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Abstract

Tandem systems transform the cepstral features into posterior
probabilities of subword units using artificial neural networks
(ANNs), which are processed to form input features for con-
ventional speech recognition systems. They have been shown
to perform better than conventional speech recognition systems
using cepstral features. Recent studies have shown that mod-
elling cepstral features with auxiliary sources of knowledge
leads to improvement in the performance of speech recogni-
tion systems. In this paper, we study two approaches to in-
corporate auxiliary knowledge sources such as pitch frequency,
short-term energy, etc. (referred to as auxiliary features), in
a tandem-based automatic speech recognition system. In the
first approach, we model the auxiliary features in the process of
training an ANN, which is later used to extract tandem-features.
In the second approach, we extract the tandem-features from an
ANN trained with cepstral features only and then model them
jointly with auxiliary features. Recognition studies conducted
on a connected word recognition task under clean and noisy
conditions show that the performance of the tandem system can
be improved by incorporating auxiliary features.

1. Introduction
The goal of the automatic speech recognition (ASR) systems
is to produce a word transcription that best matches an acous-
tic sequence X = x1, · · · , xn, · · · , xN , where N is the num-
ber of time frames. In state-of-the-art hidden Markov model
(HMM) based ASR systems this problem is then formulated
as modelling p(Q, X), the evolution of the hidden state space
Q = {q1, · · · , qn, · · · qN} and the observed space X [1]:

p(Q, X) ≈
N

Y

n=1

p(xn|qn) · P (qn|qn−1), (1)

where qn ∈ {1, · · · , k, · · · , K} and K is number of states.
In recent studies, it has been proposed that modelling the

evolution of auxiliary information A = {a1, · · · , an, · · · aN}
along with Q and X (i.e. p(Q,X, A) instead of p(Q,X)) could
improve the performance of ASR [2, 3, 4, 5]:

p(Q,X, A) ≈
N

Y

n=1

p(xn, an|qn) · P (qn|qn−1) (2)

The implementation of such a system is straightforward, how-
ever this approach also implicitly models the dependency be-
tween the state qn and the auxiliary feature an, which may be
noisy. In such a case, it would be better to relax the joint dis-
tribution in (2) by assuming independence between an and qn,

yielding:

p(Q,X, A) ≈

N
Y

n=1

p(xn|qn, an)·p(an)·P (qn|qn−1) (3)

Auxiliary features that were primarily investigated in the past
such as pitch frequency, short-term energy, rate-of-speech
(ROS) etc. were obtained directly from the speech signal [4].
This approach has been studied in the frameworks of both
GMM-based HMM systems and hybrid HMM/ANN systems
[4].

Traditional ASR systems use features such as Mel fre-
quency cepstral coefficients (MFCCs), or perceptual linear pre-
diction (PLP) features [6] etc., derived from the smoothed spec-
tral envelope of the speech signal as the observation xn. More
recently, tandem systems have been proposed where the cep-
stral features are transformed into posterior probabilities using
an ANN [7]. These posterior probabilites are then processed
and fed as the input feature (tandem-feature) for a standard
GMM-based ASR system. This has been shown to perform
better than the state-of-the-art GMM-based ASR using cepstral
features [7, 8].

In this paper, two different approaches to incorporate auxil-
iary features in a tandem system are investigated. In the first
approach (Tandem(CEP+AUX)), hybrid HMM/ANN systems
jointly modelling both the cepstral features and the auxiliary
features based on (2) and (3) are trained [5]. The tandem-
features are then extracted from the trained ANN of these
systems. In the second approach (Tandem(CEP)+AUX), the
tandem-features are extracted from the ANN of the hybrid
HMM/ANN baseline system based on (1) and are modelled
jointly with the auxiliary features in the framework of dynamic
Bayesian networks (DBNs) as done in [4]. Figure 1 gives an
illustration of the two approaches. We have studied this on the
OGI Numbers database [9]. In both these approaches, signifi-
cant improvement is achieved over ASR using cepstral features
(in our case PLP cepstral coefficients). Moreover, the experi-
mental studies also show that the performance of tandem sys-
tems could be further improved by incorporating auxiliary fea-
tures.

The paper is organized in the following way. Sections 2
and 3 give a brief introduction about modelling auxiliary fea-
tures and tandem systems, respectively. Section 4 describes
the experimental setup and Section 5 presents the experimen-
tal studies. Finally, Section 6 summarizes our work with some
conclusions.

