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Abstract. Previous work on statistical language modeling has shown that it is possible to train
a feed-forward neural network to approximate probabilities over sequences of words, resulting in
significant error reduction when compared to standard baseline models. However, in order to
train the model on the maximum likelihood criterion, one has to make, for each example, as many
network passes as there are words in the vocabulary. We introduce adaptive importance sampling
as a way to accelerate training of the model. We show that a very significant speed-up can be
obtained on standard problems.
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1 Introduction

Statistical language modeling focuses on trying to infer the underlying distribution that generated a
sequence of words w1, . . . , wT in order to estimate P (wT

1 ) 1.
The distribution can be represented by the conditional probability of the next word given all the

previous ones:

P (wT
1 ) =

T∏
t=1

P (wt|wt−1
1 ). (1)

In order to reduce the difficulty of the modeling problem, one usually compresses the information
brought by the last words by considering only the last n− 1 words, thus yielding the approximation

P (wT
1 ) ≈

T∏
t=1

P (wt|wt−1
t−n+1). (2)

The conditional probabilities P (wt|wt−1
t−n+1) can be easily modeled by considering sub-sequences of

length n, usually referred to as windows, and computing the estimated joint probabilities P (wt
t−n+1)

and P (wt−1
t−n+1); the model’s conditional probabilities can then be computed as

P (wt|wt−1
t−n+1) =

P (wt
t−n+1)

P (wt−1
t−n+1)

. (3)

Successful traditional approaches, called n-grams, consist of simply counting the frequency of appear-
ance of the various windows of words in a training corpus i.e. the conditional probabilities are set as
P (wt|vt−1

t−n+1) = |wt
t−n+1|

|wt−1
t−n+1|

where |wj
i | is just the frequency of subsequence wj

i in the training corpus.

The main problem with these methods is that they tend to overfit as n becomes large, preventing in
practice the use of large windows. In order to smooth the models, they are usually interpolated with
lower-order n-grams in order to redistribute some of the probability mass.

1.1 Fighting the Curse of Dimensionality With Word Similarity

The problem faced by n-grams is just a special case of the curse of dimensionality. Word vocabularies
being usually large i.e. in the order of ten to hundred thousand words, modeling the joint distribution
of, say, 10 words potentially requires 1040 to 1050 free parameters. Since these models do not take
advantage of the similarity between words, they tend to redistribute probability mass too blindly,
mostly to sentences with a very low probability.

The solution, first proposed in (Bengio et al., 2003), and inspired by previous work on symbolic
representation with neural networks, such as (Hinton, 1986), is to map the words in vocabulary V
into a feature space IRm in which the notion of similarity is grasped by a distance measure on word
features. That is, to find a mapping C from the discrete word space to a continuous semantic space.
In the proposed approach, this mapping is done by simply assigning a feature vector C(w) ∈ IRm to
each word w of the vocabulary. The vectors are considered as parameters of the model and are thus
learned during training, by gradient descent.

1.2 An Energy-based Neural Network for Language Modeling

Many variants of this neural network language model exist, as presented in (Bengio et al., 2003). Here
we formalize a particular one.

The output of the neural network depends on the next word wt and the history ht = wt−1
t−n+1 as

follows. In the features layer, one maps each word wt−i in wt
t−n+1 to a lower-dimensional continuous

1In this paper, we refer to sub-sequence wi, . . . , wj as wj
i , for simplicity.
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subspace zi. In the framework we propose, the target (next) word is mapped to a different feature
space than the context (last) words.

zi = Cwt−i
, i = 1, . . . , n− 1,

z0 = Dwt ,

z = (z0, . . . , zn−1) (4)

where Cj is the j-th column of the word features matrix C of free parameters for the context words
wt−1

t−n+1 and Dj is the j-th column of the word features matrix D for the target word wt. The resulting
vector z (the concatenation of the projections zi) is the input vector for the next layer, the hidden
layer:

a = tanh(d + Wz) (5)

where d is a vector of free parameters (hidden units biases), W is a matrix of free parameters (hidden
layer weights) and a is a vector of hidden units activations. Finally the output is a scalar energy
function

E(wt, ht) = bwt
+ Vwt

· a (6)

where b is a vector of free parameters (called biases), and V (hidden to output layer weights) is a
matrix of free parameters with one column Vi per word.

