take into account the examples for which the two models A and B disagree. Let NAB be the
number of test examples for which models A and B gave different decisions. The difference between
the two models can now be written as

D = CA − CB =
NAB

N
(5)

and one can show that in that case D follows a Normal distribution with zero mean and standard
deviation σD

σD =

√
NAB

N
. (6)

This is also very similar to the well-known McNemar test, which instead considers D as a χ2 distri-
bution but yields basically the same result for large N , which is the case in Machine Learning [1].

More recently, several other statistical tests have been proposed, such as the 5x2cv method [1]
or the variance estimate proposed in [4], which both claim to better estimate the distribution of the
errors (and hence the confidence on the statistical significance of the results).

However, all these solutions assume that the error of one model (CA or CB) is the average of some
random variable (the error) estimated on each example. Intuitively, this average will thus tend to
be Normally distributed as N grows, following the central limit theorem. On the other hand, often
for historical reasons, several machine learning tasks are not measured in this way. For instance, in
text categorization or information retrieval, researchers use the well-known F1 measure [6], and in
person authentication, researchers use the DCF measure [3]. Both are in fact aggregate measures of
the whole test set which cannot be seen directly as proper proportions which denominator would be
the number of examples. In the following two sections, we propose two solutions that can be used to
measure statistical significance in such cases.

3 Adapted Proportion Test for Person Authentication Tasks

The Detection Cost Function (DCF) is a general performance measure used in person authentication,
where the task is to verify the claimed identity of a person using his or her biometric information;
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voice, face, form of the hand, etc. If the claimed identity is right, the person is considered as a client
(which we will call hereafter the positive class), otherwise he or she is considered as an impostor (the
negative class).

Let us consider the following decomposition of the various outcomes of a classification system: let
Ntp be the number of true positives (clients that were recognized as such), Ntn the number of true
negatives (impostors recognized as such), Nfp the number of false positives (impostors recognized as
clients) and Nfn the number of false negatives (clients recognized as impostors). The DCF can be
written as:

DCF = Cost(fn) · P (p) · Nfn

Nfn + Ntp
︸ ︷︷ ︸

+ Cost(fp) · P (n) · Nfp

Nfp + Ntn
︸ ︷︷ ︸

(7)

where Cost(fn) is the cost of rejecting a true client, Cost(fp) is the cost of accepting an impostor,
P (p) is the prior probability of a client (positive) access, while P (n) is the prior probability of an
impostor (negative) access. The DCF thus enables to fix the relative costs of each class while being
robust to the actual train distribution, which may not reflect the real one.

It is easy to see that the two under-braces consider different categories of examples: the first one
computes the weighted error on the positive class examples (the client accesses), while the second one
computes the weighted error on the negative class examples (the impostor accesses). Hence, the error
made on each category of examples can still be seen as a (weighted) proportion and both proportions
can be considered independent as they are computed on two different populations of examples (clients
and impostors). We can thus use the fact that the sum of two independent Normal distributions is
a Normal which variance is the sum of the underlying variances. Let us denote Nn = Nfp + Ntn the
number of negative examples and Np = Nfn + Ntp the number of positive examples. One can derive
the proportion test when assuming (wrongly) independence between DCFA and DCFB , which, after
some simple algebra, yields a Normal distribution with standard deviation

σdcf =

√

2

[

Cost(fn)2P (p)2
N̄fn

N2
p

·
(

1 − N̄fn

Np

)

+ Cost(fp)2P (n)2
N̄fp

N2
n

·
(

1 − N̄fp

Nn

)]

(8)

where N̄fn =
Nfn,A+Nfn,B

2
is the average of the number of false negatives of models A and B, and

N̄fp =
Nfp,A+Nfp,B

2
is the average of the number of false positives of models A and B.

Taking into account the fact that the errors of models A and B are computed on the same test set
(hence the two DCFs are not independent), we can again concentrate on only those examples which
were differently classified by both models A and B, as suggested in [7]. Let Nn,AB be the number
of negative examples for which models A and B gave different decisions, and similarly for Np,AB , we
then obtain

σdcf =

√

Cost(fn)2P (p)2 · Np,AB

N2
p

+
Cost(fp)2P (n)2 · Nn,AB

N2
n

. (9)

Hence, for measures such as DCF, it is still possible to modify classical statistical tests (note that
using the same strategy, it is also possible to use the statistical tests proposed in [1] or [4]). On the
other hand, we will see in the next section that there are still other performance measures for which
no such simple adaptation can hold.