2. Modelling Auxiliary Features
It can be observed from (2) and (3) that auxiliary features could
be incorporated in standard ASR in different ways, such as ap-
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Figure 1: Illustraion of the two approaches to incorporate aux-
iliary features in tandem systems

pending it to the feature vector as in (2) or conditioning the
emission distribution as in (3). Although, implementation of
a system based on (2) is easy, it is not obvious in the case of
(3). In GMM-HMM systems this is realized through condi-
tional Gaussians [3, 10]. In a hybrid HMM/ANN system, this
can be realized by quantizing the auxiliary features and training
an ANN corresponding to each of its discrete values [5], like
gender modelling.

It is often observed that the estimation of the auxiliary fea-
tures may not always be reliable, for example, the estimation
of pitch frequency or short-term energy is error prone in noisy
conditions. In such cases, it may be good to observe an during
training and hide it, i.e. integrate over all possible values during
recognition [4]. Refer to [4, 10] for further details about our
approach of modelling auxiliary features in ASR.

3. Tandem Systems
In literature, GMM-HMM-based ASR systems and hybrid
HMM/ANN-based ASR systems have been widely studied
[1, 11]. GMM-HMM models are trained to maximize the like-
lihood of the data X , whereas an HMM/ANN model is trained
to discriminate between the states so as to yield the posterior
probability of state qn.

A tandem system combines the discriminative feature of an
ANN with Gaussian mixture modelling by using the processed
posterior probabilities as the input feature for the GMM-HMM-
based systems. This approach has been shown to yield signifi-
cant improvement over conventional GMM-based ASR system
using cepstral features in both clean and noisy conditions [7].
This approach has certain advantages such as, (a) it may allow
us to make better use of the different probabilistic basis of the
two systems and approaches developed for them. (b) it pro-
vides a framework where data from different databases could
be used together, for instance, the ANN could be trained on any
database [7].

The tandem system is trained in the following manner [7].

1. A hybrid HMM/ANN system is trained with task-
independent or task-dependent data [7]. In our studies, it
is the task-dependent data.

2. The task for which we have to train an ASR system, the
training data of it is passed through the ANN to get the
the posterior probabilities. In our case, it is the same data
which is used to train hybrid HMM/ANN system.

3. Since the posterior probabilities obtained from the output
of the ANN are very skewed, their logs are taken. This

is similar to taking the value of the output units prior to
the nonlinearity.

4. Principal component analysis (PCA) is performed on the
features obtained in the previous step. The features are
then decorrelated by projecting them along the eigen-
vectors. We refer to the resulting features as tandem-
features. GMM-HMM-based ASR is then trained with
the tandem-features.

During recognition, the test data is passed through the ANN
and the log posterior proabilities are decorrelated by Karhunen-
Loeve-transform (KLT) using the PCA statistics collected dur-
ing training to obtain the tandem-features. The tandem-features
are then fed to the trained HMMs and decoding is performed.

4. Experimental Setup
For our studies, we use the OGI-Numbers database which con-
tains spontaneously spoken free-format numbers over telephone
channel [9]. The definition of the training set, validation set and
test set is similar to the one defined in [12]. The training set
contains 3233 utterances (approximately 1.5 hours) and the val-
idation set contains 357 utterances (used during ANN training).
The test set consists of 1206 utterances.

We perform recognition experiments upon clean data. We
also test our systems on versions with added noise using the
Noisex-92 database [13]. We have studied it for factory (FACT)
and lynx (LYNX) noise conditions at signal-to-noise ratios
(SNR) 6dB and 12dB. The lexicon contains 30 different words.

4.1. Cepstral feature and auxiliary features used

We use 39 dimension PLP cepstral features comprised of 13 di-
mension PLP cepstral, along with their first and second order
derivatives. The frame shift and frame size are 12.5 ms and
25 ms, respectively. Similar to earlier studies [4], we use the
following auxiliary features: (a) Pitch (P), estimated using sim-
ple inverse filter tracking approach [14] with a 5-point median
smoothing. The pitch estimator is reliable, and an evaluation
of it can be found in [5]; (b) Short-term energy (E), estimated
as the logarithm of the squared samples in a windowed frame;
and (c) ROS (R), estimated called the mrate algorithm which
was developed at ICSI and measures the ROS directly from the
speech signal [15].

4.2. Modelling auxiliary features in tandem systems

We train different hybrid HMM/ANN systems. The input to the
ANN are features at time frame n with 4 frame left and right
context (9x39 vector) and the output is the posterior probabili-
ties of 24 context-independent phonemes.

1. “System B”: Hybrid HMM/ANN baseline system based
on (1).

2. “System H-A”: A hybrid HMM/ANN based on (2) for
each auxiliary feature pitch, short-term energy, and ROS.
The input to the ANN is a PLP feature vector appended
with auxiliary feature at time frame n with 4 frame left
and right context (9x40 vector).

