
January 31, 2003 16:54 WSPC/INSTRUCTION FILE article

International Journal of Pattern Recognition and Artificial Intelligence
c© World Scientific Publishing Company

Scaling Large Learning Problems with Hard Parallel Mixtures

Ronan Collobert∗

IDIAP
CP 592 – Rue du Simplon 4
1920 Martigny, Switzerland

collober@idiap.ch
http://www.idiap.ch/˜collober

Yoshua Bengio
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A challenge for statistical learning is to deal with large data sets, e.g. in data mining. The
training time of ordinary Support Vector Machines is at least quadratic, which raises a
serious research challenge if we want to deal with data sets of millions of examples. We
propose a “hard parallelizable mixture” methodology which yields significantly reduced
training time through modularization and parallelization: the training data is iteratively
partitioned by a “gater” model in such a way that it becomes easy to learn an “expert”
model separately in each region of the partition. A probabilistic extension and the use of
a set of generative models allows representing the gater so that all pieces of the model are
locally trained. For SVMs, time complexity appears empirically to locally grow linearly
with the number of examples, while generalization performance can be enhanced. For
the probabilistic version of the algorithm, the iterative algorithm provably goes down in
a cost function that is an upper bound on the negative log-likelihood.
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1. Introduction

As organizations collect more and more data, the interest in extracting useful in-
formation from these data sets with data mining algorithms is pushing much re-
search effort toward the challenges that these data sets bring to statistical learning
methods. One of these challenges is the sheer size of the data sets: many learning
algorithms require training time that grows too fast with respect to the number of
training examples. This is for example the case with Support Vector Machines 11

(SVM) and Gaussian processes 12, both being non-parametric learning methods
that can be applied to classification, regression, and conditional probability estima-
tion. Both require O(T 3) training time (for T examples) in the worst case or with a
poor implementation. Empirical computation time measurements on state-of-the-
art SVM implementations show that training time grows much closer to O(T 2)
than O(T 3) as shown in Ref. 2. It has also been conjectured 3 that training of
Multi-Layer Perceptrons (MLP) might also scale between quadratic and cubic with
the number of examplesa.

It would therefore be extremely useful to have general-purpose algorithms which
allow to decompose the learning problem in such a way as to drastically reduce the
training time, so that it grows closer to O(T ).

Another motivation for our work is the availability of cheap parallelism with
PC clusters (e.g. Linux clusters). If a decomposition algorithm could separate the
work in tasks involving little or rare communication between tasks, then training
time could be reduced by one or two orders of magnitude with such loosely-coupled
clusters.

The basic idea of this paper is to use an iterative divide-and-conquer strategy to
learn a partition of the data such that, ideally (1) the partition is “simple”, i.e. it can
be learned with good generalization by a classifier with a limited capacity, which
we will call the gater, and (2) the learning task in each region of the partition
is “simple”, i.e. it can be learned with good generalization by an expert model
trained only on the examples of that region. In the end, the prediction on a test
point can be obtained by mixing the predictions of the different experts, weighting
their predictions with the output of the gater. One therefore obtains a mixture of
experts 6, but it will not have been trained in the usual ways (maximum likelihood,
mean squared error, etc...).

The idea of an SVM mixture is not new, although previous attempts such as
Kwok’s paper on Support Vector Mixtures 7 trained each SVM on the whole data
set. We instead advocate SVM mixtures in which each SVM is trained only on
part of the data set, to overcome the time complexity problem for large data sets.
We propose here simple methods to train such mixtures, and we will show that

aThis is more debatable and may strongly depend on the data distribution. Although we did not
formally test this hypothesis, we conjecture that on very large data sets, with properly tuned
stochastic gradient descent, training time of MLPs is much closer to linear than to quadratic in
the number of examples.
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in practice these methods are much faster than training only one SVM, and have
experimentally lead to results that are at least as good as one SVM. We conjecture
that the training time complexity of the proposed approach with respect to the
number of examples is sub-quadratic for large data sets. Moreover this mixture can
be easily parallelized, which could improve again significantly the training time.

