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Abstract. It has often been shown that using multiple modalities to
authenticate the identity of a person is more robust than using only
one. Various combination techniques exist and are often performed at
the level of the output scores of each modality system. In this paper,
we present a novel HMM architecture able to model the joint probabil-
ity distribution of pairs of asynchronous sequences (such as speech and
video streams) describing the same event. We show how this model can
be used for audio-visual person authentication. Results on the M2VTS
database show robust performances of the system under various audio
noise conditions, when compared to other state-of-the-art techniques.

1 Introduction
Biometric identity veri�cation systems use the characteristics of a person to ei-
ther accept or reject the identity claim made by a person [1]. While several such
systems are based on only one characteristic, or modality (such as a spoken sen-
tence or a face), several recent methods have been proposed in order to combine
more that one modality in the hope to obtain more robust decisions [2]. Most
of these combination methods are in fact based either on the decisions (accept
or reject the access) or the scores (often real values) obtained by each unimodal
algorithm in order to take a global and hopefuly more robust decision.

In this paper we would like to propose a combination method at the level of
the raw data. We will concentrate for this purpose on the di�cult task of audio-
visual authentication based on two streams of data: an audio stream representing
a spoken sentence of a person trying to access the system, and a corresponding
video stream of the face of the person pronouncing the sentence.

Trying to combine the models at the level of the raw data in that case is com-
plex for many reasons: �rst, each stream may have been preprocessed at di�erent
frame rates, chosen according to prior knowledge of each stream; second, simply
up-sampling or down-sampling the streams in order to get the same number of
frames in each stream might not be the optimal way of combining the streams.
We propose in this paper a solution that could overcome this limitation.

In a recent paper [3], we proposed an algorithm to train Asynchronous Hid-
den Markov Models (AHMMs) in order to model the joint probability of pairs



of sequences of data representing the same sequence of events, even when the
events are not synchronized between the sequences. In fact, the model enables
to desynchronize the streams by temporarily stretching one of them in order to
obtain a better match between the corresponding frames. The model can thus
be directly applied to the problem of audio-visual speaker veri�cation where
sometimes lips start to move before any sound is heard for instance.

The paper is organized as follows: in the next section, we review the model of
AHMMs, followed by the corresponding EM training algorithm. Related models
are then presented and implementation issues are discussed. Finally, experiments
on an audio-visual text-dependent speaker veri�cation task based on the M2VTS
database are presented, followed by a conclusion.

2 The Asynchronous Hidden Markov Model
Let us denote the 2 asynchronous sequences to model as X = xT

1 and Y = yS
1

where T and S are respectively the length of sequences X and Y , with S ≤ T
without loss of generality1.

We are thus interested in modeling p(xT
1 , yS

1 ). As it is intractable if we do it
directly by considering all possible combinations, we introduce a hidden variable
Q which represents the state as in the classical HMM formulation [4], and which
is synchronized with the longest sequence. Let N be the number of states.

Moreover, in the model presented here, we always emit xt at time t and some-
times emit ys at time t. Let us �rst de�ne ε(i, t) = P (τt=s|τt−1=s−1, qt=i, xt

1, y
s
1)

as the probability that the system emits the next observation of sequence Y at
time t while in state i. The additional hidden variable τt = s can be seen as the
alignment between Y and Q (and X, which is aligned with Q). Hence, we model
p(xT

1 , yS
1 , qT

1 , τT
1 ).

