REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptual Artificial
Intelligence e P.O.Box 592 e
Martigny e Valais e Switzerland

phone +41 —27—721 77 11
fax +41 —27—-721 77 12
e-mail secre-
tariat @di ap. ch

internet
http://ww.idiap.ch

FACE VERIFICATION USING LDA
AND MLP oN THE BANCA
DATABASE

Sébastien Marcel 2
IDIAP-RR 03-66

DECEMBER 2003

SUBMITTED FOR PUBLICATION

a |DIAP, CP 592, 1920 Martigny, Switzerland






IDIAP Research Report 03-66

FACE VERIFICATION USING LDA AND MLP ON THE
BANCA DATABASE

Sébastien Marcel

DECEMBER 2003

SUBMITTED FOR PUBLICATION

Abstract. In this paper, we propose a system for face verification. It describes in detail each stage of the
system: the modeling of the face, the extraction of relevant features and the classification of the input face as
a client or an impostor. This system is based on LDA feature extraction, successfully used in previous stud-
ies, and MLP for classification. Experiments were carried out on a difficult multi-modal database, namely
BANCA. Results show that our approach perform better than the state-of-the-art on the same database. Ex-
periments show also contradictory results in the state-of-the-art literature.
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1 Introduction

Identity verification is a general task that has many real-life applications such as access control, transaction
authentication (in telephone banking or remote credit card purchases for instance), voice mail, or secure tele-
working.

The goal of an automatic identity verification system is to either accept or reject the identity claim made
by a given person. Biometric identity verification systems are based on the characteristics of a person, such
as its face, fingerprint or signature. A good introduction to identity verification can be found in [21]. Identity
verification using face information is a challenging research area that was very active recently, mainly because
of its natural and non-intrusive interaction with the authentication system.

The paper is structured as follows. In Section 2 we introduce the reader to the problem of identity ver-
ification and we present the current state-of-the-art approach. Then, in section 3 we present the proposed
approach, a LDA (Linear Discriminant Analysis) feature extraction technique, successfully applied to face ver-
ification [13], together with a MLP (Multi-Layer Perceptron) classifier. In section 4, we provide experimental
results on the multi-modal benchmark database BANCA using its associated protocol. Finally, we analyze the
results and conclude.

2 Face Verification

2.1 Problem Description

An identity verification system has to deal with two kinds of events: either the person claiming a given identity
is the one who he claims to be (in which case, he is called a client), or he is not (in which case, he is called an
impostor). Moreover, the system may generally take two decisions: either accept the client or reject him and
decide he is an impostor.

The classical face verification process can be decomposed into several steps, namely image acquisition
(grab the images, from a camera or a VCR, in color or gray levels), image processing (apply filtering algo-
rithms in order to enhance important features and to reduce the noise), face detection (detect and localize an
eventual face in a given image) and finally face verification itself, which consists in verifying if the given face
corresponds to the claimed identity of the client.

In this paper, we assume (as it is often done in comparable studies, but nonetheless incorrectly) that the de-
tection step has been performed perfectly and we thus concentrate on the last step, namely the face verification
step. A good survey on the different methods used in face verification can be found in [7, 22].

2.2 State-of-the-art approach

This section, briefly introduces one of the best method [12, 13]. In this method, faces are represented in
both Principal Component and Linear Discriminant subspaces and the main decision tool is Support \ector
Machines (SVMs) [5].

Principal Component Analysis (PCA) identifies the subspace defined by the eigenvectors of the covari-
ance matrix of the training data. The projection of face images into the coordinate system of eigenvectors
(Eigenfaces) associated with nonzero eigenvalues achieves information compression, decorrelation and dimen-
sionality reduction to facilitate decision making.

The linear discriminant analysis (LDA) subspace holds more discriminant features for classification than
the PCA subspace. The LDA based features for personal identity verification is theoretically superior to that
achievable with the features computed using PCA [20] and many others [2, 8].

2.2.1 Linear Discriminant.

A linear discriminant is a simple linear projection of the input vector onto an output dimension:

g=b+w-x. 1)
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Figure 1: Face Verification using LDA and MLP

where the estimated output g is a function of the input vector x, and the parameters {b, w}. Depending on the
criterion (Fisher criterion for instance) chosen to select the optimal parameters, one could obtain a different
solution.

