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Abstract. The recognition of events within multi-modal data is a challenging problem. In this
paper we focus on the recognition of events by using both audio and video data. We investigate
the use of Hidden Markov Models (HMM) to model audio and video data sequences and also data
fusion techniques in order to recognise these sequences. Specifically we look at the recognition of
play and break sequences in football and the segmentation of football games based on these two
events. Recognising relatively simple semantic events such as this is an important step towards
full automatic indexing of such video material. These experiments were done using approximately
3 hours of data from two games of the Euro96 competition. We propose that modelling the audio
and video streams separately for each sequence and fusing the decisions from each stream should
yield an accurate and robust method of segmenting multi-modal data. The results presented here
show that this technique improves segmentation over feature vector concatenation techniques.
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1 Introduction

With the rapid growth in the amount of multi-modal data being generated there is a need for a reliable
system to automatically annotate such data. In this paper we focus on the recognition of events by
using both audio and video data. Specifically we look at the recognition of play and break sequences
in football and the segmentation of football games based on these two events. Play is defined as the
ball being in normal play and break is when play has ceased for some reason such as, a foul, a throw
in or a goal.

The segmentation of football into play and break sequences is an important task. In the data
we have used break constituted 45 percent of the total time, so a segmentation into play and break
provides a significant information reduction. It should be noted that in our approach to the problem of
segmenting play and break, we have not based the segmentation on shot boundaries. This is important
because play and break are semantic classifications that do not always adhere to shot boundaries. It
is often the case that a play or break sequence will run over a number of shots and, more importantly,
it is sometimes the case that a single shot will contain both play and break sequences.

The video data we are concerned with here is composed of two streams, audio and video. While
some work has been done on the recognition of events within video material, this has usually focused
on using either the audio or video stream in isolation. Some work has been done on the classification
of television broadcast genres using the audio stream alone [1] [2]. However work in this area has
concentrated on classification using the video stream. Peng Xu et al [3] have proposed a rule based
system using video information for play/break segmentation of football. This work was extended to
use Hidden Markov Models (HMMs) to model the play and break sequences and a dynamic program-
ming algorithm to perform the segmentation [4]. HMMs have also been trained using video motion
information in order to recognise events in basketball [5]. HMMs have been used with audio and video
features in a scene classification task [6] and a video shot segmentation task [7]. A good review of
techniques for the analysis of multi-modal data is provided by Wang, Liu and Huang [8].

While HMMs have been used to recognise events in football this was using only the video features.
In our approach we introduce audio features into an HMM event recognition framework. Based on
results of using multi-modal features in other fields, such as audio-visual speech recognition [9], we
believe the addition of audio information will improve both the accuracy and the robustness of the
system. We will investigate the use of both audio and video features by modelling both separately
and then fusing the decision from each stream to reach a final decision. In the next section we discuss
the audio and video features to be used in our experiments. Next we introduce the methods we
used for modelling multi-modal sequences. We then present the results of experiments comparing the
performance of these various methods on the same data set.

2 Audio and Video Features

A low level set of audio and video features were selected to be used in these experiments. These low
level features were selected so as to demonstrate the generality of the technique we propose to use.
This differs from the approach of developing a higher level set of features specifically for the task of
event recognition in football games. The visual features are based on motion, and were used in this
experiment to characterise the dominant motion model over the entire image field of view. The first
motion measure d¢ characterises how well a global motion model dg, in this case an affine model,
can actually model the displacement of points between two consecutive frames. This motion model
usually captures the image displacements that are due to the camera motion (panning, zooming etc).
The parameters of the dominant motion are first estimated using a robust estimator [10] that allows
for outliers in the data. Then, we compute d¢ as the ratio between the number of image points that
agree with the dominant motion, usually the background pixels, and the number of image points. The
second measure corresponds to the average of the motion amplitude, computed using the estimated
motion model and over the entire image field of view. The third feature is a ratio of the likelihood of
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background motion and the likelihood of no background motion. These video features were extracted
at the standard PAL video frame rate of one frame every 40ms.