2.1 Likelihood Computation
Using classical HMM independence assumptions, a simple forward procedure
can be used to compute the joint likelihood of the two sequences, by introducing
the following α intermediate variable for each state and each possible alignment
between the sequences X and Y :

α(i, s, t) = p(qt=i, τt=s, xt
1, y

s
1) (1)

α(i, s, t) = ε(i, t)p(xt, ys|qt=i)
N∑

j=1

P (qt=i|qt−1=j)α(j, s− 1, t− 1)

+ (1− ε(i, t))p(xt|qt=i)
N∑

j=1

P (qt=i|qt−1=j)α(j, s, t− 1)

1 In fact, we assume that for all pairs of sequences (X, Y ), sequence X is always at
least as long as sequence Y . If this is not the case, a straightforward extension of
the proposed model is then necessary.



which is very similar to the corresponding α variable used in normal HMMs.
It can then be used to compute the joint likelihood of the two sequences as
follows:

p(xT
1 , yS

1 ) =
N∑

i=1

p(qT =i, τT =S, xT
1 , yS

1 ) (2)

=
N∑

i=1

α(i, S, T ) .

2.2 An EM Training Algorithm
An EM training algorithm can also be derived in the same fashion as in classical
HMMs. We here sketch the resulting algorithm, without going into more details2.
Backward Step: Similarly to the forward step based on the α variable used to

compute the joint likelihood, a backward variable, β can also be derived as
follows:

β(i, s, t) = p(xT
t+1, y

S
s+1|qt=i, τt=s) (3)

β(i, s, t) =
N∑

j=1

ε(j, t + 1)p(xt+1, ys+1|qt+1=j)P (qt+1=j|qt=i)β(j, s + 1, t + 1)

+
N∑

j=1

(1− ε(j, t + 1))p(xt+1|qt+1=j)P (qt+1=j|qt=i)β(j, s, t + 1) .

E-Step: Using both the forward and backward variables, one can compute the
posterior probabilities of the hidden variables of the system, namely the pos-
terior on the state when it emits on both sequences, the posterior on the state
when it emits on sequence X only, and the posterior on transitions.
Let α1(i, s, t) be the part of α(i, s, t) when state i emits on Y at time t:

α1(i, s, t) = ε(i, t)p(xt, ys|qt=i)
N∑

j=1

P (qt=i|qt−1=j)α(j, s− 1, t− 1) (4)

and similarly, let α0(i, s, t) be the part of α(i, s, t) when state i does not emit
on Y at time t:

α0(i, s, t) = (1− ε(i, t))p(xt|qt=i)
N∑

j=1

P (qt=i|qt−1=j)α(j, s, t− 1) . (5)

Then the posterior on state i when it emits jointly on both sequences X and
Y is

P (qt=i, τt=s|τt−1=s− 1, xT
1 , yS

1 ) =
α1(i, s, t)β(i, s, t)

P (xT
1 , yS

1 )
, (6)

2 The full derivations can be found in the appendix of [5].



the posterior on state i when it emits the next observation of sequence X only
is

P (qt=i, τt=s|τt−1=s, xT
1 , yS

1 ) =
α0(i, s, t)β(i, s, t)

P (xT
1 , yS

1 )
, (7)

and the posterior on the transition between states i and j is

P (qt=i, qt−1=j|xT
1 , yS

1 ) =
P (qt=i|qt−1=j)

P (xT
1 , yS

1 )
· (8)




S∑
s=1

α(j, s− 1, t− 1)p(xt, ys|qt=i)ε(i, t)β(i, s, t)+

S∑
s=0

α(j, s, t− 1)p(xt|qt=i)(1− ε(i, t))β(i, s, t)




.

M-Step: The Maximization step is performed exactly as in normal HMMs:
when the distributions are modeled by exponential functions such as Gaussian
Mixture Models, then an exact maximization can be performed using the
posteriors. Otherwise, a Generalized EM is performed by gradient ascent,
back-propagating the posteriors through the parameters of the distributions.

3 Related Models

The present AHMM model is related to the Pair HMM model [6], which was
proposed to search for the best alignment between two DNA sequences. It was
thus designed and used mainly for discrete sequences. Moreover, the architecture
of the Pair HMM model is such that a given state is designed to always emit on
either one OR two sequences, while in the proposed AHMM model, each state
can always emit both on one or two sequences, depending on ε(i, t), which is
learned. In fact, when ε(i, t) is deterministic and solely depends on i, we can
indeed recover the Pair HMM model by slightly transforming the architecture.

