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Abstract. Tracking speakers in multi-party conversations represantimportant step towards automatic
analysis of meetings. In this paper, we present a probabifieethod for audio-visual (AV) speaker tracking
in a multi-sensor meeting room. The algorithm fuses infdramecoming from three uncalibrated cameras and
a microphone array via a mixed-state importance partidierfibllowing for the integration of AV streams
to exploit the complementary features of each modality. @ethod relies on several principles. First,
a mixed state space formulation is used to define a genemaitbekel for camera switching. Second, AV
localization information is used to define an importanceparg function, which guides the search process of
a particle filter towards regions of the configuration spacay to contain the true configuration (a speaker).
Finally, the measurement process integrates shape, aokbgudio observations. We show that the principled
combination of imperfect modalities results in an algaritthat automatically initializes and tracks speakers
engaged in real conversations, reliably switching acrassertas and between participants.
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1 Introduction

Speaker detection and tracking constitute relevant taslagiplications that include automatic meeting analysis
[26, 19, 4] and remote conferencing [27]. In the context oétimgys, speaker turn patterns convey a rich amount
of information about the dynamics of a group and the indigideehaviour of its members, including trends
of influence, dominance and level of interest, as documentedsolid body of literature in social psychology
[17, 20].

The use of audio and video as separate cues for tracking assiclproblems in signal processing and
computer vision. However, although audio-based speakaliation offers very valuable information about
speaker turns [15], sound and visual information are jpigénerated when people speak, and provide com-
plementary advantages for speaker tracking if their deprecids are jointly modeled [25]. Initialization and
recovery from failures are bottlenecks in visual trackihgttcan be robustly addressed with audio. However,
precise object localization is better suited to visual pssing. There exists substantial evidence about the role
that non-verbal behaviour plays in meetings in general,iartdrn-taking in particular [20]. Automatically
analyzing this behaviour, expressed in the form of gazéalfagpressions, or body postures, requires reliable
localization and tracking of human body parts. AV trackihgrefore represents a valuable step towards the
understanding of rich multimodal behaviours.

Single-camera AV speaker tracking has attracted conditiesdtention [3, 22, 25, 1]. Among the multi-
ple approaches, generative models that pose tracking asistisal inference problem, and use either exact
[22, 1] or approximate [25, 28] methods for inference, havews encouraging performance. In contrast,
tracking speakers in multi-camera scenarios has beendessonly studied [27, 28, 4]. While single-camera
AV tracking algorithms are useful for remote conferencimgeting rooms usually call for the use of several
cameras to cover the different areas where meetings urtbddte( whiteboards, and projector screen). Further-
more, cameras in meeting rooms often have little or no oppife fields of view (FOVS). In this sense, AV
tracking shares some features with other cases of multecasurveillance [12, 21, 13].

In particular, Sequential Monte Carlo (SMC) or particleditt (PFs) represent a principled methodology for
data fusion [6] that has been recently used for AV trackingjiigle-camera [25] and multi-camera [28] setups.
For a state-space model, a PF recursively approximatesltdénty distribution of states given observations
using a dynamical model and random sampling by (i) predictiandidate configurations, and (ii) measuring
their likelihood, in a process that amounts to random seiaratconfiguration space.

Current SMC formulations for AV speaker tracking usuallgélaudio and video only at the measurement
level, thus leading to symmetrical models in which each rliydaccounts for the same relevance, and depend-
ing on the dynamical model to generate candidate configursitiFurthermore, cameras and microphones are
independently (and carefully) calibrated for state mauehind measuring in 2-D or 3-D. Such formulations
tend to overlook several important features of AV data.tFasdio is a strong cue to model discontinuities that
clearly violate usual assumptions in dynamics (includipgeker turns across cameras), and (re)initialization.
Its use for prediction would therefore bring benefits to mimggrealistic situations. Second, audio can be inac-
curate at times, but provides a good initial localizatioesgithat could be enriched by extra visual localization
information, and integrated in a principled framework. rihialthough audio might be imprecise, and visual
calibration can be erroneous due to distortion in wide-amgimeras, their joint occurrence tends to be more
consistent, and can be robustly learned from data.

