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Abstract. Recently we have proposed an approach for user-customized password speaker veri-
fication; in this approach, we combined a hybrid HMM/ANN model (used for utterance verifica-
tion) and a GMM model (used for speaker verification). In this paper, we extend our investiga-
tions. First, we propose a new similarity measure that uses confidence measures developed in the
HMM/ANN framework. Secondly, we analyze the contribution of each model using a weighted
sum combination technique. Experiments conducted on a subset of the PolyVar database show
that for a short password the performance of the combined system did not improve significantly
compared to the performance using the GMM model alone, and that the HMM/ANN did not
contribute much in the combined system. We discuss possible reasons for this.
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1 Introduction

This paper addresses the problem of the User-Customized Password Speaker Verification (SV-UCP)
where the user has the possibility to chose his/her password from an unconstrained vocabulary. This
rises some difficulties. First, we have to infer the hidden Markov model of the password. Second, we
have to create (or adapt) a speaker dependent model which captures/models both the lexical content
of the password and the speaker characteristics using a small amount of enrollment data.

Recently [1], we have proposed an approach that combined the hybrid HMM/ANN [2] and
GMM [3] models in the same statistical framework. In the HMM/ANN model, the artificial neu-
ral network (ANN) is used to estimate the emission posterior probabilities of the inferred Hidden
Markov Model (HMM). The advantages of the hybrid HMM/ANN system is that the estimated pos-
terior probabilities can be used to derive some confidence measure to tell us how well the pronounced
utterance matches a word model [4, 5]. The GMM model is used as usually done in text-independent
speaker verification to model the characteristics of the speaker. We have shown [1] that the adapted
speaker-dependent ANN with its associated maximum a posteriori probability mainly modeled the
lexical content of the password. To accept a speaker, we have used the following decision rule:

P(Mg, Sk|X) > P(M, S|X) (1)

where P(Mj, Si|X) is the joint posterior probability that the correct speaker pronounced the correct
password and P(M,S|X) is the joint posterior probability that any speaker pronounced any text.
By developing (1) and using Bayes rule with assumptions that all speakers have the same a priori
probability and P(M|S,X) = 1%, the final decision was rewritten as follows:

P(X|Sk
[P(My]Sk, X)] [;T'f;))] > A @)
where A is the threshold.

In this paper, we extend our investigation by processing separately impostors pronouncing the
correct password of the claimant and impostors pronouncing the wrong password. Usually, we make
a utterance verification step, so, if the pronounced utterance matches the password model of the
claimant then we verify the identity of the speaker. In this work, we have used a weighted sum
combination technique to combine the utterance verification and the speaker verification scores. We
also investigated and analyzed the contribution of each model (HMM/ANN and GMM) to the final
decision.

2 Decision rule

In SV-UCP, speaker S pronouncing the word M and claiming the identity of the user S}, is accepted
if:
P(My, Si|X) > P(My, Sg|X) (3)
P(My, Sk|X) > P(My, S|X) (4)
where P(M;, ,EHX ) is the joint posterior probability that an impostor pronounced the correct pass-
word and P(Myp,S|X) is the joint posterior probability that any speaker (client or impostor) pro-
nounced any other password (text).

Developing these two Equations and using Bayes rule with the assumption that all speakers have
the same a priori probability, decision rules (3) and (4) can be rewritten as follows:

{P(MME/@,X)} |:P(X|§k):| S A
P(My|Sk, X) ] LP(X|Sk)] ~

(5)

IWhich is true if we use Baum-Welch algorithm instead of Viterbi decoding without taking into account the transition
probabilities.
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[P(Mk|5k,X)] |:P(X|Sk)
P(TL|S, X) | | P(X]3)

where A; and As are the thresholds.

In these Equations, there are two kinds of scores. The likelihood ratio scores used for speaker
verification and the posterior probability scores used for uiterance verification. The likelihood ratios
are estimated as usually done in text-independent speaker verification. The model used to estimate
the denominator (referred to as world model) has a discriminative role: it discriminates between true
speakers and impostors.