The audio signal extracted from the broadcast tapes contained only sounds associated with the
football game, such as the crowd cheering, the referee’s whistle and the sound of the ball being kicked.
In order to characterise this audio stream, 12 LPC Cepstral coefficients with the log energy, delta and
acceleration coefficients were extracted from the raw audio signal. These are a set of robust audio
features commonly used in speech recognition and in other audio recognition tasks [11], delta being
the first temporal derivative of the signal and the acceleration being the second derivative. These
features were included in order the characterise the dynamics of the signal. The audio features were
extracted every 10 ms using a window size of 25 ms.

This produces two streams of data, X, the video stream and X, the audio stream. We have
sampled them at the standard sampling rates for each mode, audio at 100 times per second and video
at 25 times per second.

3 Multi-modal Sequence Recognition

The most common method currently used to model sequences of data are Hidden Markov Models
(HMMs) [11]. HMMs are a statistical method of modeling temporal relations in sequences of data.
The data is characterised as a parametric stochastic process and the parameters of this process are
automatically estimated from the data. The data sequence is factorised over time by a number
of hidden states N and emissions from these states. The emission from each state is probabilistic
and depends only on the current state. HMM training can be carried out using the FEzpectation-
Mazimisation (EM) algorithm and sequence decoding and recognition using the Viterbi algorithm
[11]. When used in classification tasks a separate HMM is trained for each class to be recognised. So
if we have M classes (ki1, ..., k) and data X. Then during recognition the classification is given by
finding the model M that maximises the probability of the model given the data P(M|X). So the
selected class is

k* = mwma\wxﬁﬁﬁa_uﬁ. (1)

This decision corresponds to the class mazimum a posteriori (MAP) criterion. Using Bayes rule we
can write this as
X|My)P(M,
k* = arg max E, (2)
k p(X)
where P(Mj,) is the prior probability of the model and p(X) is the likelihood of the data. Given that
the data X is the same for all models this becomes

k= mwma\wxﬁﬁm_giﬁﬁﬁi. (3)
In this case there is an equal prior on all models, %u so this can be written as
k* = mﬂma\wxﬁﬁm_ii. (4)

The fusion of redundant information from different sources can reduce overall uncertainty and
increase the accuracy of a classification system. Fusion can take place at different stages in the
recognition process. In early fusion techniques the data is combined and then recognition is performed
on this combined data. The most common method of early fusion is to concatenate the feature vectors
from the different modes. This technique involves aligning and synchronising the data so as to form
one combined data stream. In the case of audio and video streams, the audio data X,, and the video
data X, are concatenated to form a single audio-video data stream X,,. A single HMM is then
trained for each class using this concatenated stream. Given that audio and video are usually sampled
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at different rates, this involves subsampling or oversampling one of the streams in order to synchronise
them. In this case the selected class is

k* = mwmg\wxﬁﬁv\ne_i\b. (5)
This early fusion approach, however, does not allow for asynchronicity and differences in temporal
structure between the different modalities.

One solution when this assumption of state synchronicity cannot be made for the data is the use
of a late fusion technique in which separate HMMs are independently trained for each class using the
data from each stream of data. So if we have J streams of data and M classes the number of HMMs
is J x M. The decisions from each of these independent HMM classifiers is then combined to produce
a classification of the sequence. In this late fusion technique, decisions take the form of some sort of
score or classification of each stream, for example a posterior probability or log likelihood. One way
of combining these decisions when they represent likelihoods and are assumed to be independent is

by using the product rule
J

k" = argmax [ [ p(X;|My). (6)

Jj=1

A comprehensive review of methods for combining classifiers is provided by Kittler et al [12].

In order to implement this late fusion approach we model the audio and video separately and then
combine the likelihoods from each stream. We also introduce a weighting factor w on the likelihoods
from each stream. The likelihood outputs from the audio model and the video model are combined
according to:

PXIMi) = p(Xal Mar)* p (X, | M) ), (7)

where p(X,|Mg) is the likelihood of the audio stream given the audio model, p(X,|My) is the
likelihood of the video stream given the video model and w is the weighting factor on the streams.