2.2.2 Fisher Linear Discriminant.

The Fisher criterion [10] aims at maximizing the ratio of between-class scatter to within-class scatter. Given a
set of I; points belonging to class C;, we can define the mean of each class ¢ = 1...¢, where ¢ is the number of

classes, as
1
i = L Z Xp - 2
keC;

The within-class scatter matrix is then defined as

Su= 20 3 ok — )k — ) ©

i=1 x, €C;

where N is the total number of image sample N = }~7 | I;.
The between-class scatter matrix is defined as
1< ;
Sp=— (i~ — )" (4)
i=1
where 4 is the grand mean, i.e the mean of the means ;.
Fisher’s criterion can then be defined as maximizing

wiSyw

J(w) = . ®)

T wiS,w

and a solution can be found by computing the eigenvectors of

wW = S;lsb . (6)

3 The proposed approach

In face verification, we are interested in particular objects, namely faces. The representation used to code input
images in most state-of-the-art methods are often based on gray-scale face image or its projection into PCA or
LDA subspace [13, 14, 1]. In this section, we describe our approach a MLP classifier trained on a gray-scale
face image projected into LDA subspace (Fig. 1).
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Figure 2: Face modeling using eyes center coordinates and facial anthropometry measures.

3.1 Feature Extraction
3.1.1 Face Modeling.

In a real application, the face bounding box will be provided by an accurate face detector [18, 17], but here the
bounding box is computed using manually located eyes coordinates, assuming a perfect face detection. In this
paper, the face bounding box is determined using face/head anthropometry measures [9] according to a face
model (Fig. 2).

The face bounding box wh crops the face from the glabella to the subnasale and do not includes the
ears in order to minimize the influence of the hair-cut and of the lip movement. The height h of the face is
givenbyy upper +y_| ower wherey | ower =(en_gn-sn_gn)/sandy_upper =((g_sn +sn_gn)
- en_gn)/s. In this model, the ratio wh is equal to the ratio 64/40 and we force the eyes distance to be 33
pixels. Thus, the scale is s = 2xpupi | _se/33. The constants pupi | _se (pupil-facial middle distance),
en_gn (lower half of the craniofacial height), sn_gn (height of the lower face), and g_sn (distance between
the glabella and the subnasale) can be found in [9].

3.1.2 Face Pre-Processing.

First, the extracted face is downsized to a 64x40 image. Then, we perform histogram normalization to modify
the contrast of the image in order to enhance important features. Finally, we smooth the enhanced image by
convolving a 3x3 Gaussian (o = 0.25) in order to reduce the noise.

'. o

Figure 3: Face pre-processing. From left to right: the original 64x40 image, the histogram normalized image
and the smoothed image.

3.1.3 Face Representation.

After enhancement and smoothing, the face image becomes a feature vector of dimension 2560. We have
decided to choose the state-of-the-art face representation describe in the previous section, namely LDA.

The direct computation of the L DA-transform matrix is impractical because of the huge size of the face
data in the original space (2560 dimensions). Therefore, a dimensionality reduction must be applied before
solving the eigenproblem. This reduction is usually achieved by PCA.
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PCA and LDA projection matrices have been computed on all images from XM2VTS database (295 identi-
ties and 8 images per identity). In the PCA space, the components accounting for >= 4% of the total variation
are selected, reducing the dimensionality to 677. Then, the L DA-projection matrix is computed as describe
in the previous section using all images of each identity projected into PCA subspace. In the LDA space, the
components accounting for >= 1% of the total variation are selected, reducing the dimensionality to 205.

3.2 Classification

Our face verification method is based on Multi-Layer Perceptrons (MLPs). MLPs are learning machines used
in many classification problems. A good introduction to machine learning algorithms can be found in [4, 11].

3.2.1 Multi-Layer Perceptrons.

We will assume that we have access to a training dataset of | pairs (x;,y;) where x; is a vector containing the
pattern, while y; is the class of the corresponding pattern often coded respectively as 1 and -1.

A MLP is a particular architecture of artificial neural networks composed of layers of non-linear but differ-
entiable parametric functions. For instance, the output g of a 1-hidden-layer MLP can be written mathemati-
cally as follows

g=b+w-tanh(a+x-V) @)

where the estimated output § is a function of the input vector x, and the parameters {b, w,a, V}. In this
notation, the non-linear function tanh() returns a vector which size is equal to the number of hidden units of
the MLP, which controls its capacity and should thus be chosen carefully, by cross-validation for instance.

An MLP can be trained by gradient descent using the backpropagation algorithm [19] to optimize any
derivable criterion, such as the mean squared error (MSE):

1

MSE = % > (i —9i)* (8)

i=1

3.2.2 MLP for Face Verification.

For each client, an MLP is trained to classify an input to be either the given client or not. The input of the
MLP is a feature vector corresponding to the projection of the face image into the LDA subspace. The output
of the MLP is either 1 (if the input corresponds to a client) or -1 (if the input corresponds to an impostor). The
MLP is trained using both client images and impostor images, often taken to be the images corresponding to
other available clients. In the present study, we used the 300 client images from Spanish part of the BANCA
database (see next section).

