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Abstract. Scene structuring is a video analysis task for which no common evaluation procedures have been
fully adopted. In this paper, we present a methodology to evaluate such task in home videos, which takes into
account human judgement, and includes a representative corpus, a set of objective performance measures,
and an evaluation protocol. The components of our approach are detailed as follows. First, we describe
the generation of a set of home video scene structures produced by multiple people. Second, we define
similarity measures that model variations with respect to two factors: human perceptual organization and
level of structure granularity. Third, we describe a protocol for evaluation of automatic algorithms based on
their comparison to human performance. We illustrate our methodology by assessing the performance of two
recently proposed methods: probabilistic hierarchical clustering and spectral clustering.
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1 Introduction

Many video browsing and retrieval systems make use of scene structuring, to provide non-linear access beyond
the shot level, and to define boundaries for feature extraction for higher-level tasks. Scene structuring is a core
function in video analysis, but the comparative performance of existing algorithms remains unknown, [15, 11],
and common evaluation procedures have just begun to be adopted [7].

Scene structuring should be evaluated based on the nature of the content. (e.g. videos with “standard”
scenes like news programs [3], or created with a storyline like movies [14]). In particular, home videos depict
unrestricted content with no storyline, and contain temporally ordered scenes, each composed of a few related
shots. Despite its non-professional style, home video scenes are the result of implicit rules of attention and
recording [6, 4]. Home filmmakers keep their interest on their subjects for a finite duration, influencing the time
they spend recording individual shots, and the number of shots captured per scene. Recording also imposes
temporal continuity: filming a trip with a non-linear temporal structure is rare [4]. Scene structuring can then
be studied as a clustering problem, and is thus related to image clustering and segmentation [13, 5].

The evaluation of a structuring algorithm assumes the existence of a ground-truth (GT) at the scene level.
At least two options are conceivable. In the first-party approach, the GT is generated by the content creator [9],
thus incorporating specific context knowledge (e.g. place relationships) that cannot be automatically extracted
by current means. In contrast, a third-party GT is defined by a subject not familiar with the content [12, 4].
In this case, there still exists human context understanding, but limited to what is displayed. Multiple cues
ranging from color coherence, scene composition, and temporal proximity, to high-level cues (recognition of
objects/places) allow people to identify scenes in home video collections.

One criticism against third-party GTs is the claim that, as different people generate distinct GTs, no single
judgement is reliable. A deeper question that emerges is that of consistency of human structuring of videos,
which in turn refers to the general problem of perceptual organization of visual information®. One could expect
that variations in human judgement arise both from distinct perceptions of a video scene structure, and from
different levels of granularity in it [5]. Modeling these variations with an appropriate definition of agreement
would be useful to compare human performance, and to define procedures to evaluate automatic algorithms.
Similar goals have been pursued for image segmentation [5] and clustering [13], but to our knowledge work on
videos has been limited.

We present a methodology to evaluate scene structuring algorithms in consumer videos. We first describe
the creation of a corpus of 400 human-generated video scene structures extracted from a six-hour video database
(Section 2). We then present a set of similarity measures that quantify variations in human perceptual organi-
zation and scene granularity (Section 3). The measures can be used to assess human performance on the task
(Section 4), but they are also useful to evaluate automatic algorithms, for which we introduce an evaluation pro-
tocol (Section 5). Finally, the protocol is applied to compare the performance of two recent methods (Section
6). Section 7 provides some concluding remarks.

2 Video Scene Structure Cor pus

2.1 Homevideo database

The data set includes 20 MPEG-1 videos, each with duration between 18-24 min. [4]. While relatively small
(six hours), the set is representative of the genre, depicting both indoor (e.g. family gatherings and weddings),
and outdoor (e.g. vacations) scenes. A manual GT at the shot level resulted in 430 shots. The number of shots
per video substantially varies across the set (4-62 shots); see Fig. 2(a)).