4 Experiments

The data used in these experiments was provided by the BBC sports library under the European Union
Information Society Technology (EU IST) project ASSAVID. This data consists of approximately 171
minutes of football from the Euro96 competition: approximately 94.30 minutes of play and 76.61
minutes of break. This was made up of two games, the first game England vs Switzerland and the
second game Italy vs Czech Republic. As was noted in the introduction the data was groundtruthed
on a semantic basis and not on the basis of shots and shot boundaries. The length of play and break
sequences was extremely variable. The play sequences had a mean length of 19.53 seconds with a
variance of 302.73 and the break sequences had a mean length of 14.27 seconds with a variance of
175.28.

4.1 Sequence Recognition Experiment

The first experiment conducted was the recognition of sequences of play and break that had been
segmented by hand. The total number of play sequences was 285 with 134 for training, 51 for validation
and 100 for testing. In addition to this, 320 break sequences were segmented with 154 for training, 66
for validation and 100 for testing. Fully connected (ergodic) HMMs were used in these experiments and
the observation in each state was modeled by a Gaussian mixture model. Models were trained using
the audio stream only and the video stream only and also, to implement the early fusion approach,
the audio and video features vectors were concatenated and used to train models. To concatenate the
two streams the video was oversampled by a factor of four. The late fusion method was implemented
by combining independently modelled audio and video streams. This combination was done using
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_ Mode __ FAR _ FRR _ HTER _
Audio only 30.6 | 40.4 35.5
Video only 19.3 | 22.2 20.8
Early fusion || 20.4 | 17.3 18.8
Late fusion 16.3 | 15.1 15.7

Table 1: Results for each of the modelling techniques on the test set. These are results for the two-
class problem of classifying play vs break in football data. The results use the a priori EER threshold
taken from the validation set.

Equation 7. The optimal value for the weighting factor w was determined by selecting the value that
gave the highest average log likelithood on the validation set.

In order to find the optimal number of states and Gaussians for each data stream model, a number
of different combinations of states and Gaussian were tested using the training and validation data.
The optimal number of states and Gaussians for the HMMs was selected by finding the model trained
by EM on the training data that produced the highest average Log Likelihood on the set of validation
sequences. For play these were, 20 states and 15 Gaussians per state for audio, 14 states and 15
Gaussians per state for video and 13 states and 15 Gaussians per state for concatenated audio-video.
For break these were, 20 states and 15 Gaussians per state for audio, 19 states and 5 Gaussians per
state for video and 7 states and 5 Gaussians per state for concatenated audio-video. The performance
of the models was measured in terms of three different errors. The false acceptance rate (FAR) which
is the percentage of play recognised as break and the false rejection rate (FRR) which is the percentage
of break recognised as play. The half total error rate (HTER) is the mean of the FAR and FRR. The
decision was taken by applying the log likelihood ratio criterion: if

log p(X|M = play) — log p(X|M = break) > A (8)

then it is play. The value of A is chosen on the validation set in order to obtain the Equal Error Rate
(FAR = FRR).

The optimal model for each mode was then applied to the set of test sequences. Table 4.1 shows
the results on the test set using the threshold that produced an EER on the validation set. From these
results the advantage of using both audio and video data for the sequence recognition task is clear.
Also the use of late fusion by combining the decision from each stream provides an improvement over
early fusion by feature vector concatenation.

4.2 Sequence Segmentation Experiment

In the next experiment an unsegmented piece of football data was automatically segmented into play
and break sequences. The data was divided into four sections: the first and second half of both games.
Models were trained on the pre-segmented sequences from each of the four data sections and then
tested on the other three. This will give an indication of the ability of the HMMs to generalise both
within one game and also between games. The sequences were sampled each second with a sliding
window of three seconds. This window is much shorter than the average length of the sequences.
However given the large variance of the sequence lengths in the training set and the use of fully
connected HMMs this should not have too much effect on the results.

