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Abstract. We compare two classifier approaches, namely classifiers based on Multi Layer Perceptrons
(MLPs) and Gaussian Mixture Models (GMMs), for use in a face verification system. The comparison
is carried out in terms of performance, robustness and practicability. Apart from structural differences,
the two approaches use different training criteria; the MLP approach uses a discriminative criterion, while
the GMM approach uses a combination of Maximum Likelihood (ML) and Maximum a Posteriori (MAP)
criteria. Experiments on the XM2VTS database show that for low resolution faces the MLP approach has
slightly lower error rates than the GMM approach; however, the GMM approach easily outperforms the
MLP approach for high resolution faces and is significantly more robust to imperfectly located faces. The
experiments also show that the computational requirements of the GMM approach can be significantly smaller
than the MLP approach at a cost of small loss of performance.
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1 Introduction

Identity verification has many real-life applications ranging from access control, transaction authentication (e.g.
in telephone banking or remote credit card purchases), to voice mail and secure teleworking.

The goal of anautomatic identity verification system is to either accept or reject the identity claimed by
a given person. Biometric identity verification systems are based on the characteristics of a person, such as
their face, fingerprints or signature [16]. Identity verification using face information is an active research area
mainly because of its non-intrusive interaction with the users.

The problem of face verification has been addressed by many researchers proposing many different
methods. The aim of this paper is not to propose new approaches for face verification, but rather to present a
comparison of two popular classification approaches: Multi-Layer Perceptrons (MLPs) and Gaussian Mixture
Model (GMMs). In order to obtain comparative results the same feature extraction technique is utilized for
both MLP and GMM approaches. The experiments are carried out using faces from the XM2VTS database
[9]. To compare the robustness of both approaches, we perform the experiments using two different face image
sizes and with manually & automatically located faces.

The rest of this paper is structured as follows. In Section 2 we introduce the reader to the specific problem
of face verification. In Section 3 we present a facial feature extraction approach which is suitable for both
MLP and GMM based systems. The MLP and GMM classifiers are described in Sections 4 and 5, respectively.
Section 6 is devoted to experiments evaluating the two approaches. We analyze the results and draw conclusions
in Section 7.

To keep consistency with traditional matrix notation, image sizes are described using the rows first, followed
by the columns.

2 Face Verification

An identity verification system has to discriminate between two kinds of events: either the person claiming a
given identity is the true claimant (a client) or the person is an impostor.

Generally speaking, a full face verification system can be thought of as being composed of several stages:
image acquisition, image processing (e.g., apply filtering algorithms to reduce the noise),face detection and
finally face verification itself, which usually consists of feature extraction followed by classification.

In many face verification studies it is often assumed that the detection step has been performed perfectly,
however, this is not realistic. In this study, results are given for perfect detection as well as in more realistic
conditions, i.e., using an automatic face detector.

3 Feature Extraction

In DCT-mod2 feature extraction [14] a given face image1 is analyzed on a block by block basis; each block is
� �� (here we use� � �) and overlaps neighboring blocks by 50%. Each block is decomposed in terms of
2D Discrete Cosine Transform (DCT) basis functions [7]. A feature vector for each block is then constructed
as:

�� �
�
���� �

��� �
��� �

��� �
��� �

��� �� �� ��� ����
��

(1)

where�� represents the�-th DCT coefficient, while���� and���� represent the horizontal and vertical
delta coefficients respectively, and are computed using DCT coefficients extracted from neighboring blocks.
Compared to traditional DCT feature extraction [4], the first three DCT coefficients are replaced by their

1We use two image sizes:��� �� and��� �� (rows� columns)
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respective horizontal and vertical deltas in order to reduce the effects of illumination direction changes. In
this study we use�=15 (choice based on [14]), resulting in an�� dimensional feature vector for each block.

SinceDCT-mod2 feature extraction for a given block is only possible when the block has vertical and
horizontal neighbours, processing an image which has� rows and� columns results in�� �

�
� ��� ���

�
� ��

feature vectors; thus for a�	� �� image, there are
� � � �� vectors.
For the MLP approach, allDCT-mod2 feature vectors are concatenated to form a composite feature vector,

having a dimensionality of��� �� � ��	 for a�	� �� image.