To obtain the joint probability of (wt, ht), we normalize the exponentiated energy e−E(wt,ht) by
dividing it by the normalizing function Z =

∑
(w,h)∈Vn e−E(w,h):

P (wt, ht) =
e−E(wt,ht)

Z
, (7)

The normalization Z is extremely hard to compute, since it requires an exponential number of passes
i.e. computations of E(·). Luckily, we don’t need the joint probability but the conditional probability
P (wt|ht). By observing that P (ht) =

∑
w∈V P (w, ht) and plugging it and (7) in (3), the normalization

function vanishes and one obtains

P (wt|ht) =
e−E(wt,ht)

Z(ht)
, (8)

where Z(ht) =
∑

w∈V e−E(w,ht) is tractable, tough still hard to compute because |V| is usually large
and the activation E(·) is hard to compute.

The above architecture can be seen as an energy-based model, that is, a probabilistic model based
on the Boltzmann energy distribution. In an energy-based model, the probability distribution of a
random variable X over some set X is expressed as

P (X = x) =
e−E(x)

Z
(9)

where E(·) is a parametrized energy function which is low for plausible configurations of x, and high for
improbable ones, and where Z =

∑
x∈X e−E(x) (or Z =

∫
x∈X e−E(x) in the continuous case), is called

the partition function. In the case that interests us, the partition function depends of the context ht,
as seen in (8).

The main step in a gradient-based approach to train such models involves computing the gradient
of the log-likelihood log P (X = x) with respect to parameters θ. The gradient can be decomposed in
two parts: positive reinforcement for the observed value X = x and negative reinforcement for every
x′, weighted by P (X = x′), as follows (by differentiating (9)):

∇θ (− log P (x)) = ∇θ (E(x))−
∑

x′∈X
P (x′)∇θ (E(x′)) . (10)
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Clearly, the difficulty here is to compute the negative reinforcement when |X | is large (as is the case
in a language modeling application). However, as is easily seen, the negative part of the gradient is
nothing more than the average

EP [∇θ (E(X))] . (11)

In (Hinton, 2002), the author proposes to estimate this average with a sampling method known as a
Monte-Carlo Markov Chain (Gibbs sampling). Unfortunately, this technique relies on the particular
form of the energy function in the case of products of experts, which lends itself naturally to Gibbs
sampling (using the activities of the hidden units as one of the random variables, and the network
input as the other one).

2 Approximation of the Log-Likelihood Gradient by Biased
Importance Sampling

A traditional way to estimate (11) would consist of sampling n points x1, . . . , xn from the network’s
distribution P (·) and to approximate (11) by the average

1
n

n∑

i=1

∇θ (E(xi)) . (12)

This method, known as classical Monte-Carlo, yields Algorithm 1 for estimating the gradient of the
log-likelihood (10). The maximum speed-up that could be achieved with such a procedure would be
|X |/n. In the case of the language modeling application we are considering, that means a potential
for a huge speed-up, since |X | is typically in the tens of thousands and n could be quite small; in fact,
Hinton found n = 1 to be a good choice with the contrastive divergence method (Hinton, 2002).

Algorithme 1 Classical Monte-Carlo Approximation of the Gradient
∇θ (− log P (x)) ← ∇θ (E(x)) {Add positive contribution}
for k ← 1 to n do {Estimate negative contribution}

x′ ∼ P (·) {Sample negative example}
∇θ (− log P (x)) ← ∇θ (− log P (x))− 1

n∇θ (E(x′)) {Add negative contribution}
end for

However, this method requires to sample from distribution P (·), which we can’t do without having
to compute P (x) explicitly. That means we have to compute the partition function Z, which is still
hard because we have to compute E(x) for each x ∈ X .