Lperceptual organization is “a collective term for a diverse set of processes that contribute to the emergence of order in the visual input”
[2], and “the ability to impose structural organization on sensory data, so as to group sensory primitives arising from a common underlying
cause" [1]. In computer vision, perceptual organization research has addressed image segmentation, feature grouping, and spatio-temporal
segmentation, among other problems, using theories from psychology (e.g. Gestalt).
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2.2 Toolsfor scene structuring

We define a video structure as composed of four levels (video clip, scene, shot, and subshot) [4]. Home video
shots usually contain more than one appearance, due to hand-held camera motion, so subshots are defined to
be intra-shot segments with approximately homogeneous appearance. A shot can then be represented by a set
of key-frames (thumbnails) extracted from each of its subshots.

The amount of time required for human scene structuring is prohibitive when subjects deal with the raw
videos. Providing a GUI with video playback and summarized information notably reduces the effort, but
remains considerable for long videos due to video playing. In this view, we developed a GUI in which users
were not displayed any raw videos, but only their summarized information (Fig. 1). Subshots and key-frames
were automatically extracted by standard methods [4], and thumbnails were arranged on the screen in columns
to represent shots. As pointed out in [10], images organized by visual similarity can facilitate location of
images that satisfy basic requirements or solve simple tasks. In our case, the natural temporal ordering in video
represents a strong cue for perceptual organization. In the GUI, a scene is represented by a list of shot numbers
introduced by the user via the keyboard, so the scene structure is a partition of the set of all shots in a video,
created by the user from scratch. Finding the scenes in a video depends of its number of shots, and it takes a
couple of minutes in average.

2.3 Thetask

A very general statement was purposedly provided to the subjects at the beginning of the structuring process:
“group neighboring shots together if you believe they belong to the same scene. Any scene structure containing
between one and as many scenes as the number of shots is reasonable”. Users were free to define in their own
terms both the concept of scene and the appropriate number of scenes in a video, as there was not a single
correct answer. Following [5], such broad task was provided in order to force the participants to find “natural”
video scenes.

Video A (contains 12 shots)

Figure 1: Scene structuring tool (detail). Each column of thumbnails represents a shot.

24 Experimental setup

Participants. A set of 20 university-level students participated in the experiments. Only two of the subjects
had some knowledge in computer vision.

Apparatus. For each video in the database, we created the video structures as described in Section 2.2, us-
ing thumbnails of size 88x 60 pixels. We used PCs with standard monitors (17-inch, 1024 x 768 resolution),
running Windows NT4.

Procedure. All participants were informed about the purpose of the experiment and the GUI use, and were
shown an example to practice. As mentioned earlier, no initial solution was proposed. Each person was asked
to find the scenes in all 20 videos, and was asked to take a break if necessary. Additionally, in an attempt to
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refresh the subjects’ attention on the task, the video set was arranged so that the levels of video complexity
-as defined by the number of shots- was alternated. A total of 400 human-generated scene structures were
produced in this way.

3 Measuring Agreement

If a unique, correct scene structure does not exist, how can we then assess agreement between people? Alter-
natives to measure agreement in image sets [13] and video scenes [4] have been proposed. By analogy with
natural image segmentation [5], here we hypothesize that variations in human judgement of scene structuring
can be thought of as arising from two factors: (i) distinct perceptual organization of a scene structure, where
people perceive different scenes altogether, so shots are grouped in completely different ways, and (ii) distinct
granularity in a scene structure, which generates structures whose scenes are simply refinements of each other.
We discuss both criteria to assess consistency in the following subsections.

3.1 Variationsin perceptual organization

Differences in perceptual organization of a scene structure, that is, cases in which people observe completely
different scenes, are a clear source of inconsistency. A definition of agreement that does not penalize granularity
differences was proposed in [5] for image segmentation, and can be directly applied to video partitions. Let .S;
denote a scene structure of a video (i.e., a partition of the set of shots, each assigned to one scene). For two
scene structures S;, S; of a K-shot video, the local refinement error (LRE) for shot s, with range [0, 1), is
defined by

LRE(S:, 55, sk) = ||[R(Si, sk) \R(Sj, s)|| /|| R(Ss, si)l], 1)

where \ and || - || denote set difference and cardinality, respectively, and R(S;, si) is the scene in structure .S;
that contains s;. On one side, given shot sy, if R(S;, si) is a proper subset of R(S;, s;), LRE = 0, which
indicates that the first scene is a refinement of the second one. On the other side, if there is no overlap between
the two scenes other than si, , LRE = (||R(S;, sk)|| — 1)/]|R(S;, sk)||, indicating an inconsistency in the
perception of scenes.