The organization of the paper goes as follows: in the next section, we briefly
introduce the SVM model for classification. In section 4 we present two versions
of the hard mixture (a non-probabilistic and a probabilistic one), followed in sec-
tion 5 by some comparisons to related models. In section 6 we show experimental
results on two large real-life data sets. One of the drawbacks of the first version of
the algorithm is that it is tied to the mean squared error loss function. Another
possible drawback is that the gater must be trained on the whole data set, and this
operation could be the bottleneck of the whole procedure. To address these two
issues, we present a probabilistic version of the hard mixture model in section 4.2.
One advantage of the probabilistic formulation is that it generalizes the approach
to other tasks (such as conditional probability estimation). The other is that it can
eliminate the bottleneck by splitting the task of the gater into multiple local gaters,
one per expert. Each of these local gaters is actually a generative model that gives a
high score to input vectors that belong to the region of the associated expert model,
and this local expert need only be trained with the examples from that region. This
probabilistic decomposition is similar to the MOSAIC 4 model but it is used to
form a hard partition and not trained by maximum likelihood. We show that the
iterative partitioning algorithm actually minimizes an upper bound on the negative
log-likelihood (which corresponds to the loss occurring when having to pick a single
expert to make the prediction). Experimental results with the probabilistic version
of the hard mixture model are presented in section 7.

2. Introduction to Support Vector Machines

Support Vector Machines (SVMs) 11 have been applied to many classification prob-
lems, generally yielding good performance compared to other algorithms. For clas-
sification tasks, the decision function is of the form

y = sign

(
T∑

i=1

yiαiK(x, xi) + b

)
(1)

where x ∈ Rd is the d-dimensional input vector of a test example, y ∈ {−1, 1} is a
class label, xi is the input vector for the ith training example, yi is its associated
class label, T is the number of training examples, K(x, xi) is a positive definite
kernel function, and α = {α1, . . . , αT } and b are the parameters of the model.
Training an SVM consists in finding α that minimizes the objective function

Q(α) = −
T∑

i=1

αi +
1
2

T∑

i=1

T∑

j=1

αiαjyiyjK(xi, xj) (2)
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subject to the constraints

T∑

i=1

αiyi = 0 (3)

and

0 ≤ αi ≤ C ∀i . (4)

The kernel K(x, xi) can have different forms, such as the Radial Basis Function
(RBF):

K(xi, xj) = exp
(−‖xi − xj‖2

σ2

)
(5)

with parameter σ.
Therefore, to train an SVM, one must solve a quadratic optimization prob-

lem, where the number of parameters is T . This makes the use of SVMs for large
data sets difficult: computing K(xi, xj) for every training pair would require O(T 2)
computation, and solving may take up to O(T 3). Note however that current state-
of-the-art algorithms appear to have training time complexity scaling much closer
to O(T 2) than O(T 3) 2.

3. Standard Mixture of Experts

3.1. Probabilistic framework

The idea of Mixtures of Experts 5 is simple to explain in a probabilistic framework:
given two randoms variables X ∈ Rn and Y ∈ Rd, one would like to represent a
conditional distribution P (Y |X) as a decomposition of several simpler conditional
distributions called experts. For that, first consider a discrete variable E, the identity
of an expert to be most appropriate for (X,Y ). Thus the conditional distribution
is rewritten:

P (Y |X) =
N∑

i=1

P (E = i|X)Pi(Y |X)

where N is the number of experts and Pi(Y |X) = P (Y |X, E = i) is the conditional
distribution for the expert i. The distribution P (E|X) is called the gater, because
it probabilistically assigns each example to an expert. Usually this kind of mixture
is trained using a log-likelihood maximization technique, that is, by minimizing
−∑T

t=1 logP (yt|xt) over a training set D = {(xt, yt)t=1..T }.