Fortunately, in many applications, such as language modeling, we can use an alternative, proposal
distribution Q from which it is cheap to sample. In the case of language modeling, for instance, we
can use n-gram models. There exist several Monte-Carlo algorithms that can take advantage of such
a distribution to give an estimate of (11).

2.1 Classical Importance Sampling

One well-known statistical method that can make use of a proposal distribution Q in order to approx-
imate the average EP [∇θ (E(X))] is based on a simple observation. In the discrete case

EP [f(X)] =
∑

x∈X
P (x)∇θ (E(x)) =

∑

x∈X
Q(x)

P (x)
Q(x)

∇θ (E(x)) = EQ

[
P (X)
Q(X)

∇θ (E(X))
]

. (13)
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Thus, if we take m independent samples y1, . . . , yn from Q and apply classical Monte-Carlo to estimate
EQ

[
P (X)
Q(X)∇θ (E(X))

]
, we obtain the following estimator known as importance sampling:

1
m

m∑

i=1

P (yi)
Q(yi)

∇θ (E(yi)) . (14)

Clearly, that does not rule the problem out because though we don’t need to sample from P anymore,
the P (yi)’s still need to be computed, which cannot be done without explicitly computing the partition
function. Back to square one.

2.2 Biased Importance Sampling

By chance, there is a way to estimate (11) without sampling from P nor having to compute the
partition function. The proposed estimator is a biased version of classical importance sampling (Kong
et al., 1994). It can be used when P (x) can be computed explicitly up to a multiplicative constant:
in the case of energy-based models, this is clearly the case since P (x) = Z−1e−E(x). The idea is to
use 1

W w(yi) to weight the ∇θ (E(yi)), with w(x) = e−E(x)

Q(x) and W =
∑m

j=1 w(yi), thus yielding the
estimator

1
W

m∑

i=1

w(yi)∇θ (E(yi)) . (15)

Though this estimator is biased, its bias decreases as m increases. It can be shown to converge to the
true average (11) as m →∞.

The advantage of using this estimator over classical importance sampling is that we no more need
to compute the partition function: we just need to compute the energy function for the sampled
points. The procedure is summarized in Algorithm 2.

Algorithme 2 Biased Importance Sampling Approximation of the Gradient
∇θ (− log P (x)) ← ∇θ (E(x)) {Add positive contribution}
vector g ← 0
W ← 0
for k ← 1 to m do {Estimate negative contribution}

y′ ∼ Q(·) {Sample negative example}
w ← e−E(y′)

Q(y′)
g ← g + w∇θ (E(y′))
W ← W + w

end for
∇θ (− log P (x)) ← ∇θ (− log P (x))− 1

W g {Add negative contributions}

3 Adapting the Sample Size

Preliminary experiments with Algorithm 2 using the unigram distribution showed that whereas a
small sample size was appropriate in the initial training epochs, a larger sample size was necessary
later to avoid divergence (increases in training error). This may be explained by a too large bias –
because the network’s distribution diverges from that of the unigram, as training progresses – and/or
by a too large variance in the gradient estimator.

In (Bengio and Senécal, 2003), we presented an improved version of Algorithm 2 that makes use
of a diagnostic, called effective sample size (Kong, 1992; Kong et al., 1994). For a sample y1, . . . , ym
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taken from proposal distribution Q, the effective sample size is given by

ESS =
(
∑m

j=1 w(yi))2∑m
j=1 w2(yj)

. (16)

Basically, this measure approximates the number of samples from the target distribution P that would
have yielded, with classical Monte-Carlo, the same variance as that yielded by the biased importance
sampling estimator with sample y1, . . . , ym.

We can use this measure to diagnose whether we have sampled enough points. In order to do that,
we fix a baseline sample size n. This baseline is the number of samples we would sample in a classical
Monte-Carlo scheme, were we able to do it. We then sample points from Q by “blocks” of size mb ≥ 1
until the effective sample size becomes larger that target n. If the number of samples becomes too
large, we switch back to a full back-propagation (i.e. we compute the true negative gradient).

