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Abstract. Accessing and organizing home videos present technical chal-
lenges due to their unrestricted content and lack of storyline. In this pa-
per, we propose a spectral method to group video shots into scenes based
on their visual similarity and temporal relations. Spectral methods have
been shown to be effective in capturing perceptual organization features.
In particular, we investigate the problem of automatic model selection,
which is currently an open research issue for spectral methods, and pro-
pose measures to assess the validity of a grouping result. The method-
ology is used to group scenes from a six-hour home video database, and
is assessed with respect to a ground-truth generated by multiple people.
The results indicate the validity of the proposed approach, both com-
pared to existing techniques as well as the human ground-truth.

1 Introduction

The development of efficient browsing and retrieval techniques for home video
is of great importance for video albuming and other multimedia applications [4,
5, 3], but represents a technical challenge due to the unrestricted content and
the absence of storyline in consumer videos. These videos are composed of a
set of scenes, each composed of few shots, visually consistent, localized in time,
and randomly recorded, making them unsuitable for analysis approaches based
on storyline models. However, recent studies have shown that people implicitly
follow certain rules of attention focusing and recording [5, 3], and that the scene
structure of home video can be disclosed from such rules [3].

At the same time, there is an increasing interest in computer vision and ma-
chine learning towards spectral clustering methods [11,12,14, 6], which aim at
partitioning a graph based on the eigenvectors of its pairwise similarity matrix.
These methods have provided some of the best known results for image segmen-
tation and data clustering. However, the automatic determination of the number
of clusters has not been fully addressed in most of these references.

In this paper, we propose a methodology to discover the cluster structure in
home videos using spectral algorithms. Our paper has two contributions. In the
first place, we present a novel analysis related to the problem of model selection
in spectral clustering for the algorithm of [7], and study some measures to assess
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the quality of a partition, discussing the balance between the number of clusters
and the clustering quality. In particular, we discuss the use of the eigengap,
a measure referred to as a potential tool for clustering evaluation [7], but for
which we are not aware of any experimental studies showing its usefulness in
practice. In the second place, we show that the application of spectral methods
to home video structuring results in a powerful method, despite the use of simple
features of visual similarity and temporal relations. The methodology shows
good performance with respect to cluster detection and individual shot-cluster
assignment, both compared to existing techniques and to people performing the
same task, when evaluated on a six-hour home video database for which a third-
party ground-truth generated by multiple subjects is available.

The paper is organized as follows. Section 2 describes the spectral clustering
algorithm, discussing the model selection issue and the use of various clustering
quality measures. Section 3 describes the application of the methodology to
structuring of home videos. Section 4 describes the database and the performance
measures, and presents results. Section 5 provides some concluding remarks.

2 The spectral clustering algorithm

First, we briefly describe the spectral algorithm (proposed in [7] and inspired by
[12,11]). We then analyze it for both ideal and general cases. Model selection is
then discussed, and several measures of assessing clustering quality are presented.

2.1 The algorithm

Let us define a graph G by (S, A), where S denotes the set of nodes, and A is
the affinity matrix encoding the similarity between any two nodes in the set S.
We ensure that A;; = 0 for all ¢ in S. The affinity A;; is often defined as :

42(i,4)

Ajj =exp” 27 (1)

where d(i,j) denotes a distance measure between two nodes, and o is a scale
parameter. The algorithm consists of the following steps :

1. Define D(A) to be the degree matrix of A (i.e. a diagonal matrix such that
Di; = 3, Aij), and construct L(A) by L(4) = (D(A))~1/2 A(D(A))~/2.

2. Find {z1,22,...,z} the k largest eigenvectors of L (chosen to be mutually
orthogonal in the case of repeated eigenvalues), and form the matrix X =
[z122 ... 2] by stacking the eigenvectors in columns.

3. Form the matrix Y from X by renormalizing each row to have unit length.
The row Y; is to the new feature associated with node 7.