4 MLP Based Classifier

A Multi-Layer Perceptron (MLP) is a particular architecture of Artificial Neural Networks [15]. We will assume
that we have access to a training dataset of	 pairs����
 ��� where��� is a vector containing the pattern, while��
is the class of the corresponding pattern. For a 2-class task,� � can be coded as
� and��.

An MLP is composed of layers of non-linear but differentiable parametric functions. Here we use a MLP
with one hidden layer; the hidden and output layers have������� transfer functions.

An MLP can be trained by gradient descent using the back-propagation algorithm [15] to optimize any
derivable criterion, such as the Mean Squared Error. Here, an MLP is trained (for each client) to classify an
input to be either the given client or an impostor. The input of the MLP is a vector corresponding to the features
extracted from the face image. The output of the MLP is either 1 (if the input corresponds to a client) or -1
(if the input corresponds to an impostor). The MLP is trained using both client images and impostor images
(impostor images are taken to be the images corresponding to other available clients); thus the MLP uses a
discriminative training approach.

The decision to accept or reject a client access depends on the score (��) obtained by the MLP corresponding
to the claimed identity; using a threshold� (chosen on a separate validation set), the client is accepted (classified
as a true claimant) when�� � �, and rejected (classified as an impostor) when�� 
 �.

5 GMM Based Classifier

Given a claim for person� ’s identity and a set of feature vectors� � ��� ��
��
��� supporting the claim, the

average log likelihood of the claimant being the true claimant is calculated using:

��� ��	� �
�

�


���
���

��� �������	� (2)

where ������� �

���
���

�� � ���� ��� 
��� (3)

� � ��� 
 ��� 
���
��
��� (4)

Here,� ���� ��
�� is a�-dimensional Gaussian function with mean�� and diagonal covariance matrix�:
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�
(5)

�	 is the parameter set for person�,�� is the number of Gaussians and�� is the weight for Gaussian� (with
constraints

���
����� � � and	 � � �� � 	).

Given the average log likelihood of the claimant being an impostor,��� ��
	
�, an opinion on the claim is

found using:
���� � ��� ��	����� ��

	
� (6)
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The verification decision is reached as follows: given a threshold�, the claim is accepted when���� � � and
rejected when���� 
 �.

5.1 Model Training

Given a set of training vectors,� � �����
��
��� (which may come from several images), the GMM parameters (�)

for each client model are found by adapting a Universal Background Model (UBM) using a form ofmaximum a
posteriori (MAP) adaptation [6, 11]. The UBM is trained with the Expectation Maximization (EM) algorithm
[2, 3] using training data from all clients.

Since the UBM is a good representation of many clients, it is also used to find the likelihood of the claimant
being an impostor, i.e.:

��� ��
	
� � ��� ��UBM� (7)

6 Comparison

In this section, we present an experimental comparison between face verification using MLPs and GMMs. This
comparison has been done using the multi-modal XM2VTS database and its associated experimental protocol
[9]. The MLP and GMM classifiers were implemented using the Torch library [1].

6.1 Database and Protocol

The XM2VTS database contains synchronized video and speech data from 295 subjects, recorded during four
sessions taken at one month intervals.

The database is divided into three sets: a training set, an evaluation set and a test set. The training set was
used to build client models, while the evaluation set was used to compute the decision thresholds (as well as
other hyper-parameters) used in the MLP and GMM approaches. Finally, the test set was used to estimate the
performance.

The 295 subjects were divided into a set of 200 clients, 25 evaluation impostors and 70 test impostors.
Using Configuration I of the experimental protocol lead to the following setup:


 Training client accesses:�


 Evaluation client accesses:�		


 Evaluation impostor accesses:�	
 			 (��� �� �		)


 Test client accesses:�		 (�		� �)


 Test impostor accesses:���
 			 (
	� �� �		)

A verification system can make two types of errors: afalse acceptance (FA), when the system accepts an
impostor, and afalse rejection (FR), when the system rejects atrue client. The performance of the system is
often measured in terms of these two errors, as follows:

FAR �
number of FAs

number of impostor accesses
� �		� (8)

FRR�
number of FRs

number of client accesses
� �		� (9)