3.2. Non-Probabilistic Framework

Here, one would like to represent a function y = f(x) (instead of the conditional
distribution P (Y |X)) as a combination of simpler functions which are called again
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“experts”. More formally, given a training example (x, y) ∈ D, the following de-
composition is built:

f(x) =
N∑

i=1

wi(x)si(x) (6)

where si(.) is the output function for expert i, and w(.) is the gater, which gives a
weight for each expert, given an input x. In general one would like to find the gater
w(.) and the experts si(.) that minimize the expected value of a loss L(f, (x, y)).

The probabilistic and non-probabilistic versions are quite similar, and both could
be used in many applications.

4. A New Conditional Mixture

A standard mixture of experts represents a soft decomposition of the data into
subsets, thus both the gater and each expert must be trained on the whole data
set. Because we want to train complex models on large data sets, we would like
instead to take advantage of such a decomposition to split up the training task into
small pieces. That’s the key point of the new models.

The kind of mixture of experts that is presented here could be applied with any
kind of expert learner, but, as our first goal was to apply it with SVMs, let us begin
with a non-probabilistic framework, where SVMs fit more easily.

4.1. Hard Non-Probabilistic Mixture

The output prediction associated with an input vector x for the hard non-
probabilistic mixture that we propose is similar to that in (6) and is computed
as follows:

f(x) = h

(
N∑

i=1

wi(x)si(x)

)
(7)

where one just added a transformation of the output with a transfer function h,
for example the hyperbolic tangent for classification tasks (which we have found
to improve results). In the proposed model, the mixture is trained to minimize the
cost function which is the sum of squared losses:

C =
T∑

t=1

[f(xt)− yt]
2

. (8)

To train this model, we propose the very simple Algorithm 1. Note that step 2 of
this algorithm can be easily implemented in parallel as each expert can be trained
separately on a different computer. Note also that step 3 can be an approximate
minimization (as usually done when training MLPs), that can continue from the
solution (parameters) found at the end of the previous outer loop iteration.

The idea of this mixture is intuitively obvious: one iterates to discover a good
partition of the training set, which ideally could represent in a better way the
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Algorithm 1 Hard non-probabilistic mixture
(1) Divide the training set D into N random subsets Di of size near T/N .
(2) Train each expert si separately over one of these subsets.
(3) Keeping the experts fixed, train the gater w to minimize (8) on the whole

training set.
(4) Reconstruct N subsets: for each example (xt, yt),

• sort the experts in descending order according to the values wi(xt),
• assign the example to the first expert in the list which has less than (T/N+

1) examples in order to ensure a balance between the experts.

(5) If a termination criterion is not fulfilled (such as a given number of iterations
or a validation error going up), go to step 2.

structure of the training set. As this mixture is non-probabilistic, one can apply it
directly to SVMs for experts. In the experiments, we have chosen a MLP for the
gater, as for usual non-probabilistic mixture-of-experts.

4.2. Hard Probabilistic Mixture

One possible drawback of the previous model is that the gater must be trained over
the whole data set, and this could be the training time bottleneck of the whole
procedure. Thus, the second idea that we propose here, is that in a probabilistic
context, one can break up the gater itself into sub-models, one per expert, that can
be trained separately. The idea is similar to that exposed for example in MOSAIC 4:
each expert is associated with a generative model P (X|E = i) that can be trained
solely on the subset Di. But unlike MOSAIC, the proposed algorithm forms a hard
partition of the data to train the experts. With this new idea in mind, one can
easily adapt the previous algorithm as proposed with Algorithm 2. This algorithm
is very nice in the sense that it’s a hard version of the standard mixture of experts
model.

Unfortunately, standard SVMs don’t output probabilities. In the case of a clas-
sification problem with several classes, we decided to train one SVM per class (one
class against the others) and then to apply a logistic regression on the outputs of
the SVMs to obtain probabilities, following Ref. 8.

