On the Combination of Speech and Speaker Recognition

This paper investigates an approach that maximizes the joint posterior probabil ity of the pronounced word and the speaker identity given the observed data. This probability can be expressed as a product of the posterior probability of the pronounced word estimated through an artificial neural network (ANN), and the likelihood of the data estimated through a Gaussian mixture model (GMM). We show that the posterior probabilities estimated through a speaker-dependent ANN, as usually done in the hybrid HMM/ANN systems, are reliable for speech recognition but they are less reliable for speaker recognition. To alleviate this problem, we thus study how this posterior probability can be combined with the likelihood derived from a speaker-dependent GMM model to improve the speaker recognition performance. We thus end up with a joint model that can be used for text-dependent speaker identification and for speech recognition (and mutually benefiting from each other).

Published in:
European Conference On Speech, Communication and Technology (EUROSPEECH'03), 1361-1364
Presented at:
European Conference On Speech, Communication and Technology (EUROSPEECH'03)
Geneva, Switzerland
IDIAP-RR 03-19

Note: The status of this file is: Anyone

 Record created 2006-03-10, last modified 2020-10-25

Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
(Not yet reviewed)