4. Cluster the rows Y; into k clusters via K-means.

5. Assign to each node i the cluster number corresponding to its row.

When the value of K corresponds to its true value, the rows of Y should cluster

in K orthogonal directions. Thus, the K initial centroids (Y;%);=1,...,x in the

fourth step of the algorithm can be selected by first finding the row of Y for which

the Ninit neighbours form the tightest cluster, and then recursively selecting the

row whose inner product to the existing centroids is the smallest according to :
Y41 = argmin X Y°.Yj).
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Fig. 1. Clustering example: (a) initial points; (b) affinity matrix; (c) rows of ¥ (in IR?)
when K=3 and eigensystem solved with eig from matlab; (d) @ matrix; (e) clustering
result; (f) rows of Y, but with the eigensystem solved with the eigs function.

2.2 Algorithm analysis

Figure 1(e) and 4(b) show examples of clustering results that can be obtained
with this algorithm. It was shown in [7] that the above algorithm is able to find
the true clusters under the condition that K corresponds to the true number
of clusters (whenever such a value exists). In this section we extend this result
by analyzing the behaviour for the case when K is above or below this ideal
number. Two cases are considered: the ideal case, when the true clusters are well
separated; and the general case, when noise due to inter-cluster similarity exists.

The ideal case To understand the behaviour of the algorithm, we consider an
ideal case in which the different clusters have infinite separation. Without loss of
generality, if we additionally suppose that K;4.q,;=3, the set of all node indexes
is given by S = S; U S5 U S3, where S; denotes the i*" cluster of size n;. We also
assume that the node indexes are ordered according to their cluster. An example
obeying these assumptions is illustrated in Fig. 1, where the distance employed
to define the affinity between two nodes is the usual euclidian distance between
the 2D coordinates, and affinity is computed by Eq. 1.

In this case, A (resp. L) is a diagonal matrix composed of 3 blocks (A(“) )i=1,2,3
(resp. (L{#);_; 2 ,3) which are the intra-cluster affinity matrices for L. It follows
that (i) its eigenvalues and eigenvectors are the union of the eigenvalues and
eigenvectors of its blocks L(®) (the latter appropriately padded with zeros); (ii)
its highest eigenvalue is unity; (iii) unity is a repeated eigenvalue of order 3; (iv)

the 4th eigenvalue is stricly less than 1 (assuming A%:) > 0,7 # k), and (v) the
eigenspace of the unity eigenvalue has dimension 3, and thus, the eigenvectors
provided by a particular decomposition algorithm are not unique. X3 (where

Xk denotes the first K eigenvectors stacked in columns) has the form

o0 0 r
Xs=1]0o® 0 |xR, withR=|r2),
0 0 o r3

where R is a 3 x 3 rotation matrix composed out of the three row vectors r;, and
vl(j) denotes the I*" eigenvector of the matrix L(%). Thus, each row of X3 is of
the form vg) x r;j, where vg) is a scalar (the i component of v{)). Therefore,
after renormalizing the rows of X3 (step 3 of the algorithm), the matrix ¥ has
rows that fulfill Y; =r; Vi € S;. Fig. 1(c) illustrates this result for the data set

of Fig. 1(a). Fig. 1(f) shows the result obtained by changing the matlab function
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Fig. 2. Same data as in figure 1, with K=2 : (a,b,c) when the eigensystem is solved
with eig on matlab ; (d,e,f) when using eigs. (a) (d) denote the rows of ¥ (in R?); (b)
(e) denote the @ matrix; (c)(f) show the clustering result.

that solves the eigensystem. Note that the three vectors are still orthogonal, but
have a different configuration. An alternative formulation defines Q =Y x YT
[11]. In the ideal case, we have Q(i,j) =1 for nodes ¢ and j belonging to the
same cluster, and Q(i,j) = 0 otherwise (see Fig. 1(d)).

Variation in the number of clusters in the ideal case We can now consider
the two cases when K # Kj4eq;, which have not been previously studied in [7]:

1. For K < K;geai, XK corresponds to the first K columns of Xk,,,,,. After
normalization, we get a Y matrix whose entries are (in our example, with K=2) :

Y} = (T'ilaTi2)/||(7'i1,7'i2)”ir; Vi and V_] € S;.

This simply corresponds to projecting and normalizing the initial orthogonal
vectors r; into a lower dimensional space. Since (as pointed out above) the vec-
tors r; can be in any orthogonal configuration, there is no general rule about
the configuration of their projections r}. As an example, Fig. 2 shows these pro-
jections in the case of the data of Fig. 1. Depending on the specific eigensystem
solver, the projections and the clustering results can differ.