4.3. What Criterion is Minimized?

The above algorithm iteratively modifies parameters θ to go down on a criterion
which is an upper bound on the negative joint log-likelihood:

J(θ) = −max
e

J(θ, e) (9)

where

J(θ, e) =
∑

t

∑

i

eti log Pθ(yt, xt|E = i)Pθ(E = i) (10)
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Algorithm 2 Hard probabilistic mixture
(1) Divide the training set into N random subsets Di of size near T/N .
(2) Train each expert Pi(Y |X) separately over Di.
(3) Train each local gater P (X|E = i) separately over Di.
(4) Estimate the priors P (E = i) by normalizing |Di|, and combine the generative

models to obtain the function P (E = i|X) = P (X|E=i)P (E=i)PN
j=1 P (X|E=j)P (E=j)

(5) Reconstruct N subsets: for each example (xt, yt),

• sort the experts in descending order according to the posterior
P (E = i|xt, yt) = Pi(yt|xt)P (E=i|xt)PN

j=1 Pj(yt|xt)P (E=j|xt)
,

• assign the example to the first expert in the list which has less than (T/N+
1) examples in order to ensure a balance between the experts.

(6) If a termination criterion is not fulfilled, go to step 2.

where eti ∈ {0, 1} is a binary variable that selects the i-th expert for ex-
ample t, with the selection constraints ∀t, ∑i eti = 1 and balancing con-
straints ∀i, ∑t eti ≈ T/N . Note that the joint likelihood for expert i is
Pθ(yt, xt|E = i) = Pθ(yt|xt, E = i)Pθ(xt|E = i) (i.e. the product of the expert out-
put probability and the local gater likelihood). To relate this to Algorithm 2, note
that we are trying to perform the double maximization

max
θ

max
e

∑
t

J(θ, e)

The idea is to perform a “coordinate descent” on J(θ, e), in which at the first stage
of each iteration e is fixed and θ is modified to increase J(θ, e), and at the second
stage θ is fixed and e (the assignment of examples to experts) is modified to increase
J(θ, e). Note that when e is fixed, the above two probabilities (for the expert and
local gater) decouple, so they can be maximized separately, as in steps 2 and 3 of
the algorithm. In a second stage of each iteration, θ is fixed, and e is modified with
step 5 in order to increase J(θ, e) (here it is an approximate heuristic optimization,
to save computations).

Furthermore, the criterion J(θ) is an upper bound on the joint negative log-
likelihood:

C(θ) = −
∑

t

log Pθ(yt, xt) =
∑

t

log(
∑

i

Pθ(yt, xt|E = i)Pθ(E = i)) (12)

since, with the constraints on e

log(
∑

i

Pθ(yt, xt|E = i)Pθ(E = i)) ≥ log(
∑

i

etiPθ(yt, xt|E = i)Pθ(E = i))

=
∑

i

eti log(Pθ(yt, xt|E = i)Pθ(E = i)) .

The idea of minimizing an upper bound on a more desirable cost function is already
found in variational learning methods. Note that both cost functions (the negative



January 31, 2003 16:54 WSPC/INSTRUCTION FILE article

8 Ronan Collobert, Yoshua Bengio and Samy Bengio

log-likelihood and J(θ)) will take close values when the gater manages to compute
a harder partition.

5. Other Mixtures of SVMs

The idea of mixture models is quite old and has given rise to very popular algo-
rithms, such as the well-known Mixture of Experts 6 where the cost function is
similar to equation (8) but where the gater and the experts are trained, using gra-
dient descent or EM, on the whole data set (and not subsets) and their parameters
are trained simultaneously. Hence such an algorithm is quite demanding in terms of
resources when the data set is large, if training time scales like O(T p) with p > 1.

In the more recent Support Vector Mixture model 7, the author shows how to
replace the experts (typically MLPs) by SVMs and gives a learning algorithm for
this model. Once again the resulting mixture is trained jointly on the whole data
set, and hence does not solve the quadratic barrier when the data set is large.