4 Adapting the Proposal Distribution

The method was used with a simple unigram proposal distribution to yield significant speed-up on
the Brown corpus (Bengio and Senécal, 2003). However, the required number of samples was found
to increase quite drastically as training progresses. This is because the unigram distribution stays
fix while the network’s distribution changes over time and becomes more and more complex, thus
diverging from the unigram. Switching to a bigram or trigram during training actually worsens even
more the training, requiring even larger samples.

Clearly, using a proposal distribution that stays “close” to the target distribution would yield even
greater speed-ups, as we would need less samples to approximate the gradient. We propose to use a
n-gram model that is adapted during training to fit to the target (neural network) distribution P 2 In
order to do that, we propose to redistribute the probability mass of the sampled points in the n-gram
to track P .

Let us consider the following adaptive n-gram:

Q(wt|ht) =
n∑

k=1

αk(ht)Qk(wt|wt−1
t−k+1) (17)

where the Qk are the sub-models and αk(ht) is a mixture function such that
∑n

k=1 αk(ht) = 1 3.
Let W be the set of m words sampled from Q. Let q̄k =

∑
w∈W Qk(w|wt−1

t−k+1) be the total
probability mass of the sampled points in k-gram Qk and p̄ =

∑
w∈W e−E(w,ht) the unnormalized

probability mass of these points in P . Let P̃ (w|ht) = e−E(w,ht)

p̄ for each w ∈ W. For each k and for
each w ∈ W, the values in Qk are updated as follows:

Qk(w|wt−1
t−k+1) ← (1− λ)Qk(w|wt−1

t−k+1) + λq̄kP̃ (w|ht)

where λ is a kind of “learning rate”. The parameters of function α(·) are updated so as to minimize
the Kullback-Leibler divergence

∑
w∈W P̃ (w|ht) log P̃ (w|ht)

Q(w|ht)
by gradient descent. We describe here

the method we used to train the α’s in the case of a bigram interpolated with a unigram. In our
experiments, the α’s were a function of the frequency of the last word wt−1. The words were first
clustered in C frequency bins Bc, c = 1, . . . , C such that ∀i, j ∑

w∈Bi
|w| ≈ ∑

w∈Bj
|w|. Then, an

“energy” value a(c) was assigned for c = 1, . . . , C. We set α1(ht) = σ(a(ht)) and α2(ht) = 1− α1(ht)

2A similar approach was proposed in (Cheng and Druzdzel, 2000) for Bayesian networks.
3Usually, for obvious reasons of memory constraints, the probabilities given by a n-gram will be non-null only for

those sequences that were observed in the training set. Mixing with lower-order models allows to give some probability
mass to unseen word sequences.
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Figure 1: Comparison of errors between a model trained with the classical algorithm and a model
trained by adaptive importance sampling.

where σ is the sigmoid function and a(ht) = a(wt−1) = a(c), c being the class (bin) of wt−1. The
energy a(ht) is thus updated with the following rule:

a(ht) ← a(ht)− α(ht)(1− α(ht))
∑

w∈W
P̃ (w|ht)

Q(w|ht)
Q2(w|wt−1)−Q1(w)

.

5 Experimental Results

We ran some experiments on the Brown corpus, with different configurations. The Brown corpus
consists of 1,181,041 words from various American English documents. The corpus was divided in
train (800K words), validation (200K words) and test (the remaining ≈ 180K words) sets. The
vocabulary was truncated by mapping all “rare” words (words that appear 3 times or less in the
corpus) into a single special word. The resulting vocabulary contains 14,847 words.

On this dataset, a simple interpolated trigram, serving as our baseline, achieves a perplexity of
253.8 on the test set 4.

In all settings, we used 30 word features for both context and target words, and 80 hidden neurons.
The number of context words was 3. This setting is the same as that of the neural network that
achieved the best results on Brown, as described in (Bengio et al., 2003). In this setting, a classical
neural network – one that doesn’t make a sampling approximation of the gradient – converges to a
perplexity of 204 in test, after 18 training epochs.