To obtain a global measure, LRE has to be made symmetric, as LRE(S;, S;, si) and LRE(S;, S;, si) are
not equal in general, and computed over the entire video. Two overall measures proposed in [5] are the global
and local consistency errors,

GCE(S, 5;) = % min {Z LRE(S:,S;, ), S LRE(S;, S;, sk)} , @)
k k

LCE(S;, S;) = % > min {LRE(S;, S}, sx), LRE(S;, S;, 1)} ?3)
k

To compute GCE, the LREs are accumulated for each direction (i.e. from S; to S; and vice versa),
and then the minimum is taken. Each direction defines a criterion for which scene structure refinement is not
penalized. On the other hand, LC E accumulates the minimum error in either direction, so structure refinement
is tolerated in any direction for each shot. It is easy to see that GCE > LCFE, so GCE constitutes a stricter
performance measure than LCE [5].

3.2 Variationsin structure granularity

The above measures do not account for any differences of granularity, and are reasonably good when the
number of detected scenes in two video scene structures is similar. However, two different scene structures
(e.g. one in which each shot is a scene, and one in which all shots belong to the same scene) produce a zero
value for both GC'E and LC'E when compared to any arbitrary scene structure. In other words, the concept
of “perfect agreement” as defined by these measures conveys no information about differences of judgment
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w.r.t. the number of scenes. In view of this limitation, we introduce a revised measure that takes into account
variations on the number of detected scenes, by defining a weighted sum,

GCE/(SZ‘, 57) = OzlGCE(Si, SJ) + OZQC(SZ‘, S]‘), (4)

where 3. o; = 1, and the correction factor C(S;, S;) = W where N (S;) is the number of scenes
detected in S;, and NN, is the maximum number of scenes allowed in a video (K). A similar expression can
be derived for LCE’.

4 Human Scene Structuring

The discussed measures were computed for all pairs of human-generated scene structures for each video in the
data set. Note that, as shots are the basic units, partitions corresponding to different videos are not directly
comparable. Fig. 3(a) shows the distributions of GCE and LCFE between pairs of human-generated scene
structures of the same video. All distributions show a peak near zero, and the error remains low, with means
shown in Table 1. It is also clear that GC'E is a harder measure than LC'E. Given the measures that only
penalize differences in perceptual organization, people produced consistent results on most videos on the task
of partitioning them into an arbitrary number of scenes.

However, the variation in performance with respect to the number of detected scenes -not directly measured
by GCE/LCE-is considerable. Fig. 2(b) displays the mean and standard deviation of the number of detected
scenes for each video. The videos are displayed in increasing order, according to the number of shots they
contain (Fig. 2(a)). As a general trend, videos with more shots produce larger variation in the number of
detected scenes. Referring to Fig. 3(a), the strong peaks near zero are somehow misleading, as it is obvious that
human subjects did not produce identical scene structures. The distribution of the new performance measures
(GCE’ and LCE”) for weights «; = 0.85, a2 = 0.15 are shown in Fig. 3(b). The weights were chosen so
that the weighted means of GC'E and C approximately account for half of the mean of GCE’. For the new
measures, the distributions no longer present peaks at zero. The errors are higher, as they explicitly penalize
differences in judgement regarding number of scenes.

Overall, given the small dataset we used, the results seem to suggest that (i) there is human agreement in
terms of perceptual organization of videos into scenes, (ii) people present a large variation in terms of scene
granularity, and (iii) the degree of agreement in scene granularity depends on the video complexity.
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Figure 2: (a) Number of shots per video in the database (in increasing order); (b) mean and standard deviation of number
of scenes detected by people for each video.