In another divide-and-conquer approach 9, the authors propose to first divide
the training set using an unsupervised algorithm to cluster the data (typically a
mixture of Gaussians), then train an expert (such as an SVM) on each subset of the
data corresponding to a cluster, and finally recombine the outputs of the experts.
Here, the algorithm does indeed train separately the experts on small data sets,
like the present algorithm, but there is no notion of an iterative re-assignment of
the examples to experts according to the prediction made by the gater of how well
each expert performs on each example. Our experiments suggest that this element
is essential to the success of the algorithm.

Finally, the Bayesian Committee Machine 10 is a technique to partition the data
into several subsets, train SVMs or Gaussian Processes on the individual subsets
and then use a specific combination scheme based on the covariance of the test data
to combine the predictions. This method scales linearly in the number of training
data, but is in fact a transductive method as it cannot operate on a single test
example. Again, this algorithm assigns the examples randomly to the experts (but
the Bayesian framework would in principle allow to find better assignments).

6. Experiments: Hard Non-Probabilistic Mixture

In this section are presented two sets of experiments comparing the new non-
probabilistic mixtures of SVMs to other machine learning algorithms. Note that
all these experiments have been with the Torch library.b The computers that were
used had Athlon 1.2Ghz CPUs.

bavailable at http://www.torch.ch.
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6.1. A Large-Scale Realistic Problem: Forest

We did a series of experiments on part of the UCI Forest data setc. We modified
the 7-class classification problem into a binary classification problem where the goal
was to separate class 2 (the most numerous) from the other 6 classes. Each example
was described by 54 input features, each normalized by dividing by the maximum
found on the training set. The data set had more than 500,000 examples and this
allowed us to prepare a series of experiments as follows:

• A separate test set of 50,000 examples was used compare algorithms.
• A validation set of 10,000 examples was used to select among SVM hyper-

parameters, number of experts, of gater hidden units, and gater training epochs.
• Training set size varied from 100,000 to 400,000.
• The hard non-probabilistic mixtures had from 10 to 50 expert SVMs with

Gaussian kernel; the MLP gater had between 25 and 500 hidden units.

Since the number of examples was quite large, the same hyper-parameters were
selected for all iterations of the algorithm and for all the SVM experts.

We compared our models to

• a single MLP trained with a mean-squared error criterion, and where the num-
ber of hidden units was selected on the validation set (from 25 to 250 units),

• a single SVM, where the parameter of the kernel was also selected on the
validation set,

• a mixture of SVMs where the gater was replaced by a constant vector, assigning
the same weight value to every expert.

Table 1 gives the results of a first series of experiments with a fixed training
set of 100,000 examples. To select among the variants of the hard SVM mixture
we considered performance over the validation set as well as training time. All the
SVMs used σ = 1.7. The selected model had 50 experts and a gater with 150 hidden
units. A model with 500 hidden units would have given a performance of 8.1% over
the test set but would have taken 310 minutes on one machine (and 194 minutes
on 50 machines).

The hard SVM mixture outperformed all models in terms of training and test
error. Note that the training error of the single SVM is high because its hyper-
parameters were selected to minimize error on the validation set (other values could
yield to much lower training error but larger test error). It was also much faster,
even on one machine, than the single SVM and since the mixture could easily be
parallelized (each expert can be trained separately), we also reported the time it
took to train on 50 machines. In a first attempt to understand these results, one
can at least say that the power of the model does not lie only in the MLP gater,

cThe Forest data set is available on the UCI website at the following address:
ftp://ftp.ics.uci.edu/pub/machine-learning-databases/covtype/covtype.info.
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Table 1. Comparison of performance between an MLP (100 hidden units), a single SVM, a uniform
SVM mixture where the gater always output the same value 1/N for each expert, and finally the
hard non-probabilistic mixture of SVMs (Algorithm 1).

Model used Train Test Time (minutes) Iteration
Error (%) (1 CPU) (50 CPUs)

single MLP 17.56 18.15 6 25
single SVM 16.03 16.76 1616 –
uniform SVM mixture 19.69 20.31 43 1 1
hard mixture of SVMs 5.91 9.28 119 37 5

since a single MLP was pretty bad, it is neither only because we used SVMs, since
a single SVM was not as good as the hard mixture, and it was not only because
we divided the problem into many sub-problems since the uniform mixture also
performed badly. It seems to be a combination of all these elements.