Since in real life the decision threshold has to be chosena priori, it is selected to obtain Equal Error Rate
(EER) performance (where FAR=FRR) on the validation set; it is then used on the test set to obtain the final
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performance figure. In order to combine FAR and FRR into one number, Half Total Error Rate (HTER) can be
used:

HTER�
FAR
 FRR

�
(10)

6.2 Experiment Setup

For each client model, the training set is composed of a client training set (3 images) and an impostor training
set. Each image was normalized in size via an affine transformation [7]; the normalized interocular distance
was selected so that a face window with a resolution of 80�64 (or 40�32) contained the face area from the
eyebrows to the mouth; moreover, the location of the eyes was the same in each face window.

Since there is not enough face images in the training set to adequately train each MLP, the training set was
artificially extended (as done in comparable studies [8]). For fair comparison purposes, the same extended
training set was also used to train the client models in the GMM approach (theoretically, the GMM approach
does not require the extended training set - see also Section 6.4).

The client training set was enlarged by shifting (8 directions and 4 pixel shifts), scaling (2 scales) and
mirroring each original face window. Hence the training set for each person contains�� � ��	 face windows,
where� � ���, i.e. the number of shifted & scaled face patterns and their mirrored versions. Here,
� � number of shifts� � 
 � is the total number of shifts, in� directions, including the original face window;
� � number of scales� � 
 � is the total number of scales, in� directions (down-scaling and up-scaling),
including the original size. Each MLP was also trained using a set of pseudo-impostors composed of the other
��� clients and their mirrored images; thus the pseudo-impostor training set contained���� �� � � ����

patterns.

For the GMM approach, the UBM was trained using all client training set and their mirrored images; Client
models were derived from the UBM using the extended client training set.

In order to find the optimal capacity of the models, we used the evaluation set to select the size of the model
(number of Gaussians for the GMM approach and number of hidden units for the MLP approach) as well as
other hyper-parameters such as the variance floor for the UBM and the learning rate for the MLP approach.

For each value of the hyper-parameter to tune, we trained the client models using the extended training set.
We then selected the value of the hyper-parameter that optimized the EER on the evaluation set. Finally, we
tested the models using these hyper-parameters on the test set.

6.3 Experiments

In the first experiment we compared the performance of the two approaches with face windows extracted
using manually located eye coordinates; the face windows had a resolution of 80�64. The values of the
hyper-parameters are as follows: 512 Gaussians for GMMs approach and��� hidden units in MLP approach.
The Detection Error Tradeoff (DET) curves [10] of the two approaches are shown in Figure 1.

The second experiment was similar to the first; here the face windows had a resolution of 40�32. The
values of the hyper-parameters are as follows: 512 Gaussians for the GMM approach and�� hidden units in
MLP approach. The DET curves are shown in Figure 2.

Experiments 3 and 4 were similar to 1 and 2, respectively; here, the eye locations were found using a simple
face detector [13]. The same values of the hyper-parameters were used as found for face windows extracted
using manually located eye coordinates. The DET curves are shown in Figure 3 for 80�64 faces and in Figure 4
for 40�32 faces.

The corresponding FAR, FRR and HTER for all experiments are given in Tables 1 and 2. The computation
times to train and test all 200 clients are given in Table 3.
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Figure 1: DET curves for manually located
80�64 faces
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Figure 2: DET curves for manually located
40�32 faces
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Figure 3: DET curves forautomatically located
80�64 faces

0.1
0.2

0.5

1

2

5

10

20

40

0.10.2 0.5 1 2 5 10 20 40

F
R

 [%
]

FA [%]

DET curve

 GMM
 MLP

Figure 4: DET curves forautomatically located
40�32 faces

Model type (face size) FAR FRR HTER

GMM (80�64) 1.69 2.25 1.97
MLP (80�64) 4.44 8.00 6.22
GMM (40�32) 4.84 2.50 3.67
MLP (40�32) 3.22 3.50 3.36

Table 1. Performance of MLP and GMM
approaches usingmanually located faces

Model type (face size) FAR FRR HTER

GMM (80�64) 2.15 2.75 2.45
MLP (80�64) 11.55 11.25 11.40
GMM (40�32) 5.92 4.75 5.33
MLP (40�32) 7.98 9.75 8.86

Table 2. Performance of MLP and GMM
approaches usingautomatically located faces
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Model type (face size) Time