5 Evaluation Protocol

To evaluate an automatic method by comparing it to human performance, two issues have to be considered.
First, the original measures (GC E/LCE) are useful for comparison when the number of scenes in two scene
structures is similar. This is convenient when the number of scenes is a free parameter that can be manually set,
as advocated by [5]. However, such procedure would not measure the ability of the algorithm to perform model
selection. For this case, we think that the proposed measures (GCE’/LCE’) are more appropriate. Second,
the performance of both people and automatic algorithms might depend on the individual video complexity.
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In this view, we propose to evaluate performance by the following protocol [8]. For each video, let S 4 de-
note the scene structure obtained by an automatic algorithm, and S; the j-th human-generated scene structure.
We can then compute GCE'(S 4, S;) for all people, rank the results, and keep three measures: minimum, me-
dian, and maximum, denoted by GCE!, ., (Sa,S;), GCE!. ..,(Sa,S;), and GCE},,.(Sa,S;), respectively.
The minimum provides an indication of how close an automatic result is to the nearest human result. The
median is a fair performance measure, which considers all the human responses while not being affected by the
largest errors. Such large errors are considered by the maximum. An overall measure is computed by averaging
the GC'E’ measures over all the videos. To compute the same measures among people, for each video, the three
measures are computed for each subject against all others, and these values are averaged over all subjects. The
overall performance is computed by averaging over all videos. To visualize performance, it is useful to plot the
distributions of GCE” and LC'E’, obtained by comparing automatic and human-generated scene structures, as
in Fig. 3. Finally, to compare two algorithms, the described protocol can be applied to each algorithm, followed
by a test for statistical significance.

6 Assessing Automatic Algorithms
6.1 Thealgorithms

We illustrate our methodology on two recently proposed algorithms based on pair-wise similarity. For space
reasons, we briefly describe the algorithms here.

The first algorithm is probabilistic hierarchical clustering (PHC) [4]. It consists of a sequential binary
Bayes classifier, which at each step evaluates a pair of video segments and decides on merging them into the
same scene according to Gaussian mixture models of intra- and inter-scene visual similarity, scene duration,
and temporal adjacency. The merging order and the merging criterion are based on the evaluation of a posterior
odds ratio. The algorithm implicitly performs model selection. Standard visual features for each shot are
extracted from key-frames (color histograms). Additionally, temporal features exploit the fact that distant shots
along the temporal axis are less likely to belong to the same scene.

The second method uses spectral clustering (SC) [8], which has been shown to be effective in a variety
of segmentation tasks. The algorithm first constructs a pair-wise key-frame similarity matrix, for which sim-
ilarity is defined in both visual and temporal terms. After matrix pre-processing, its spectrum (eigenvectors)
is computed. Then, the K largest eigenvectors are stacked in columns in a new matrix, and the rows of this
new matrix are normalized. Each row of this matrix constitutes a feature associated to each key-frame in the
video. The rows of such matrix are then clustered using K-means (with /C clusters), and all key-frames are
labeled accordingly. Shots are finally clustered based on their key-frame labels by using a majority vote rule.
Model selection is performed automatically using the eigengap, a measure often used in matrix perturbation
and spectral graph theories. The algorithm uses the same visual and temporal features as PHC, adapted to the
specific formulation.

6.2 Resultsand discussion

Figs. 3(c-f) show the error distributions when comparing the scenes found by people and the two automatic
algorithms. The means for all measures are shown in Table 1. Comparing the results to those in Figs. 3(a-
b), the errors for the automatic algorithms are higher than the errors among people. The degradation is more
noticeable for the GCE and LC E measures, with a relative increase of more than 100% in the mean error for
all cases. These results suggest that the automatic methods do not extract the scene structure as consistently as
people do. In contrast, the relative variations in the correction factor are not so large. Overall, the automatic
methods increase the error for GCE’ and LCE”: 53.3% and 52.7% for GCE’, and 27.8% and 41.0% for
LCE”, for PHC and SC, respectively.