3. “System H-C”: As discussed earlier, in Sections 1 and 2,
for hybrid HMM/ANN systems based on (3), the auxil-
iary feature has to be quantized [4, 5]. Similar to [4, 5],
we quantize each type of auxiliary feature into three re-
gions. We train an ANN for each of the regions by find-
ing the nearest discrete region corresponding to the value
of the auxiliary feature at that time frame.



With this setup, we can model auxiliary features in tandem
system in the following ways

1. “Tandem(CEP+AUX)”: Modelling the cepstral features
and the auxiliary features in the framework of hybrid
HMM/ANN (systems H-A and H-C) as in [4, 5]. Then,
using these trained ANNs to extract tandem-features.

2. “Tandem(CEP)+AUX”: Extracting the tandem-features
from the hybrid HMM/ANN baseline system (system B),
and then model them jointly with auxiliary features as
done in [4, 10].

5. Experimental Studies
5.1. Tandem(CEP+AUX)

For the first approach, we use the HTK-toolkit [16] to train the
GMM-HMM system with 80 context-dependent phonemes, 3
emitting states per phoneme and 12 mixtures per state. We train

1. PLP: A system with PLP features.

2. Tandem(CEP): A system with tandem-features extracted
from baseline HMM/ANN hybrid system (system B).

3. Tandem(CEP+AUX-A): Three systems corresponding to
the auxiliary features pitch, short-term energy and ROS
with tandem-features extracted from their respective
ANN of system H-A.

4. Tandem(CEP+AUX-C): Three systems with tandem-
features extracted from ANNs of system H-C corre-
sponding to the auxiliary feature pitch, short-term energy
and ROS.

In systems Tandem(CEP+AUX-A) and Tandem(CEP+AUX-C),
the auxiliary feature is always observed. In the case of system
Tandem(CEP+AUX-C), it means at any time frame n the ANN
corresponding to the discrete value of the auxiliary feature an

is used to extract tandem-features.
The results of the recognition studies are given in Table 1.

It can be seen that the tandem systems perform better than the
baseline system using PLP features in clean and noisy condi-
tions. Comparing the tandem systems, in clean condition sys-
tem Tandem(CEP+AUX-A) for auxiliary feature ROS performs
better than the system Tandem(CEP). The performance of sys-
tem Tandem(CEP+AUX-A) for auxiliary features short-term en-
ergy and ROS degrades significantly in noisy conditions. The
main reason for this is that the estimation of auxiliary features
is not reliable. One solution would be to hide the continuous
valued an; but it is not obvious how this could be done in the
case of hybrid HMM/ANN systems .

5.2. Tandem(CEP)+AUX

For the second approach, we use DBNs [2, 10, 17]. DBNs like
HMMs model p(Q,X) or p(Q,X, A) which puts them into
the same family of models; but DBNs provide a more flexi-
ble framework for investigating the addition of variables to the
modelling, the addition and deletion of statistical dependencies
between component variables, and the hiding of some of the
variables. We use the DBNs software developed in [10] to train
ASR systems with 80 context-dependent phonemes, 3 emitting
states per phoneme and 12 mixtures per state. We train follow-
ing systems with DBNs

1. PLP: A baseline system using PLP features.

2. Tandem(CEP): A tandem baseline system with tandem-
features extracted from system B.

Table 1: Results of Tandem(CEP+AUX) approach where the
tandem-features are extracted from hybrid HMM/ANN system
modelling PLP features and auxiliary features. Results are re-
ported for clean data (SNR=∞), SNRs of 6dB and 12dB. The
performance is measured in-terms of word error rate (expressed
in %). The best system for each condition is marked in boldface.
Notations: P-Pitch, E-Short-term energy, R-ROS

LYNX FACT
∞ 12 6 12 6

PLP 7.3 11.6 20.0 16.2 37.6
Tandem(CEP) 5.1 9.4 16.2 13.2 25.6
Tandem(CEP+AUX-A) (P) 5.1 9.1 16.3 13.8 26.2
Tandem(CEP+AUX-C) (P) 5.5 9.9 16.4 14.6 31.2

Tandem(CEP+AUX-A) (E) 5.7 19.3 46.6 34.0 70.1
Tandem(CEP+AUX-C) (E) 5.7 10.9 19.3 15.8 28.8

Tandem(CEP+AUX-A) (R) 4.8 15.0 34.6 26.3 59.0
Tandem(CEP+AUX-C) (R) 6.0 10.7 18.1 15.9 30.8

3. Tandem(CEP)+AUX-A: Three systems corresponding to
the different auxiliary features pitch, short-term energy
and ROS based on (2). Here, the tandem-features are
augmented with the auxiliary feature (assuming xn ⊥⊥
an | qn).