In order to find how the algorithm scaled with respect to the number of exam-
ples, we then compared the same mixture of experts (50 experts, 150 hidden units
in the gater) on different training set sizes. Figure 1 shows the validation error of
the mixture of SVMs with training set sizes from 100,000 to 400,000. It seems that,
at least in this range and for this particular data set, the mixture of SVMs scales
linearly with respect to the number of examples, and not quadratically as a classical
SVM. It is interesting to see for instance that the mixture of SVMs was able to
solve a problem of 400,000 examples in less than 4 hours (on 50 computers) while
it would have taken more than one month to solve the same problem with a single
SVM.
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Finally, figure 2 shows the evolution of the training and validation errors of
a hard mixture of 50 SVMs gated by an MLP with 150 hidden units, during 5
iterations of the algorithm. This should convince that the iterative partitioning is
essential in order to obtain good performance. It is also clear that the empirical
convergence of the outer loop is extremely rapid.

6.2. Verification on Another Large-Scale Problem

To verify that the results obtained on Forest were replicable on other large-scale
problems, we tested the SVM mixture on a speech task, the Numbers95 data set 1,
turned it into a binary classification problem (separate silence frames from non-
silence frames, from a total of 540,000 frames). The training set contains 100,000
randomly chosen frames out of the first 400,000 frames. The disjoint validation
set contains 10,000 randomly chosen frames out of the first 400,000. The test set
contains 50,000 randomly chosen frames out of the last 140,000. The validation set
was used to select the number of experts, the number of hidden units in the gater,
and σ. Each frame was parameterized using standard methods (j-rasta coefficients,
with first and second temporal derivatives) yielding 45 coefficients times 3 frames
(= 135 inputs).

Table 2 shows a comparison between a single SVM and a non-probabilistic hard
mixture of SVMs, with 50 experts, 50 hidden units in the gater, and σ = 3. The
mixture of SVMs was again many times faster than the single SVM (even on a
single CPU) but yielded similar generalization performance.

Table 2. Comparison of performance between a single SVM and a mixture of SVMs on the speech
data set

Model used Train Test Time (minutes)
Error (%) (1 CPU) (50 CPUs)

one SVM 0.98 7.57 3395
hard non-prob. mixture of SVMs 4.41 7.32 426 33

7. Experiments: Hard Probabilistic Mixture

The second set of experiments concerns the probabilistic version of the algorithm.
As standard SVMs don’t output probabilities, we first present in the first sub-
section results with Multi-Layered-Perceptrons (MLP) as experts, to confirm that
the approach works well with gradient-based learning algorithms. Then we present
some results with SVMs as experts, with the SVM outputs being fed to a logistic
regressor in order to obtain conditional probabilities, as in Ref. 8.
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7.1. MLP Experts

The experiments described here are again with the Forest data set described earlier.
The setup is the same as previously for the non-probabilistic mixture. Thus, we just
have to specify the probabilistic model architecture: we used Gaussians mixtures
for the generative models and one-hidden-layer MLP trained with a log-likelihood
maximization criterion for the experts (i.e. maximizing

∑
t log Pθ(yt|xt, E = i)

where the output of the MLP has softmax units which sum to 1 to represent these
probabilities). We compared the hard probabilistic mixture with a standard (not
hard) probabilistic mixture (with MLPs as experts and an MLP as gater), trained by
stochastic gradient ascent on the log-likelihood

∑
t log Pθ(yt|xt). We also compared

with a single MLP (also trained to maximize the log-likelihood). Note that with
this training criterion, the single MLP gives better results than those obtained
with a mean-squared error criterion (which was used in the experiments previously
reported in section 6.1).