This paper presents a mixed-state particle filter for mudtinera AV speaker tracking, which addresses
the points discussed above, and exploits the complemefaatyres of the audio and video modalities. In
the first place, a mixed-state space (with discrete and memtis components) allows for the definition of a
generative model for camera switching [11], [23]. In thea&t place, we advocate for the asymmetrical
use of modalities in the particle filter formulation. Audindacolor information are first used for sampling,
and introduced via importance sampling (IS) [8], [10], byidi@g an IS function that emphasizes the most
informative regions of the space. Additionally, audio,ar@nd shape information are jointly used to compute
the likelihood of candidate configurations. In the thirdg@awe present a simple yet robust AV calibration
procedure that estimates a direct 3-D to 2-D+camera-indgping from audio localization estimates onto the
image planes. The procedure does not requiring precise gfeicralibration of cameras and microphones.
The result is a principled method that can initialize andkranoving speakers, and switch between multiple
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meeting participants across cameras in a real setting.
The paper is organized as follows. Section 2 presents oaritiigh. Section 3 describes the experimental
setup. Section 4 presents results. Section 5 provides &nanks.

2 Our approach for AV tracking

Given a discriminative object representation and a Markatesspace model, with hidden states;} that
represent object configurations, and observation$ extracted from an AV sequence composed of multiple
camera and microphone data streams, the distribwi{iRfjy;..) can be recursively computed by

p(xt|y1:¢) o P(Yt|Xt)/ p(xe|xe—1)p(xe—1]y1:e-1)dxe—1, (1)
Xt—1

wherey;.; = {y1,...,y:}. The integral in Eqg. 1 represents the prediction step, irctvtiie dynamical model
p(x¢|x:—1) and the previous distribution(x;_1|y1.:—1) are used to compute a prediction distribution, which
is then used as prior for the update step, and multiplied bylikelihood p(y.|x:) to generate the current
filtering distribution. Except for a few special cases, exai@rence in this model is intractable. SMC methods
are usually employed to approximate Eq. 1 for non-linean-8aussian problems as follows. The filtering
distribution is defined by a set of weighted samples or pastidx'”, 7{"),i = 1, ..., N}, wherex!” andr”
denote the i-th sample and its importance weight at the otiirae. The point-mass approximation is given by

pn(xelyre) = SN, 776(x, —x{"). The prediction step propagates each particle accordirigtdynamics,
and the updating step reweights them using their Iikelih@rt{)a x wil_)lp(yt|x§1)). A resampling step using
the new weights is necessary to avoid degradation of thecjgeset [6].

A PF for AV speaker tracking involves the definition of thetstapace, the speaker model, the dynamical
process, the sampling strategy, the AV calibration proogdand the probability models for observations. Each

of these issues are discussed in the following subsections.

2.1 Mixed-state space for multi-camera tracking

State-spaces defined on the image plane or in 3-D are seoliditz=s. However, 3-D modeling usually requires

precise camera calibration and the computation of nomatrigatures [28]. In this paper, we define a mixed-

state model in which (i) human heads in the image plane areelad@s elements of a template-space, allowing
for the description of a template and a set of valid transkdioms [2], and (ii) cameras depicting people are

indexed by a discrete variable. Specifically, a state is ddfoy

X; = (kt,ﬂft),lﬂ S {O, ..,NK — 1},.7},5 S RN“C,

wherek; is a discretéV g -valued camera index, angl is a continuous vector in the space of transformations
RN=., Furthermore, the dynamical model can be factorized as\isl|

P(Xe| Xi—1) = p(ke| Xo—1)p(@e | ke, Xi—1). 2

The first factor in the right side of Eq. 2 constitutes a getieganodel for switching cameras: for any
given geometric transformation at the previous timgy; = n|k;—1 = m,x1—1) = Ty (xi—1) represents a
transition probability matrix (TPM) to switch between cae The second factQr(xs|xi—1, ki1 = m, ky =
n) = pmn(zt|z:—1) denotes elements of a set df continuous dynamical models, one for each possible
camera transition. Additionally, the observation proatssends on the complete configuration (camera index
+ transformation),

p(ye| Xt) = p(yelke, z1).

The corresponding graphical model is described in Fig. telat it differs from other switching models
proposed in the visual tracking literature [11], [23].
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Figure 1:Graphical model for multi-camera tracking. Observed (résgden) variables are denoted by gray (resp. white)
nodes.