The posterior probabilities are estimated through a neural network, which is trained (or adapted) in
a discriminative way (unlike the maximum likelihood). It has been found (for speech recognition) that
these posterior probabilities are equivalent to the likelihood ratio used for utterance verification [6].
So, taking the ratio of two posterior probabilities estimated by two different neural network is not
useful. So, all the posterior probabilities in (5) and (6) should be estimated using the same neural
network (the adapted speaker dependent neural network in occurrence). This yields the following
simplifications:

} > A, (6)

P(My|Sk, X)
and
P(My|Sk, X pgglTn)
_— 8
(Mk|57 X H qbest|xn) ( )

where N is the length of the utterance X. Assuming that the transition probabilities are equal?,
% represents the posterior probability of being in the decoded (according to the forced Viterbi
alignment) state g at time n given the frame z,, divided by the best posterior probability of that frame
at the time n. This Confidence Measure (CM) which is called Relative Posterior Confidence Measure
(RPCM) [5], tells us how close the score of the decoded word is compared to the best acoustic score
of the utterance. If a word is correctly recognized 2, this RPCM will be equal to 1. Substituting (7)
and (8) into (5) and (6) respectively, and taking the logarithm, decision rules (5) and (6) can be
rewritten as follows:

log P(X1S) ~ log P(X[T0) > )
Zlog | JLI) ] + fog P(x]50) ~ 108 P(X1S) 2 & (10)

As explained in the introduction, a weighted sum combination technique is used. If we refer to the
scores in (9) and (10) as s; and sz respectively, the combined score can be written as follows:

Secom = as1 + (1 — a)so (11)

In this work, we have represented S and Sy by the same model. By expending Equation (11), we
obtain the following decision rule to accept a speaker:

qbest|x”)

(Zlog { ( P4 [on) }) + [log P(X|Sk) +log P(X|Sk)] >0 (12)

The parameter a (0 < « < 1) indicates how much the contribution of the posterior probability
score (related to the utterance verification) is in the final decision. As we can see, the weight of the
likelihood ratio (related to the speaker verification) is equal to 1, indicating the importance of the

2Which is generally the case in HMM/ANN speech recognition systems.
3Which means that the decoded phone at each time has the best local posterior probability, even if it is not high.



4 IDIAP-RR 02-45

GMM score in the final decision. In this paper, we compare the use of RPCM criterion to estimate
the confidence measure of the utterance verification with the Standard Posterior Confidence measure
(SPCM) criterion where (Zgil log [pp(q’“&]) is replaced by (Zgil logp(q}:|:rn)).

(a7 ot 1n)

3 Databases and Experiment setup

Two databases were used in this work. The Swiss French PolyPhone database [7], was used to
train different speaker -independent speech recognizers. The speaker verification experiments were
conducted using the PolyVar database [7]. This database comprises telephone recordings from 143
speakers, each speaker recording between 1 and 229 sessions. FEach session consists of one repetition
of the same set of 17 words common for all speakers. This set of words was divided into two subset
datal and data2 with 14 and 3 words respectively. A set of 38 speakers (24 males and 14 female)
who have more than 26 sessions were selected. For each of these speakers, the first 5 utterances
(corresponding to the first 5 sessions) of the same word in datal are used as training data, between
18 and 22 utterances of the same word were used as client accesses with the correct password. Each
speaker has a subset of 19 speakers as an impostors. Two accesses with the correct word from each
impostor and, three accesses with wrong password (form data2) for each speaker (client or impostor)
were added to the test accesses.

For acoustic features, two kinds of features were used: 12 RASTA-PLP coefficients with their first
temporal derivatives as well as the first and second derivative of the log energy were calculated every
10 ms over 30 ms window, resulting in 26 coefficients. These coefficients, which are more suitable
for speech recognition, were used to train a speaker-independent Multi-layer perceptron which is used
for HMM inference. In order to keep the characteristics of the user, MFCCs were used for speaker
adaptation. 12 coefficients with energy complemented by their first and second derivatives were
calculated every 10 ms over 30 ms window, resulting in 26 coefficients.

4 The Approach

As we have seen, there are two problems that we have to solve: the HMM inference and the speaker
adaptation. In this section, we will describe briefly our approach. More details can be found in [1].