The results are summarized in Table 3. For MLPs and standard mixtures, the
iteration column indicates the number of training epochs, whereas for hard mixtures
it is the number of outer loop iterations. Note that for hard mixtures, the number
of inner loop epochs to train MLP experts was fixed to a maximum of 100 (This
number was chosen according to the validation set. Moreover, training was stopped
earlier if training error did not decrease significantly.)

The hard probabilistic mixture appears to work very well. On this data set,
we can obtain better generalization than an MLP, in a reasonable time if we use
sequential training (on only one computer), and impressively short time if we use
parallelization. If we take the time to do more iterations, the generalization can
be impressive too, as shown on a training set size of 400,000 examples. Figure 3
shows the importance of the iterative process of our model for the training as well
as generalization error, as previously shown for the non-probabilistic model.

We did one more experiment to compare the hard non-probabilistic and prob-
abilistic mixtures, in terms of training time. The experiment is performed with
100,000 training examples (obtaining similar generalization results in both cases).
The hard probabilistic mixture has 20 experts, 25 hidden units per expert and
20 Gaussians. The hard non-probabilistic mixture has 20 experts, and an MLP
gater with 150 hidden units. The hard non-probabilistic mixture took more than
30 minutes to train, whereas the hard probabilistic mixture took only 1.3 minutes!
It seems that the training time bottleneck due to the gater has been broken with the
hard probabilistic mixture.

7.2. Dimensionality Reduction for the Gaussian Mixture Models

We used Gaussians Mixture Models (GMM) to estimate P (X|E = i) in the hard
probabilistic mixture, and one might think that GMM don’t work well with high
dimensional data. Thus, we compare results obtained with and without reducing
the dimensionality of the GMM observations, as a preprocessing before applying
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Table 3. Comparison of performance on the Forest data set between one MLP, a standard mixture,
and the hard probabilistic mixture proposed in this paper

Model used Error (%) Time (minutes) Iter.
Train Valid Test 1 CPU parallel

100,000 training examples
single MLP (500 hidden
units)

9.50 11.09 10.96 121 – 150

standard mixture (10
experts, 50 hidden units
per expert and 150 units
for the gater)

10.57 11.05 11.56 124 – 65
7.01 9.30 9.10 290 – 150

hard prob. mixture (20 ex-
perts, 25 hidden units per
expert and 20 Gaussians
per P (X|E = i))

7.89 10.76 10.90 21 1.3 15

400,000 training examples
single MLP (500 hidden
units)

8.39 8.38 8.69 461 – 150

hard prob. mixture (40
experts, 25 units per
expert and 10 Gaussians
per P (X|E = i))

6.90 7.74 8.09 126 3.6 7
4.63 5.64 6.24 344 10 20

hard prob. mixture (40
experts, 50 units per
expert and 10 Gaussians
per P (X|E = i))

6.68 7.54 8.05 195 5.3 6
3.37 5.60 5.61 624 17 20

the mixture.
To reduce the dimensionality, we trained as a classifier (with conditional max-

imum likelihood) an MLP with a small tanh hidden layer and softmax outputs.
The hidden layer learns a transformation that has low dimension and is useful to
predict the output classes. A single training epoch is performed, on only a part of
the training set if this one is very large (100,000 examples was sufficient on Forest
in any case). This is quick, and surprisingly, sufficient to obtain good results. Fi-
nally, the hidden layer outputs of the MLP (for each input vector xt) are given as
observations for the GMM.

As shown in Table 4, it appears that the dimensionality reduction improves the
generalization error, as well as the training error. The dimensionality reduction
reduces capacity, but we suspect that the GMMs are so poor in high dimensional
spaces that the dimensionality reduction improves results even on the training set,
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Fig. 3. Evolution of the log-likelihood with the number of iteration for the hard probabilistic
mixture, on 100,000 training examples. The mixture had 20 experts (25 hidden units, 20 Gaussians)

by making it easier to carve the input space in ways that lead to easy training of
the experts.