4 Bootstrap Percentile Test for F1

Text categorization is the task of assigning one or several categories, among the predefined set C =
{c1, . . . , cK}, to textual documents. As explained in [6], text categorization is usually solved as K

2-class classification problems, in a one-against-the-others approach. In this field two measures are
considered of importance:
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Precision =
Ntp

Ntp + Nfp

, and Recall =
Ntp

Ntp + Nfn

.

These are effectiveness measures, i.e. inside [0, 1] interval, the closer to 1 the better. For each category
k, Precisionk measures the proportion of documents of the class among the ones considered as such
by the classifier and Recallk the proportion of documents of the class correctly classified.

To summarize these two values, it is common to consider the so-called F1 measure [8], which is
the inverse of the harmonic mean of Precision and Recall:

F1 =

(
1

2

[
1

Recall
+

1

Precision

])
−1

=
2 · Precision · Recall

Precision + Recall
(10)

=
2Ntp

2Ntp + Nfn + Nfp

. (11)

Let us consider two models A and B, which achieve a performance measured by F1A
and F1B

respectively. The difference dF1 = F1B
− F1A

does not fit the assumptions of the tests presented in
Section 2. Indeed, it cannot be decomposed into a sum over the documents of independent random
variables, since the numerator and the denominator of dF1 are non constant sums over documents of
independent random variables For the same reason F1, while being a proportion, cannot be considered
as a random variable following a Normal distribution for which we could easily estimate the variance.

Hence, we would like to present here an alternative solution to measure the statistical significance
of dF1, based on the Bootstrap Percentile Test proposed in [2]. The idea of this test is to approximate
the unknown distribution of dF1 by an estimate based on bootstrap replicates of the data.

Notice that for each document the intersection of the 2 classifiers response can be transcribed into
eight possible events, described in Table 1. For example, the event e1 represents a positive response
of both classifiers when the document belongs to the tested class.

class 1 TPA FNA class -1 FPA TNA

TPB e1 e2 FPB e5 e6

FNB e3 e4 TNB e7 e8

Table 1: Eight possible joint outcomes between models A and B.

We can then rewrite dF1 as follows:

dF1 = 2

[
Ne1

+ Ne3

Np + Ne1
+ Ne3

+ Ne4
+ Ne6

− Ne1
+ Ne2

Np + Ne1
+ Ne2

+ Ne4
+ Ne5

]

(12)

where Nej
is the number of times the event ej occurs in the sample. Let S0 be the sample of test set

document’s events, i.e. the ith element of S0 corresponds to the intersection of the classifiers response
for the ith document in the test set. Let us assume that we have N such documents (card(S0) = N).
We draw with replacement, as illustrated in Table 2, among the elements of the set S0, N elements
to form the first bootstrap sample S1. We then compute dF ∗

11
from S1 using eq. (12), the first

bootstrap replicate of dF1. We repeat this process M times and thus obtain M replicates of dF1,
which altogether represent a non-parametric estimate of p(dF1). Using this estimate, we can finally
compute the probability that dF1 is positive by simply counting the fraction of these M values that
were positives:

p(dF1 > 0) =
NdF∗

1l
>0

M
(13)

where NdF∗

1l
>0 is the number of bootstrap replicates which yielded a positive dF ∗

1 .
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doc1 doc2 doc3 doc4 . . . docN

model A TPA FPA FNA TPA . . . TNA

model B TPB TNB TPB FNB . . . FPB

S0 e1 e7 e2 e3 . . . e6 → dF10

S1 e1 e6 . . . . . . . . . e7 → dF ∗

11

. . . . . . . . . . . . . . . . . . . . . . . .

SM e8 e6 e5 . . . . . . e3 → dF ∗

1M

Table 2: Illustration of the bootstrap process
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Figure 1: Histogram of dF ∗

1 on the category set X

Similarly, we can estimate the probability that dF1 is inside an interval [a, b] as:

p(a < dF1 < b) =
Na<dF∗

1l
<b

M
. (14)

Let us consider selecting a and b such that p(a < dF1 < b) = 95%, centered around the mean of p(dF1),
as illustrated in Figure 1. If 0 is outside the interval, we can say that dF1 = 0 is not among the most
frequent results, thus we can say that model A and model B are different with 95% confidence. On
the contrary, if 0 is inside the interval, we notice that among the most frequent dF1 values some are
positives and others are negatives, that is, sometimes model A is better than model B and sometimes
it is the converse. In this case we conclude that we do not have enough confidence to say that the two
models are really different.