4.1 HMM Inference

We match (using Viterbi alignment) each of the enrollment utterances with an ergodic HMM model
using local posterior probabilities estimated by a large Speaker-Independent Multi-Layer Perceptron
(SI-MLP). This SI-MLP is trained on PolyPhone database with RASTA-PLP. We then chose from
the inferred phonetic transcriptions the one with the highest normalized posterior probability to build
the user HMM model M, as explained in [1].

4.2 Speaker adaptation

Two models were adapted for each new speaker:

4.2.1 GMM adaptation

The GMM adaptation consisted of adapting the mean of Gaussians of a speaker independent GMM
model (referred to as “world model”) with 120 diagonal covariance Gaussians. The world model
is trained on PolyPhone database with MFCC coefficients. The adaptation is performed using a
simplified version of MAP (maximum a posteriori) adaptation algorithm [3].
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4.2.2 Neural network adaptation

As the amount of adaptation data is very limited, the neural network adaptation consisted of adjusting
the weights of a small Speaker-Independent Single-Layer Perceptron (SI-SLP) in a supervised man-
ner. This SI-SLP is trained on PolyPhone database with MFCC coefficients. The segmentation was
obtained by matching each of the enrollment utterances on the inferred HMM model M}, using local
posterior probabilities estimated by the SI-MLP. One difficulty is that the adaptation data contains
a small number of phonemes (those constituting the user HMM model M}). During adaptation, the
neural network will be biased to the outputs belonging to those phonemes, and may destroyed the
performance on the other outputs and thus on the other words. To alleviate this problem, we added
some examples (from PolyPhone) of phonemes that did not appear in the segmentation. The number
of the added examples for each phoneme is equal to the average number of examples per phoneme in
the segmentation.

5 Experiments and Results

All experiments reported here were conducted using the Torch library*. To compensate the differ-
ence in the dynamic range and to make the scores (posterior probability and likelihood ratio) more
mathematically convenient, we mapped them to the [0,1] interval using sigmoid function [8, 9]. A
speaker-independent threshold was set a posteriori to equalize the probability of false acceptance rate
(FAR) and false rejection rate (FRR). For comparison purposes, results with the a priori knowledge
of the correct phonetic transcription of the password are also reported.

5.1 Results

Figure 1 shows the variations of the equal error rate (EER) as a function of @ and Table 1 gives the
performance of each system using the corresponding optimal value of a. It can be observed that:

s2b ~- INF-SPCM |
~¢ INF-RPCM

aa} —e— COR-SPCM |
-v- COR-RPCM

o} 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

The combined parameter a

Figure 1: EER variations as a function of the combined parameter a: INF (respectively COR) for
systems with the inferred (respectively the correct) phonetic transcription. SPCM (respectively RPCM)
for systems using the SPCM (respectively RPCM) criterion to estimate the HUM/ANN score.

e All systems perform comparably and the RPCM criterion does not improve the result compared
to SPCM.

e The value of « in systems with the inferred phonetic transcription is very small (0.2 and 0.3),
indicating that the HMM/ANN score did not contribute much in the combined score. While in
systems with the correct phonetic transcription, this value is higher (0.5 and 0.4) but still small.

4http://www.Torch.ch



6 IDIAP-RR 02-45

| [ INF-SPCM | INF-RPCM | COR-SPCM | COR-RPCM |

a 0.3 0.2 0.5 0.4
EER 3.51% 3.56% 3.45% 3.46%

Table 1: The performance of different systems with optimal c.

e Compared to a GMM only approach (Equation (12) with a = 0, the corresponding EER is equal
to 3.57%), the combined system shows no significant improvement in performance

e In Equation (12), if we chose SPCM instead of RPCM criterion and we put a = 1, we will get
the decision rule that has been used in [1]. The corresponding EER is equal to 3.72%, which is
a little worse compared to the optimal EER.