Finally, the decision to accept or reject a client access depends on the score obtained by the corresponding
MLP which could be either above (accept) or under (reject) a given threshold, chosen on a separate validation
set to optimize a given criterion.

4 Experimental results

4.1 The BANCA database and protocol

This section gives an overview of the BANCA database and protocol, but a detailed description can be found
in [3].

4.1.1 The Database.

The BANCA database was designed in order to test multi-modal identity verification with various acquisition
devices (2 cameras and 2 microphones) and under several scenarios (controlled, degraded and adverse).
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Figure 4: Examples of images from the BANCA database for each scenario. From left to right: controlled,
degraded and adverse.

For 5 different languages?, video and speech data were collected for 52 subjects (26 males and 26 females),
i.e. atotal of 260 subjects. Each language - and gender - specific population was itself subdivided into 2 groups
of 13 subjects (denoted g1 and g2).

Each subject participated to 12 recording sessions, each of these sessions containing 2 records: 1 true client
access (T) and 1 informed 2 impostor attack (1). For the image part of the database, there is 5 shots per record.
The 12 sessions were separated into 3 different scenarios (Fig. 4):

e controlled (c) for sessions 1-4,
e degraded (d) for sessions 5-8,
o adverse (a) for sessions 9-12.

Two cameras were used, a cheap one and an expensive one. The cheap camera was used in the degraded
scenario, while the expensive camera was used for controlled and adverse scenarios. Two microphones, a cheap
one and an expensive one, were used simultaneously in each of the three scenarios. During the recordings, the
camera was placed on the top of the screen and the two microphones were placed in front of the monitor and
below the subject chin.

4.1.2 The Protocol.

In the BANCA protocol, we consider that the true client records for the first session of each condition is
reserved as training material, i.e. record T from sessions 1, 5 and 9. In all our experiments, the client model
training (or template learning) is done on at most these 3 records.

We then consider 7 distinct training-test configurations, depending on the actual conditions corresponding
to the training and to the testing conditions.

e Matched controlled (Mc):

e client training from 1 controlled session
e client and impostor testing from the other controlled sessions (within the same group)

e Matched degraded (Md):

e client training from 1 degraded session
e client and impostor testing from the other degraded sessions (within the same group)

e Matched adverse (Ma):

e client training from 1 adverse session
e client and impostor testing from the other adverse sessions (within the same group)

1English, French, German, Italian and Spanish
2The actual spesker knew the text that the claimed identity speaker was supposed to utter.
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Unmatched degraded (Ud):

e client training from 1 controlled session
e client and impostor testing from degraded sessions (within the same group)

Unmatched adverse (Ua):

e client training from 1 controlled session
e client and impostor testing from adverse sessions (within the same group)

Pooled test (P):

e client training from 1 controlled session

e client and impostor testing from all conditions sessions (within the same group)

Grand test (G):

e client training from 1 controlled, 1 degraded and 1 adverse sessions
e client and impostor testing from all conditions sessions (within the same group)

From the comparison of these various performances, it is possible to measure: the intrinsic performance
in a given condition, the degradation from a mismatch between controlled training and uncontrolled test, the
performance in varied conditions with only one (controlled) training session, and the potential gain that can be
expected from more representative training conditions.

4.1.3 Performance Measures.

In order to visualize the performance of the system, irrespectively of its operating condition, we use the con-
ventional DET curve [15], which plots on a log-deviate scale the False Rejection Rate Prg as a function of the
False Acceptance Rate Pr 4. Traditionally, the point on the DET curve corresponding to Prg = Pr 4 is called
EER (Equal Error Rate) and is used to measure the closeness of the DET curve to the origin. The EER value
of an experiment is reported on the DET curve, to comply with this tradition.

We also measure the performance of the system for 3 specific operating conditions, corresponding to 3
different values of the Cost Ratio R = Cpga/Crg, namely R = 0.1, R = 1, R = 10. Assuming equal
a priori probabilities of genuine clients and impostor, these situations correspond to 3 quite distinct cases:

R=0.1 — aFAisan order of magnitude less harmful than a FR
R=1 — aFAand aFR are equally harmful
R=10 — aFAisan order of magnitude more harmful than a FR.
When R is fixed and when Pgg and Pg 4 are given, we define the Weighted Error Rate (W ER) as:

P, P,
WER(R) = %@%“ ©)

Prp and Pr 4 (and thus W E R) vary with the value of the decision threshold ©, and © is usually optimized
S0 as to minimize W ER on the development set D:

Op =arg min WER(R) (10)

The a priori threshold thus obtained is always less efficient than the a posteriori threshold that optimizes
the W ER on the evaluation set E itself:

OF = arg mbin WER(R) (11)
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Table 1: FAR, FRR and WER for each cost ratio on the test set using LDA/MLP.