GMM (80�64) 2710
MLP (80�64) 2252
GMM (40�32) 386
MLP (40�32) 162

Table 3. Time taken (minutes) to train
(using extended training set) and test
200 clients (Pentium IV, 1.6 GHz)

Data (face size) FAR FRR HTER Time

Ext. (80�64) 1.69 2.25 1.97 2710
Orig. (80�64) 2.80 2.25 2.53 80
Ext. (40�32) 4.84 2.50 3.67 386
Orig. (40�32) 8.25 5.75 7.00 3

Table 4. Performance of the GMM approach using
extended and original training sets (manually located
faces)

6.4 Experiments Using Only the Original Training Set

In order to provide a fair comparison with the MLP approach, in Section 6.3 we used an artificially extended
training set for the GMM approach. Since training by MAP adaptation (in the GMM approach) is less sensitive
to small amounts of training data than training by back-propagation (in the MLP approach), we have evaluated
the performance of the GMM approach when the client models were trained using only the original training
set.

The DET curves comparing performance for the extended and the original training sets are shown
in Figures 5 and 6 for 80�64 and 40�32 faces, respectively (the eye positions were located manually).
The corresponding FAR, FRR, HTER and computation times are given in Table 4. The values of the
hyper-parameters are as follows: 512 Gaussians for 80�64 face windows and 64 Gaussians for 40�32 face
windows.
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Figure 5: Performance of GMM approach for 80�64
faces (manually located), using original and extended
training sets
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faces (manually located), using original and extended
training sets
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7 Discussion and Conclusions

Assuming perfect face localisation (where the eye coordinates are manually located), the results show
(Figures 1 & 2) that the GMM approach (using face windows with a resolution of 80�64) obtains the lowest
error rates. Both MLP and GMM approaches obtain worse results for 40�32 face windows, with the MLP
approach obtaining slightly lower error rates than the GMM approach (which can be explained by discriminant
training of MLPs). For the 80�64 face windows, the GMM approach easily outperforms the MLP approach;
one possible explanation of this result is that for this face size, the generalization performance of the MLP
approach is limited by the number of available training patterns. Due to the large dimensionality of the feature
vectors used in the MLP approach, a much larger number of training patterns is required to adequately train
each MLP.

Using automatic face localisation (Figures 3 & 4), the GMM approach outperforms the MLP approach for
both image sizes. Moreover, when comparing the error rates for manually and automatically located faces
(Tables 1 & 2), the HTER for the GMM approach increases from���
 to only ���� for the larger image size
and from���
 to only ���� for the smaller image size, whereas the HTER for the MLP approach increases
from ���� to ����	 for the larger image size and from���� to ���� for the smaller image size. These results
thus suggest that the GMM approach is significantly more robust than the MLP approach to imperfect face
localisation.

The above difference can be explained as follows. For the MLP approach theDCT-mod2 feature vectors
extracted from a face window are concatenated to form one large feature vector, thus preserving the location of
face characteristics (e.g. eyes and nose); large translations of the face window significantly alter the location of
the characteristics in the large feature vector, causing a mismatch between training and test data, which in turn
leads to worse performance. In the GMM approach, the location of face characteristics is lost, thus translations
of the face window have only minor contribution to the average log likelihood [see Eqn. (2)].

From a real-life application point of view, we note that in the MLP approach each MLP is trained to
discriminate between one client and all others clients (pseudo-impostors); if a new client is to be added to the
database, the MLP approach requires the pseudo-impostor training data to be present. This is in contrast to
the GMM approach, where a new client model is created simply by adapting the UBM, using only the client
training data; the UBM can be supplied in a pre-trained form (for example, on a very large data set). We also
note that the performance and robustness advantages of the GMM approach come at a similar computational
cost to the MLP approach (see Table 3).

Using only the original training set for training the GMM client models results in a small performance
decrease for both window sizes (Table 4); however, for 80�64 faces the performance is still better than the
MLP approach. Moreover, the computational cost is significantly reduced: it is over 30 times less for 80�64
faces and over 100 times less for 40�32 faces.
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