2. For K > K;geqi, consider for simplicity that K = 4. X4 now consists of the
matrix X3 with the 4** eigenvector appended as an extra column. As mentioned
above, this eigenvector comes from one of the L(%) matrices. More precisely

Ay = max; Agi). Assume that we choose this 4" eigenvector in the first cluster,

Wy él)

v

After row normalization, it can be shown that Q(4,5) = 0,Vi € Sy,Vj € Si, k # L.
i.e., the true original clusters remain orthogonal to each other [8]. Furthermore,
Q(i,j) = 1,¥(i,5) € S,k = 2 or 3, indicating that the second and third cluster
remain unchanged. Only the first cluster is affected (divided into two parts). The
same reasoning applies for higher values of K. Summarizing, if K > K;geq1, the
resulting clustering corresponds to an overclustering of the ideal case (Figs. 3-4).

The general case In the ideal case, we have seen that the ) matrix should
only have 0 and 1 entries when the true K is selected, and that there might
be other entry values when K # Kjjeqr (esp. K > Kjgear)- Indeed, this can be



matrix, K=4_ Clusters, K=4 Clusters, K=5
& E7

4 R 4 ok
e w e

a 20 40 60 80 100 b 1 2 3 4 5 C 1 2 3 4 5

Fig. 3. Same data as in Fig. 1. (a) Q for K=4; (b) clustering; (c) clustering for K=5.
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Fig. 4. Another example. Result with (a) K=2, (b) K=3, (c) K=4 (d) K=5

related to the distortion obtained at the end of the K-means algorithm :

1 K
MSE=—-% > IIG-¥l, 2)

i=1 jE€cluster;

where Y represent the centroids at the end of the K-means. In the ideal case,
and when K = Kj4.q; the distortion should be 0. Given the correct K value, the
authors in [7] use the distortion as a measure to select the clustering result from
a set of results obtained by varying the scale parameter ¢ in the affinity matrix
computation (Eq. (1)). However, there is no indication of how this measure would
behave for varying values of K. Note in particular that the distortion measure is
computed in spaces of different dimension (Y lie in RX ), so distortion values may
not be easily compared, and that the MSE may be low or not when K < Kj;geq-

2.3 Automatic model selection

The selection of the “correct” number of clusters is a difficult task. We have seen
in the previous Section that the analysis of the MSE measures for different K is
not trivial. For this reason, we considered other criteria stemming from matrix
perturbation and spectral graph theories to perform model selection.

We have adopted the following strategy. The spectral clustering algorithm is
employed to provide candidate solutions (one per value of K), and the selection
is performed based on the criteria discussed in the following sections.

The eigengap The eigengap is an important measure in spectral methods

[6,7] (see [1] for basic definitions). The eigengap of a matrix A is defined by

0(A) =1- i—f where A\; and Ay are its two largest eigenvalues [6]. In prac-

tice, the eigengap is often used to assess the stability of the first eigenvector!

1 Or the first k eigenvectors, in cases where we have a k-repeated, largest eigenvalues.



of a matrix and it can be shown to be related to the Cheeger constant [1],
a measure of the tightness of clusters. To clarify this relation, let us define
the cut value of the partitioning (Z,Z) of a graph characterized by its affin-
ity matrix A by Cuta(Z,T) = Y ;1 247 Aij» the volume of the subset Z by
Vola(Z) =3 ez 2 jer Aij> and the conductance ¢ of the partitioning (Z, 7) by

Cuty (I, j')
min(Vola(Z),Vola(Z))

¢a(Z) =

The Cheeger constant h¢ is defined as hg(A) = ming ¢4(Z) and can be shown to
be bounded by the eigengap [7,6] : hg(A) > 26(A). The conductance indicates
how well (Z,Z) partitions the set of nodes into two subsets, and the minimum
over Z corresponds to the best partition. Therefore, if there exist a partition for
which (i) the weights A;; of the graph edges across the partition are small, and
(ii) each of the regions in the partition has enough volume, then the Cheeger
constant will be small. Starting from K = 1, we would like to select the simplest
clustering model (i.e., the smallest K') for which the extracted clusters are tight
enough (hard to split into two subsets). This is equivalent to request that the
Cheeger constant is large enough for each cluster, or to request that the eigengap
is large for all clusters. Our first criterion is

0k = min 6(L(AF)), (3)

i€l...K

where A;?) are the submatrices extracted from A according to the model ob-
tained by the spectral algorithm, and L is defined in Section 2.1. The algorithm
selects the smallest K for which the eigengap dx exceeds a threshold.