The results of our protocol appear in Table 2. Again, the error by automatic algorithms vs. people is
higher than the errors among people, and the performance for both PHC and SC is quite similar. We used
a two-tailed Wilcoxon signed-rank test analysis to detect significant differences between the two automatic
algorithms for the min, med, and max performance over all videos. The obtained p-values are 0.658, 0.970,
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Figure 3: (a-b) Human scene structuring; (a) distributions of GC'E (top) and LCE (bottom) for all pairs of video scene
structures (same videos) in the database; (b) distributions of GCE’ and LCE’. (c-d) PHC vs. human: (c) GCE (top) and
LCE (bottom); (d) GCE” and LCE”. (e-f) SC vs. human: (¢) GCE and LCE; (f) GCE’ and LCE".

Case GCE LCFE C GCFE’ LCFE’
human/human 0.0321 0.0119 0.2416 0.0635 0.0463
PHC/human 0.0656 0.0216 0.2725 0.0966 0.0592
SC/human 0.0740 0.0377 0.2214 0.0962 0.0653

Table 1: Error means. Human vs. human and automatic vs. human.

and 0.881, respectively, so the difference in performance is not statistically significant. In contrast, the tests
comparing human vs. SC produced p-values of 0.147, 0.030, and 0.004, respectively, which indicates that the
difference in performance for the min is only significant at p<0.15 level, but the differences for med and max
are significant at p<0.05 and p<0.005 levels, respectively. Similar results are obtained when comparing human
vs. PHC with the Wilcoxon test. Examples of human- and computer-generated video scene structures can be
seen at www.idiap.ch/gatica/ homevideoassess.html. Note that, although PHC and SC do not perform
significantly different under this similarity measure, previous work using a different measure had favored SC
[8].

Fig. 4 displays the results for each video for the two automatic algorithms. Figs. 4(a) and 4(c) show the
number of detected scenes (red circles), and compare them to the mean number of scenes in the GT (blue
crosses). The blue bar denotes the std in the GT. For both algorithms, the detected number of scenes matches
well the GT, although somewhat underestimated. The number of scenes estimated by PHC (resp. SC) remain
within one std of the mean human performance in 15 (resp. 17) of the 20 videos; in addition, in 14 (resp. 18)
cases, the automatic method detected exactly the same number of scenes as at least one person did in the GT.
These numbers are in agreement with the column for C' in Table 1.

Case GCE,,in GCE,.q GCE}, 00
human/human 0.0168 0.0563 0.1436
PHC/human 0.0333 0.0941 0.1827
SC/human 0.0308 0.0932 0.1870

Table 2: Error means over individual performance.
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Figure 4: Automatic (circles) vs. human (crosses) scene structuring. Top row: PHC. Bottom row: SC. (a-c) Number of
detected scenes. (b-d) GCE” error. The bar is the spread of human performance (see text for details).

Figs. 4(b) and 4(d) show GCE’ compared to the average of human performance. The circles denote the
measures obtained with PHC/SC, the crosses denote human performance. Distinct colors represent different
measures (minimum in red, median in blue, maximum ommitted for space reasons). The median performance
of PHC (resp. SC) stays within or below one std of the median human performance (i.e., blue circles within or
below blue bars) in 9 (resp. 12) videos.

7 Conclusions

We presented a methodology to benchmark scene structuring algorithms in home videos, using human perfor-
mance on the task as the baseline. The agreement measures, adapted from work on natural image segmentation,
attempt to model two concepts in perceptual organization. On a small but diverse data set, our experiments sug-
gest that there exists human agreement in terms of organization of video scenes, but that there is a considerable
variation w.r.t. scene granularity, which seems to depend on the visual content complexity. The comparison
of two techniques with our methodology suggested that both performed similarly well, but still not as well as
people. A comprehensive study that compares other agreement measures [13, 4] and structuring algorithms
remains as a future goal.

Acknowledgements. We thank the Swiss NCCR on Interactive Multimodal Information Management IM2
for support, and Eastman Kodak for the home video database.
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