Group gl
| | R=0.1 | R=1 | R=10 |
|ProtocoI|FAR |FRR |WER |FAR |FRR |WER |FAR |FRR |WER|
Mc 13.462 | 7.692 |8.217 |4.808 |12.821 |8.814 |0.000 |29.487 |2.681
Ua 65.385|1.282 |7.110 |17.308|6.410 |11.859 |4.808 |41.026 |8.100
ud 42.308 | 1.282 |5.012 |14.423|12.821|13.622 |2.885 | 34.615 | 5.769
P 48.397 | 1.282 |5.565 |18.269|8.974 |13.622|3.205|39.316 | 6.488

Group g2
| | R=0.1 | R=1 | R=10 |
|ProtocoI|FAR |FRR |WER |FAR |FRR |WER |FAR |FRR |WER|
Mc 41.346 | 0.000 |3.759 |2.885 |6.410 |4.647 |0.962 |10.256 |1.807
Ua 38.462 | 12.821 | 15.152 | 18.269 | 17.949 | 18.109 | 0.962 | 53.846 | 5.769
ud 49.038 | 2.564 |6.789 |9.615 |24.359|16.987 |0.962 | 52.564 |5.653
P 50.962 | 3.419 |7.741 |19.551|11.966 | 15.759|0.321 | 52.991 | 5.109

Table 2: Comparative results between ORG/SVM, LDA/SVM and LDA/MLP.

ORG/SVM LDA/SVM LDA/MLP
[Protocol [FAR [FRR [HTER [ FAR [FRR |HTER | FAR |FRR |HTER |
Mc 218 |6.92 |455 |058 |11.03|58 |577 |7.05 |6.41
Ua 6.79 | 41.35|24.07 |2.69 |66.46 |34.55 |15.86 |15.38 |15.62
Ud 577 |349 |20.34 |192 (6244|3217 |125 |14.10|133
P 491 |27.72|16.32 |1.73 |46.62|24.17 |15.38[15.81 | 15.59

4.2 Results

In this section, we provide experimental® results obtained by our approach, namely LDA/MLP, that we compare
to state-of-the-art results [1] published on the BANCA database.

First, we provide for future comparison results obtained by LDA/MLP according to configurations Mc, Ua,
Ud, P of the BANCA protocol (Table 1). These results show that an average WER of 2.24 can be reached with
our method when chosing a cost ratio equal to 10.

Second, we compare LDA/MLP to the methods describe in [1], namely ORG/SVM and LDA/SVM respec-
tively.

ORG/SVM s using the original face image of size 61x57 as input of a SVM and LDA/SVM is using
the projection of the same face image into LDA subspace also as input of a SVM. We report in Table 2 the
average (on groups g1 and g2) FAR/FRR and HTER of the above methods on the test set. We provide also the
corresponding DET curves (Fig. 5) of the LDA/MLP method only.

Table 2 shows that LDA/MLP performs much better than the two other methods on the difficult unmatched
protocols Ua and Ud. LDA/MLP is not as good as ORG/SVM on the easiest protocol Mc but globally performs
slightly better on the pooled test protocol P.

Furthermore, it appears a contradiction about the results using LDA. In [1], it was shown that ORG/SVM
was better than LDA/SVM. It was also conclude that “projecting the image into PCA and LDA spaces does
not improve the performance of the system using SVM”. This conclusion is contradictory with previous results

3The machine learning library used for all experiments is Torch http://www.torch.ch.
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Figure 5: DET curves for experiments using LDA/MLP. From left to right on the first row: protocols Mc and
P. From left to right on the second row: protocols Ua and Ud

on the XM2VTS database [12, 13, 16]. MLP and SVM provide comparative results in face verification [6].
Thus, the main difference between the work presented in this paper and [1] is not the feature extraction method,
which is the same, nor the choice of the classifier (MLP or SVM) but certainly in the choice of the face model.
In this study, we chose to crop the face from the glabella to the subnasale and not to include the ears in order to
minimize the influence of the hair-cut and of the lip movement.

5 Conclusion

In this paper, a detailed system for face verification was presented. It was describing in detail each stage of
the system: the modeling of the face (a 64x40 face image), the extraction of relevant features (Fisher Linear
Discriminant) and the classification of the input face as a client or an impostor using a MLP.

Experiments were carried out on the BANCA benchmark multi-modal database using its experimental
protocol. The BANCA database was designed in order to test multi-modal identity verification with various
acquisition devices and under several scenarios (controlled, degraded and adverse). The BANCA protocol
allows to measure the performance in varied conditions with only one (controlled) training session and the
degradation from a mismatch between controlled training and uncontrolled test,

Results have shown that our approach performs better than the state-of-the-art on unmatched protocols and
globally on the pooled test protocol. It has been shown also that this performance improvement may be due to
the choice of the face model.
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