Other non-parametric tests such as the sign test are sometimes advocated in the related literature
(see for instance [8] or [9]). They may assess whether model A is better than model B, but the
assessment will not be based on the difference of F1, and thus will not give any answer about the
significance of the difference of such measure.

5 Experiments

In order to assess the quality of the bootstrap estimate of the significance of the difference of F1,
we have run several experiments on the very large RCV1 Reuters dataset [5], which contains up to
806,791 documents. We divided it as follows: 7982 documents were used as a training set Dtr (to
train models A and B), 7909 documents were used as a test set Dte (to estimate which of model A
or B is the best one, and with which confidence), and the rest, called Dtrue and containing 790900
documents, was used to verify if our estimate of the confidence we have on dF1 was reasonable. There
was a total of 100 categories and we defined 3 sub-problems with 3 disjoints subsets of 21 categories,
which we will refer to as X , Y and Z.
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We first extracted the dictionary from the training set, removed stopwords and applied stemming
to it, as normally done in text categorization. Each document was then represented as a bag-of-words
using the usual tfidf coding. We then trained two different models (model A was a set of one-against-
the-others Support Vector Machines (SVMs) with linear kernel, while model B was also a set of SVMs
but with a Gaussian kernel, properly tuned using cross-validation on the training set).

After training, models A and B were used to compute dF1 on the test set Dte. We then applied
the bootstrap technique described in section 4 on the test set Dte in order to compute the estimator
dF ∗

1 (using 10000 bootstrap replicates) of the distribution of dF1. Finally, we used the remaining
dataset Dtrue in order to obtain a more precise estimate of the distribution of dF1 by bootstraping a
large number (1000) of subsets of size 7909 from Dtrue and estimated dF1 on each of them. It can be
argued that doing so, the subsets may not be totally independent. While this is true, it can be shown
that the average overlap between 2 subsets is less than 1%, in the case of sub-sampling sets 100 times
smaller than the actual set1. This is of course not the case when bootstraping sets of the same size as
the actual set (as done on Dte), where the average overlap between 2 sets is almost 40%. We would
thus like to verify whether, despite this overlap, the results obtained with the Bootstrap Percentile
Test are reliable.

Results of the experiments over the category sets X , Y and Z are displayed in Table 3.

Bootstrap percentile Percentage on
Test confidence Dtrue sub-sampling

Experiment over X 95.6% (F ∗

1B
> F ∗

1A
) 92.4%

Experiment over Y 54.2% (F ∗

1B
> F ∗

1A
) 69.1%

Experiment over Z 96.5% (F ∗

1A
> F ∗

1B
) 82.5%

Table 3: Confidence on |F1B
− F1A

| > 0

As can be seen, in the experiment over X , both the bootstrap percentile test, plotted in Figure 1,
and the estimation over Dtrue, are quite confident on F1B

being higher than F1A
. However, the first

seems to over-estimate this confidence. We can make the same observation in the experiment over Z,
where the bootstrap on Dte is over-optimistic as compared to the estimate on Dtrue. On the contrary,
on the experiment over Y , the bootstrap test gives a smaller level of confidence than the estimate
over Dtrue, to any model being better than the other, the latter not being very confident either. A
possible explanation for these untidy results is that the percentile estimation is based on the tails of
the distribution and thus the smaller the dataset the less data it has to rely on. While it is clear that
the proposed estimate on the small test set does not seem to be very accurate, it is important to verify
whether it includes an intrinsic bias. This will be verified in future experiments.

6 Conclusion

In this paper we have proposed two different methods to estimate the statistical significance of the
difference between models when this difference is computed in terms of bizarre measures, for which
the assumptions underlying the usual statistical tests do no hold anymore.

We have first shown that in some cases, simple arithmetics could be used to derive a correct test
(as for the DCF measure). For other cases, such as for the F1 measure, we proposed a non-parametric
approach based on bootstrap replicates.

Finally, using a very large (non-artificial) dataset, we proposed an empirical framework to evaluate
the quality of the proposed tests.

1On the other hand, dividing the data into 100 non-overlaping subsets would also result in some dependencies
between the subsets, since one example drawn in one subset could never appear in any others (another way to see the
dependency is to note that the last subset is not really drawn, as it is composed of what was left from the other subsets).
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