4. Tandem(CEP)+AUX-C: Three systems corresponding to
the different auxiliary feature pitch, short-term energy
ROS based on (3). Here, the auxiliary feature conditions
the emission distribution.

The auxiliary feature is observed throughout the training. Dur-
ing recognition, we also performed experiments hiding the aux-
iliary feature [4, 10].

The results of the recognition studies are given in Table 2.
The tandem systems again perform better than the PLP base-
line system in both clean and noisy conditions. When com-
paring between tandem systems in clean condition the system
Tandem(CEP)+AUX-A performs better than the system Tan-
dem(CEP). In order to verify that this improvement is not due
to an increase in the number of parameters, we trained a Tan-
dem(CEP) system with 18 mixtures. The performance of this
system is 5.1% in clean, 8.8% (LYNX SNR 12dB), 15.4%
(LYNX SNR 6dB), 12.3% (FACT SNR 12dB) and 24.6%
(FACT SNR 6dB). Tandem(CEP)+AUX-A performs better than
this system in all conditions when the auxiliary features short-
term energy and ROS are hidden.

6. Summary and Conclusion
In this paper, we studied two approaches to incorporate aux-
iliary features in tandem-based ASR system. In the first ap-
proach, we model cepstral features and auxiliary features by
ANNs which are later used to extract tandem-features. In the
second approach, we extract tandem-features through an ANN
trained on cepstral features only and then, model them with
auxiliary features. Experiments conducted in both clean and
noisy conditions shows that the tandem system performs better
than conventional GMM-HMM systems using cepstral features.
Our studies also show that the performance of the tandem sys-
tem could be enhanced further, especially by modelling tandem-
features jointly with auxiliary features.

In earlier studies, tandem systems have been shown to per-
form better than the conventional systems in noisy conditions;



Table 2: Results of Tandem(CEP)+AUX approach where the
tandem-features are extracted from a hybrid HMM/ANN base-
line system and, are modelled along with auxiliary features us-
ing DBNs. For systems using auxiliary features, the first row
corresponds to the case when the auxiliary features are observed
and the second row to the case when the auxiliary features are
hidden. Results are reported for clean data (SNR=∞), SNRs of
6dB and 12dB. The performance is measured in-terms of word
error rate (expressed in %). † Systems performing signficantly
better than Tandem(CEP) system (with 95% confidence). The
best system(s) for each condition is marked boldface. Nota-
tions: P-Pitch, E-Short-term energy, R-ROS

LYNX FACT
∞ 12 6 12 6

PLP 7.3 16.3 33.3 24.6 46.9
Tandem(CEP) 5.2 9.3 15.4 13.0 24.6

Tandem(CEP)+AUX-A (P) 4.9 8.3† 14.6 12.5 25.0
4.9 8.6 15.3 12.3 24.7

Tandem(CEP)+AUX-C (P) 5.4 9.6 15.9 13.4 25.5
5.8 9.6 16.1 13.0 24.7

Tandem(CEP)+AUX-A (E) 4.9 8.4 14.8 12.6 24.2
4.8 8.2† 15.0 11.9† 23.7

Tandem(CEP)+AUX-C (E) 6.1 10.6 17.7 13.8 25.5
5.5 9.6 17.0 13.6 24.8

Tandem(CEP)+AUX-A (R) 4.7 8.2† 14.8 12.8 26.6
4.8 8.2† 14.3 12.3 24.2

Tandem(CEP)+AUX-C (R) 5.7 10.0 16.7 13.7 25.6
5.6 9.8 16.3 13.4 25.4

but when trained on speech of multiple conditions [7]. In our
studies, we observe that the tandem system trained only with
clean speech can perform better than conventional systems in
noisy conditions.

We performed recognition studies on systems B, H-A and
H-C with 24 context-independent phonemes in clean speech
condition. The system H-C performs better than system B
(9.6%) for pitch (8.4%) and short-term energy (8.2%); but sys-
tem Tandem(CEP+AUX-C) performs worse than the system
Tandem(CEP) for pitch and short-term energy (see Table 1).
Similar trend has been observed earlier in literature[8], where
the improvements in the context-independent system does not
shows up in the context-dependent GMM-HMM system us-
ing tandem features. In our case, the reason for this could be
the switching between the ANNs corresponding to the discrete-
valued auxiliary feature, as this may be affecting the PCA anal-
ysis part of the tandem-feature extraction. This has to be further
investigated.
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