The relative cut The measure defined by Eq. (3) has a drawback, as it only
considers intra-cluster information. When part of the data have no clearly de-
fined clusters, the algorithm may over-estimate the number of clusters so that
all clusters (possibly reduced to a single element) are tight enough. We thus con-
sidered a second criterion that characterizes the overall quality of a clustering.
This criterion is defined as the fraction of the total weight of edges not covered
by the clusters,

K K
D k=1 Zl:l,l;ék ZiESk ZjGSz Aij
22 Aij

The algorithm outputs the largest K for which rcut is below a threshold.

rcutg =

(4)

3 Spectral structuring of home videos

Home videos contain series of ordered and temporally adjacent shots that can
be organized in groups usually related to distinct scenes. In our approach, shot
grouping exploits visual similarity and temporal adjacency, two of the main
criteria that allows people to identify clusters in video collections, when nothing
else is known about the content (unlike the filmmaker, who knows details of



context). Previous formulations in the literature are based on similar concepts
[13]. We use spectral clustering as follows.

Home video shots usually contain more than one appearance, due to hand-
held camera motion. Consequently, a shot is represented by a small fixed number
of key-frames, Niy = 5. The ¢ — th key-frame f; of a video is characterized by a
color histogram h; in the RGB space (uniformly quantized to 8 x 8 x 8 bins).

The pairwise affinity matrix A is directly built from the set of all key-frames

in a video by defining _(d%(fi,fj)erth,fj))
Aij=e 2o 2 (5)
where A;; is the affinity between key-frames f; and f;, d, and d; are measures
of visual and temporal similarity, and o2 and o7 are scale parameters.

Visual similarity is computed by the metric based on Bhattacharyya coefficient,

which has proven to be robust to compare color distributions [2],

dy(fi 15) = (1= prr(hs, hy)' /2, with ppr =Y (hihse)'/? (6)
k

Temporal similarity exploits the fact that distant shots along the temporal axis
are less likely to belong to the same scene. It is defined by d.(f;, f;) = Hﬂ%
where |f;| denote the absolute frame number of f; in the video, and |v| denotes
the entire video clip duration. Note that the range for both d, and d; is [0, 1].
We further set the scale parameters o, and o; in the following way. Building
upon a previous study [3], we fixed the o, value to 0.25 which represents a good
threshold for separating intra and inter-cluster similarities distributions in home
videos. Similarly, it was shown in [3] that in average 70% of home video scenes
are composed of four or less shots. Thus, the o, value was set to the average
temporal separation between four shots in a given video.

The spectral method is applied as discussed in Section 2. A cluster number is
assigned to each shot using a majority rule on the cluster labels of its key-frames.
In the case of a tie, the cluster is randomly selected from the candidates.

4 Experiments

4.1 Data set and ground-truth

The data set consists of 20 MPEG-1 home videos, digitized from VHS tapes
provided by seven different people, and with approximate individual duration of
20 minutes. The videos depict vacations, school parties, weddings, and children
playing in indoor/outdoor scenarios. A ground-truth (GT) at the shot level was
semi-automatically generated, resulting in a total of 430 shots. The number of
shots per video varies considerably (between 4 and 62 shots).

There are two typical options to define the GT at the scene level. In the
first-party approach, the GT is generated by the video creator [9]. This method
incorporates specific context knowledge about the content (e.g., family links,
and location relationships). In contrast, a third-party GT is defined by a sub-
ject not familiar with the content. In this case, there still exists human context
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Fig. 5. (a) Average of the percentage of shots in error for humans (H), baseline (PHC),
and spectral method (SM). (b)-(c) Variation of the average of percentage of shots in
error (average of the median in red, of the min in blue) for different criteria as function
of their threshold: (b) eigengap; (range: (0.1,0.3)); (c) relative cut (range: (0.04,0.08)).

understanding, but limited to what is displayed. This “blind context” makes
third-party GTs a fairer benchmark strategy for automatic algorithms [10].