Table 4. The effect of dimensionality reduction for GMMs in the hard probabilistic mixture,
on 400,000 examples with 40 experts, 50 hidden units for experts and 10 Gaussians for each
P (X|E = i)

Model used Error (%)
Train Valid Test

Without Dimensionality Reduction 4.45 5.95 6.25
With Dimensionality Reduction 3.37 5.60 5.61

7.3. SVM Experts

Similar experiments were performed on the Forest database with the hard proba-
bilistic mixture, but using SVMs plus logistic as probabilistic experts, rather than
MLPs.

Table 5 shows the results obtained on the 100,000 examples training set, with
different numbers of experts and different choices of gaters. The first experiment
uses the methodology already introduced and used with MLP experts, but with
20 SVM experts. Note that training time is much larger than with MLP experts
(Table 3, 1.3 min. in parallel), and much larger than with the hard non-probabilistic
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mixture (Table 1, 37 min. in parallel). One explanation is that convergence is much
slower, but we do not understand why.

One clue is that when replacing the GMMs by a single MLP gaterd, (with the
two other experiments in Table 5), much faster convergence is obtained (down to
21 min. in parallel, i.e. faster than the hard non-probabilistic mixture), but still
slower than with MLP experts.

Table 5. Comparison of performance of the hard probabilistic mixture, for several setups, on the
Forest data set with 100,000 training examples

Model used Error (%) Time (minutes) Iter.
Train Valid Test 1 CPU parallel

20 SVM experts and 10
Gaussians per P (X|E = i)

5.39 10.93 10.70 2240 157 16

20 SVM experts and a
MLP gater with 150 hid-
den units

2.63 8.86 8.93 291 30 9

50 SVM experts and a
MLP gater with 150 hid-
den units

3.22 8.92 9.15 118 21 9

8. A Note on Training Complexity

For both the probabilistic and non-probabilistic mixtures, suppose that we choose
the number of experts N such that the number of examples per expert M = T/N

is a fixed fraction of the total number of examples. Then if we suppose that the
training time for one expert is polynomial of order p with the number of examples
T , then the training time for training the experts in one outer-loop iteration of the
hard mixtures is:

NMp = TMp−1 = O(T) .

If the gater is not localized (e.g. as in the hard non-probabilistic mixture when using
a single model as gater, and in the hard probabilistic mixture), then it may be a
bottleneck of the algorithm. In the case of the non-probabilistic mixture, we don’t
know exactly the cost of training the gater. As it’s a MLP, it’s probably more than
O(T ). But for the probabilistic mixture, it appears empirically that O(T ) training
time is sufficient for the gater, at each iteration of Algorithm 2

dHere, the number of inner loop epochs for training the gater was chosen using the validation set,
and fixed to 3.
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9. Conclusion

In this paper we have presented a new divide-and-conquer parallelizable hard mix-
ture algorithms to reduce the training time of algorithms such as SVMs. Very good
results were obtained compared to classical SVMs either in terms of training time
or generalization performance on two large scale difficult databases. Moreover, the
algorithms appears to scale linearly with the number of examples, at least between
100,000 and 400,000 examples. Both a probabilistic and a non-probabilistic version
of the algorithm were presented, with a demonstration that the probabilistic version
actually minimizes a well-defined criterion (that corresponds to the error made by
a single chosen expert of the mixture).

These results are extremely encouraging and suggest that the proposed method
could allow training SVM-like models for very large multi-million data sets in a
reasonable time. Two types of “gater” models were proposed, one based on a single
MLP, and one based on local Gaussian Mixture Models. The latter have the advan-
tage of being trained very quickly and locally to each expert, thereby guaranteeing
linear training time for the whole system (per iteration). However, the best results
(even in training time) are often obtained with the MLP gater (which needs few
epochs and yields in less iterations to a good partition). Surprisingly, even faster re-
sults (with as good generalization) are obtained if the SVM experts are altogether
replaced by MLP experts. If training of the MLP gater with stochastic gradient
takes time that grows much less than quadratically, as we conjecture it to be the
case for very large data sets (to reach a “good enough” solution), then the whole
method is clearly sub-quadratic in training time with respect to the number of
training examples.
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