It is also very similar to the asynchronous version of Input/Output HMMs [7],
which was proposed for speech recognition applications. The main di�erence dur-
ing recognition is that in AHMMs both sequences are considered as output, while
in Asynchronous IOHMMs one of the sequence (the shortest one, the output) is
conditioned on the other one (the input). The resulting Viterbi decoding algo-
rithm (used in recognition experiments) is thus di�erent since in Asynchronous
IOHMMs one of the sequence, the input, is known during decoding, which is not
the case in AHMMs.

4 Implementation Issues

The proposed algorithms (either likelihood estimation or training) have a com-
plexity of O(N2ST ) where N is the number of states (and assuming the worst
case with ergodic connectivity), S is the length of sequence Y and T is the length



of sequence X. This can become quickly intractable if both X and Y are longer
than, say, 1000 frames. It can however be shortened when a priori knowledge
is known about possible alignments between X and Y . For instance, one can
force the alignment between xt and ys to be such that |t − T

S s| < k where k
is a constant representing the maximum stretching allowed between X and Y ,
which should not depend on S nor T . In that case, the complexity (both in time
and space) becomes O(N2Tk), which is k times the usual complexity of HMM
algorithms.

In order to implement this system, we thus need to model the following
distributions:

� P (qt=i|qt−1=j): the transition distribution, as in normal HMMs;
� p(xt|qt=i): the emission distribution in the case where only X is emitted at

time t, as in normal HMMs;
� p(xt, ys|qt=i): the emission distribution in the case where both sequences are

emitted at time t. This distribution could be implemented in various forms,
depending on the assumptions made on the data:
• xt and ys are independent given state i (which is not the same as saying

that X and Y are independent of course):

p(xt, ys|qt=i) = p(xt|qt=i)p(ys|qt=i) (9)

• ys is conditioned on xt:

p(xt, ys|qt=i) = p(ys|xt, qt=i)p(xt|qt=i) (10)

• the joint probability is modeled directly, eventually forcing some common
parameters from p(xt|qt=i) and p(xt, ys|qt=i) to be shared.

In the experiments described later in the paper, we have chosen the latter
implementation, with no sharing except during initialization;

� ε(i, t) = P (τt=s|τt−1=s−1, qt=i, xt
1, y

s
1): the probability to emit on sequence

Y at time t on state i. With various assumptions, this probability could be
represented as either independent on i, independent on s, independent on xt

and ys. In the experiments described later in the paper, we have chosen the
latter implementation.

5 Experiments

Audio-visual text-dependent speaker veri�cation experiments were performed
using the M2VTS database [8], which contains 185 recordings of 37 subjects,
each containing acoustic and video signals of the subject pronouncing the French
digits from zero to nine. The video consisted of 286x360 pixel color images with
a 25 Hz frame rate, while the audio was recorded at 48 kHz using a 16 bit PCM
coding.

The audio data was down-sampled to 8khz and every 10ms a vector of 16
MFCC coe�cients and their �rst derivative, as well as the derivative of the log



energy was computed, for a total of 33 features. Each image of the video stream
(25 per seconds) was coded using 12 shape features and 12 intensity features, as
described in [9]. The �rst derivatives of these features were also computed, for a
total of 48 features.

In the following, we compared 6 di�erent models:
� an AHMM trained on both voice and face data, as explained in the paper,
� an HMM trained on the fusion of voice and face data (by up-sampling cor-

rectly the face data to obtain the same number of frames in the two streams),
� an HMM trained on the voice data only,
� an HMM trained on the face data only,
� a Gaussian Mixture Model (GMM) trained on the voice data only,
� a fusion between the GMM on voice only and the HMM on face only. The

fusion was performed using a multi-layer perceptron with the two scores as
input.

In all the cases, we used the classical speaker veri�cation technique, computing
the di�erence between the log likelihood of the data given the client model and
the log likelihood of the data given the world model (a model created with data
no coming from the target client), and accepting the access when this di�erence
was higher than a given threshold.