In this paper, we use a third-party GT based on multiple subject judgement
that takes into account the fact that different people might generate different
results. Scenes for each video were found by twenty subjects using a GUI that
displayed a key-frame-based video summary (no real videos were displayed). A
very general statement about the clustering task, and no initial solution were
provided to the subjects at the beginning of the process. The final GT set consists
of about 400 human segmentations.

4.2 Performance measures

The performance measures that we consider are (i) the number of clusters se-
lected by the algorithm and (ii) the shots in errors (SIE). For the number of
clusters, we report the value we obtain and compare it with the numbers pro-
vided by people. For shot in errors, let us denote GT* = {GT},j € 1,...,N;}
the set of human GTs for the video V;, and C* the solution of an algorithm for
the same video. The SIE between C? and a ground-truth GT]?' is defined as the
number of shots whose cluster label in C! does not match the label in the GT.
For each video, the SIEs between C; and each GT} are computed. Then, from
the ranked SIE values, we keep the minimum, the median and the maximum,
denoted SIE! .  STE! . and SIE!  respectively. The minimum value indicates
how far an automatic clustering is from the nearest segmentation provided by a
human. The median value can be considered as a fair measure of how well the
algorithm performs, taking into account the majority of the human GTs and
excluding the largest errors. These large errors may come from outliers and are
taken into account by STE? . which gives an idea of the spread of the measures.
For the overall performance measure, we computed the average SIE measures
over all the videos, of the percentage of shots in errors w.r.t. the number of shots
in each video. Note that this normalization is necessary because the number of
clusters (and shots) varies considerably from one video to another.

4.3 Results

The best result with our method was obtained using the eigengap criterion and a
threshold dx = 0.15. We compared it with a probabilistic hierarchical clustering
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Fig. 6. (a) Determination of number of clusters. (b) Percentage of shot in error. The
blue bar indicates the spread of the human performances of the SIE,,.q value.

method (PHC) described in [3], as well as with human performance. The latter
was obtained in the following way : for each video, the minimum, median and
maximum shots in error were computed for each human GT against all the
others. These values were then averaged over all subjects. These averages are
plotted in Fig. 6 for each video. Finally we computed the average over all the
videos to get the overall performance.

The Table of Fig. 5(a) summarizes the results. We can first notice from the
minimum and maximum values that the spread of performances is high, given the
performance measure. Secondly, the spectral method is performing better than
PHC, as can be seen from the median and minimum value, and approximately
as well as the humans.

Fig. 6 displays the results obtained for each video. First, in Fig. 6(a), we show
the number of detected clusters (the red circles) as predicted by the algorithm
and compare them to the mean of the number of clusters in the GT. The spread
of the cluster numbers in the GT is represented by the blue bar (plus or minus
one standard deviation). Note that the videos have been ordered according to
their number of shots. The detected cluster numbers are in good accordance
with the GT, though slightly underestimated. Fig. 6(b) displays the values of
the shot in error measures in comparison to the average of human performance.
The circles depict the measures obtained with our method and the crosses denote
human performance. The color represents the differents measures (minimum in
red, median in blue, and maximum in green). The median performance of our
algorithm is better than the average human in eight cases and worse in six cases.
Notice that in 25% of the cases, our algorithm provides a segmentation that also
exists in the GT.

Two examples of the generated clusters are shown in Fig. 7. Each cluster
is displayed as a row of shots, which in turn are represented by one keyframe.
Qualitatively, the method provides sensible results.

Fig. 5 shows the obtained results using the two criteria. The selection with
the eigengap criterion slightly outperforms the results obtained with the relative
cut. Notice that the results are quite consistent over a relatively large range of
thresholds, and better than the probabilistic hierarchical clustering algorithm.

Finally, let us mention that, given the distance matrices, the clustering algo-
rithm implemented in matlab takes around 4 seconds per video in average.



Fig. 7. Home video structuring examples. Only one keyframe per shot is displayed.

5 Conclusion

We have presented an approach for structuring home videos using a spectral
method. We investigated the automatic selection of the number of clusters, which
is currently an open research issue for spectral methods. We have shown in our
experiments that the eigengap measure could be used to estimate this number.
The algorithm was applied to a six-hour home video database, and the results
are favorably compared to existing techniques as well as human performance.
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