While the HMMs can give the likelihood for each individual sequence, in order to segment one
half of a football game we need some way of modelling the long term structure of the game. In this
case we wish to model the transitions between the play events and the break events. This was done
by giving a weighting to each of the possible transitions within the game, from play to play, from
break to break, from break to play and from play to break. The sequence was then decoded using the
Viterbi algorithm [11] So for each second of the test set we produce a play/break decision for a 3
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Training sets

Test sets Game 1 1st half | Game 1 2nd half | Game 2 1st half | Game 2 2nd half
Game 1 1st half 84.5 83.2 80.6 82.3
Game 1 2nd half 85.5 87.9 79.2 80.3
Game 2 1st half 88.4 87.3 90.7 87.6
Game 2 2nd half 87.5 85.4 86.5 88.6

Table 2: The percentage recognition rates for the segmentation of football tapes using late fusion by
combining the decision from each stream. The recognition rate for each tapes is shown when tested
with the models trained on each of the other tapes. Note the diagonal shows the training performance.

Train set | Test set | Intragame | Intergame
Audio only 70.6 64.1 64.2 64.0
| Motiononly | 867 [ 825 [ 848 | 814 |
_ Early fusion _ 84.7 _ 78.3 _ 80.6 _ 77.1 _
_ Late fusion _ 87.9 _ 84.5 _ 85.7 _ 83.9 _

Table 3: A summary of percentage recognition rates for the training and test sets for all modes. The
results for the test sets are averaged over the twelve non-diagonal values as shown in Figure 2 for each
mode. The training results are an average of the diagonal values in Figure 2 for each mode. Intragame
shows the average recognition rate when the training set and the test sets are from the same game.
Intergame shows the average recognition rate when the training set and the test sets are from different
games.

second sequence centred on that second. We measured the accuracy of the segmentation by dividing
the number of correctly recognised 3 second sequences by the total length of the testing set in seconds
minus two.

The results for training on each set in turn and testing on the other three using the late fusion
technique are shown in Table 2. Table 3 shows a summary of the results for the different methods
used in these experiments. This shows that while using motion features alone produces good results
this can be improved by the addition of the audio stream using the late fusion method.

While there is an increase in accuracy, the key contribution of the audio stream is an increase in
robustness. This can be seen in last two columns of Table 3. The audio recognition rate is almost
constant, over all the test sets regardless of whether they are from the same game as the training set
or not. The motion however performs noticably worse when the test set is from a different game.
This lack of robustness to changes in game is even more pronounced in the results of the early fusion
technique. By using the late fusion method we can significantly improve the robustness of the system
to changes in game.

5 Conclusion

In this paper we have proposed the use of both audio and video features to recognise events in football.
In our approach we model the audio and video streams separately using HMMs. We then use late
fusion to combine the decisions of the audio and video streams to form a single recognition decision.
In order to test the effectivness of this method we compared it to modelling each stream alone and also
the two streams combined using early fusion through concatenation of the feature vector. It can be
seen in the results that the late fusion technique provides the most accurate recognition of sequences.
This technique also provides the most accurate segmentation of football into play and break sequences.

This shows the ability of statistical models such as HMMs to model sequences of data given simple



IDIAP-RR 03-12 7

low level features. It also highlights the advantage of being able to model each stream of data using
the optimal model for that stream and then combining the decisions from the models to classify a
sequence. We feel that these results could be improved further by improving the motion features. One
approach to this could be to model the dominant object motion as well as the camera motion.

There is clearly much scope for further investigation into event detection in multi-modal sequences.
One problem is being able to model the interactions between streams. The techniques used here
model each stream independently so these interactions are not modelled. A number of modifications
to HMMs have been proposed to model these interactions [13] [14]. It is proposed to next carry out a
comparision of different multi-modal sequence processing techniques on the same data sets. This will
then provide a base line for the development of new techniques.
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