Although the M2VTS database is one of the largest databases of its type,
it is still relatively small to obtain statistically signi�cant results. Hence, in
order to increase the signi�cance level of the experimental results, a 4-fold cross-
validation method was used as follows: We used only 36 subjects, separated into
4 groups. For each subject, there was 5 di�erent recording sessions. We used the
�rst 2 sessions to create a client model, and the last 3 sessions to estimate the
quality of the model. For each group, we used the other 3 groups to create a
world model (using only the �rst 2 sessions per client). Moreover, for each client
in one of the other three groups, we adapted a client speci�c model (using a
simple MAP adaptation method [10]) from the world model (again using only
the �rst 2 sessions of the client). Using these client-speci�c models, we selected a
global threshold such that it yielded an Equal Error Rate (EER, when the False
Acceptance Rate, FAR, is equal to the False Rejection Rate, FRR). Finally, we
adapted (using MAP again) a client-speci�c model from the world model for each
client of the current test group and computed the Half Total Error Rate (HTER,
the average of the FAR and the FRR) on the last three accesses of each test client
using the global threshold previously found. Hence, all results presented here can
be seen as unbiased since no parameters (including the threshold) were computed
using the test accesses.

The HMM topologies were as follows: we used left-to-right HMMs for each
instance of the vocabulary, which consisted of the following 11 (french) words:
zero, un, deux trois, quatre, cinq, six, sept, huit, neuf, silence. Each model had
between 3 to 9 states including non-emitting begin and end states.

In each emitting state, there was 3 distributions: P (xt|qt), the emission distri-
bution of audio-only data, which consisted of a Gaussian mixture of 10 Gaussians
(of dimension 33), P (xt, ys|qt), the joint emission distribution of audio and video



data, which consisted also of a Gaussian mixture of 10 Gaussians (of dimension
33+48=81), and ε(i, t), the probability that the system should emit on the video
sequence, which was implemented for these experiments as a simple table (but
still trained of course).

Training of the AHMM was done using the EM algorithm described in the
paper. However, in order to keep the computational time tractable, a constraint
was imposed in the alignment between the audio and video streams: we did not
consider alignments where audio and video information were farther than 0.68
second from each other (equivalent to 17 video frames).

The GMM models used a silence removal technique based on an unsupervised
bi-Gaussian method in order to remove all non-informative frames.

In order to show the interest of robust multimodal speaker veri�cation, we
injected various levels of noise in the audio stream during test accesses (train-
ing was always done using clean audio). The noise was taken from the Noisex
database [11], and was injected in order to reach signal-to-noise ratios of 10dB,
5dB and 0dB.

Note that all the hyper-parameters of these systems, such as the number of
Gaussians in the mixtures, the number of EM iterations, or the minimum value
of the variances of the Gaussians, were not tuned using the M2VTS dataset, but
instead on the task of speech recognition using the Numbers'95 database.

Figure 1 presents the results. For each method at each level of noise injected
in the audio stream, we present the Half Total Error Rate (HTER), a measure
often used to assess the quality of a veri�cation system. As it can be seen, the
AHMM yielded better and more stable results as soon as the noise level in the
audio stream was signi�cant. For almost clean data, the performance of the
GMM using the audio stream only as well as the one of the fusion of the score
of the GMM with the score of the face HMM model were better, but quickly
deteriorated with the addition of noise.

6 Conclusion

In this paper, we proposed the use of a novel asynchronous HMM architecture for
the task of text-dependent multimodal person authentication. An EM training
algorithm was given, and speaker veri�cation experiments were performed on
a multimodal database, yielding signi�cant improvements on noisy audio data.
Various propositions were made to implement the model but only the simplest
ones were tested in this paper. Other solutions should thus be investigated soon.
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Fig. 1. HTER (the lower the better), of various systems under various noise conditions
during test (from 10 to 0 dB additive noise). The proposed model is the AHMM using
both audio and video streams.
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