Figure 1(a) plots the training error at every epoch for the network trained without sampling and
a network trained by importance sampling, using an adaptive bigram with a target effective sample
size of 50. The number of frequency bins used for the mixing variables was 10. It shows that the
convergence of both network is similar. The same holds for validation and test errors, as is shown in
figure 1(b). In this figure, the errors are plotted wrt computation time on a Pentium 4 2 GHz. As can
be seen, the network trained with the sampling approximation converges before the network trained
classically even finishes to complete one full epoch.

Quite interestingly, the network trained by sampling converges to an even lower perplexity than
the classical one. After 9 epochs (26 hours), it’s perplexity over the test set is equivalent to that of
the other at its overfitting point (18 epochs, 113 days). The sampling approximation thus allowed a
100-fold speed-up.

4Better results can be achieved with a Knesser-Ney back-off trigram, but it has been shown in (Bengio et al.,
2003) that a neural network still converges to a lower perplexity on Brown. Furthermore, the neural network can be
interpolated with the trigram for even bigger perplexity reductions.
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Surprisingly enough, if we let the sampling-trained model converge, it starts to overfit at epoch
18 – as for classical training – but with a lower test perplexity of 196.6, a 3.8% improvement. Total
improvement in test perplexity wrt the trigram baseline is 29%.

Apart from the speed-up, the other interesting thing if we compare the results with those obtained
by using a non-adaptive proposal distribution (Bengio and Senécal, 2003) is that the mean number
of samples required in order to ensure convergence seems to grow almost linearly with time, whereas
the required number of samples with the non-adaptive unigram was growing exponentially.

6 Future Work

Previous work (Bengio et al., 2003) used a parallel implementation in order to speed-up training and
testing. Although our sampling algorithm works very well on a single machine, we had much trouble
making an efficient parallel implementation of it. The reason is that the parallelization has to be
done on the hidden layer; thus for each back-propagation, we have to accumulate the gradient wrt the
feature parameters (the zi’s) for each processor and then share the gradients. The process of sharing
the gradient necessitates huge resources in terms of data transmission, which we have found to take
up to 60% of the back-propagation time. One way to deal with the problem is to desynchronize the
sharing of the parameters on the feature vectors i.e. allowing the computations to continue while the
messages are transmitted. Since the changes in the feature vectors are quite small, this should not
affect convergence.

The other problem we face is that of choosing the target effective sample size. Currently, we
have to choose it conservatively enough to guarantee convergence. In fact, we could achieve the same
convergence by adapting it to the gradient’s variance: as training progresses, the gradient is likely
to become noisier, thus necessitating a bigger number of samples for even the classical Monte-Carlo
estimate to yield a good approximation. We could same even more computations by targeting a
smaller effective sample size at the start of training and increasing it after.

7 Conclusion

In this paper, we proposed a simple method to efficiently train a probabilistic energy-based neural
network. Though the application was to language modeling with a neural network, the method could
in fact be used to train arbitrary energy-based models as well.

The method is based on the idea that the gradient of the log-likelihood can be decomposed in
two parts: positive and negative contributions. The negative contribution is usually hard to compute
because it involves a number of passes through the network equivalent to the size of the vocabulary.
Luckily, it can be estimated efficiently by importance sampling.

We had already argued for such a method in (Bengio and Senécal, 2003), achieving a significant
19-fold speed-up on a standard problem (Brown). Our new contribution is to adapt the proposal
distribution as training progresses so that it stays as close as possible to the network’s distribution.
We have showed that it is possible to do it efficiently by reusing the sampled words to re-weight
the probabilities given by a n-gram. With the new method, we were able to achieve an even more
significant 100-fold speed-up on the same problem. Analysis of the required sample size through time
also suggest that the algorithm will scale with more difficult problems, since the mean sample size is
proportional to the number of epochs.
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