5.2 Analysis and discussion of the results

The distribution (after mapping) of the HMM/ANN scores against the GMM scores for the system
with the inferred phonetic transcription and the SPCM criterion (INF-SPCM) is shown in Figure 2.
To make the Figure clear, we did not plot the distribution of impostors accesses with wrong passwords,
since, we have found that the system is very robust in this situation (as explained later). The vertical
and the horizontal lines correspond to the individual HMM /ANN and GMM thresholds respectively.
The diagonal line corresponds to the decision boundary as found by the combination technique. From
this Figure, we can conclude that:

1

GMM scores

0 01 [+3] 03 04 0.5 06 o7 08 [+R:] 1

HMM/ANN scores

Figure 2: The distribution of scores: The black point (respectively the cyan plus) corresponds to the true
client (respectively to impostors) pronouncing the correct password. The red circle corresponds to the
client pronouncing other password. The diagonal line shows the decision boundary. The distribution
upper the decision line corresponds to the accepted speaker.

1. Many impostor accesses with the correct password (cyan plus) obtained a good HMM/ANN
score, confirming that the neural network mainly modeled the lexical content of the password.

2. As the decision boundary shows, the combined system uses information mainly given by the
GMM score. This explains why the value of the parameter « is very small and why the perfor-
mance of the combined system did not improve significantly compared to the use of only GMM
scores.

3. Most of the client accesses with wrong passwords (circles) obtained a low GMM score, indicating,
that the GMM model did not capture properly the characteristics of the client. One possible



IDIAP-RR 02-45 7

explanation is that the adaptation data contains only a few phonemes (short password). So,
the GMM model keeps only the speaker characteristics that are extracted from those phonemes,
which are not sufficient to properly model all the speaker characteristics. In reality, it could
happen that the client can not remember exactly his/her password. So, for applications with
low level of security, we can use only the decision of the GMM model.

For more analysis, Table 2 shows different acceptance (true and false) rates related to different sit-
uations that may happen in real life. The first column gives the true acceptance rate of Client
pronouncing the Correct Password (CCP). The second column gives the FAR rate of the true Client
pronouncing Other Password (COP). The third column corresponds to the FAR of Impostors pro-
nouncing the Correct Password (ICP) and the last column corresponds to FAR of Impostors pro-
nouncing Other Password (IOP). For each situation, the rate corresponds to the ratio of the number
of accepted accesses to the total number of accesses in that situation. We can make the following
observations:

1. This approach is very robust to impostor accesses with wrong passwords, making the SV-UCP
system more secure. Indeed, the fact that the password is chosen from an unconstrained vocab-
ulary, makes it more difficult to an impostor to guess the user password.

2. The false acceptance accesses are mainly caused by impostors pronouncing the correct password
or true clients pronouncing other passwords, making the set up of the parameter a more difficult.
Indeed, in this case, the client will get (probably) a good GMM score (as it supposed to keep the
characteristics of the speaker) and a low HMM/ANN score (as it modeled the lexical content
of the password). In contrast, the impostor will get a low GMM score and a good HMM/ANN
score. Depending on the value of the parameter a, we can distinguish two cases:

e « has a small value: The combined score of client pronouncing the wrong password will
be good enough and the client will be accepted, while the combined score of the impostor
pronouncing the correct password will be low and the impostor will be rejected.

e « has a high value: The combined score of the client access will be low and the client will
be rejected, while the combined score of the impostor access will be good and the impostor
will be accepted.

So, a small value of parameter o penalizes the impostor pronouncing the correct password,
while a high value penalizes the client pronouncing the wrong password. An optimal value of
parameter « should make a compromise between these two types of FA. This corresponds to the
value which minimize the sum of this two FAR. As the GMM model does some work that the
HMM/ANN is supposed to do, by giving a low score to client accesses with wrong password,
the optimal value of a will be small.

| Models [ CCP | COP | ICP | IOP |
INF-SPCM | 96.50% | 8.75% | 8.12% [ 0.15%
INF-RPCM | 96.44% | 9.37% | 8.12% | 0.17%
COR-SPCM | 96.55% | 7.04% | 8.23% | 0.07%
COR-RPCM | 96.56% | 7.74% | 8.12% | 0.09%

Table 2: Different false and true acceptance rates corresponding to different situations for each system.

6 Conclusion

In this paper, we investigated and analyzed the combination of the hybrid HMM/ANN and GMM
models for user-customized password speaker verification. For a short password, we have found that
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the GMM model did not properly keep the speaker characteristics and it did some work that the
HMM/ANN was supposed to do, explaining why the GMM model has much more contribution in the
combined system than the HMM/ANN model.
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