For the current implementation, we used three came¥as £ 3), and the spacR™V+ has been chosen to
be a subspace of the affine transformations comprisinglatms7*, 7% and scalind, i.e.,x; = (T*, T/, 6;).

The estimated tracked configuration is computed as usuakiedystate models [11]. The MAP estimate of
the camera indek;, and the weighted mean of the continuous compofiegiven the MAP discrete estimate
are computed by

A “ ) Ziezkf ﬂ_t(z)xgl)
k; = argmax Z w5 Ty = —(Z)
i€Z; Ziez)}t T

: 3)

whereZ; = {z’|kt(i) =j}.

2.2 Person model

Speaker heads are represented by their silhouettes (eceptodhe image plane [2]. In particular, we used a
parameterized vertical ellipse to represent the basiceshap

2.3 Dynamical models

The uncountable set of TPM&,,..,(z:—1)} is coarsely quantized based on the valu€Zt ,, 7Y ;) to allow
for camera switching based on the speaker location at thégpietime. The image planes depicted by each of
the cameras are divided into a set of likely and unlikelyoegifor camera switchingR;* }, {R"}. A likely
region is for instance the one occupied by speakers wherstaag up from their seats to go to the whiteboard
or projector screen (note that in practice, a speaker mighidwed by more than one camera based on their
overlapping FOVs). Two TPMs are then defindy,,, (R**) andT,,,, (R*?).

Regarding the individual dynamical models, when= n each of the distributions,,,, (z¢|z:—1) is defined
by a second-order auto-regressive dynamical modet,orWith an augmented continuous state component
denoted byt; = (x,z;_1)", each switching dynamical model is defineddy= A,.,&:_1 + Bpnn(w;,0)7,
whereA,,.., By, are the parameters of each model, ands a white noise process. This set of pdfs allows
to handle camera-specific motion models, potentially udefuracking objects viewed from rather different
perspectives. Whem # n, the pdf is substituted by a prior distributigf| (;) that draws samples in the
currentimage plane in regigiR 2 }. A full state in the augmented model is therefore defined by

x¢ = (X¢, Xi—1).

2.4 Mixed-state i-particle filters

The basic PF relies only on the dynamical model to generatdidate configurations, which as discussed
earlier has limitations due to imperfect motion models amel teed for reinitialization, due for instance to
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speaker turns. Additional knowledge about the true conditjoms can be extracted from other AV cues, and
modeled via importance sampling [8], [10], by using an ISchion 7;(x; ) that emphasizes the most informative
regions of the space. The technique first draws samples froirather than from the filtering distribution,
concentrating particles in better proposal regions. Ihtidroduces a correction mechanism in order to keep
the particle set as a faithful representation of the origiligtribution, defined by an importance ratio,
s (i NG DI
w® = pN(X,E )|Y1:t—1) . Zj:l ngj—)lp(XE )|X§j—)1) 4)
t B - B )
L(x;") I(x;")

and applied to the particle weight&éi) o wgi)p(yt|x,§i)). Furthemore, a reinitialization prior can intro-
duced via a two-component mixture,

D(Xe|y1e—1) = aqe(xe) + (1 — a)pn (Xe|y1:e-1), )

whereq,;(x;) denotes a reinitialization prior, adv, 1 — o} is the prior on the mixture. Another variation
in the model can be further introduced, in which samples eaerd from the original dynamics, the dynamics
with IS, and the reinitialization prior with probabilities;, «; andc,., respectively [10].

We extend the previous use of I-PFs to multimodal fusion. iuends to be imprecise for localization,
due to discontinuities during periods of non-speech, atagetffects of reverberation and other noise. Audio
does have some important advantages however, such as tity tabprovide instantaneous localization at
reasonable computational expense. Additionally, evenghcaudio can be inaccurate, it can still provide
reasonable proposals that could be enriched by the useraf\agtial localization information, and integrated
in the IS function. We propose an asymmetrical use of madslitvhere audio and skin color are used for
localization via sampling (as part of the IS function and riigitialization prior), and shape, color and audio
are further used as observations in the measurement prdeessthe reinitialization prior, the IS function is
directly used[;  ¢;.

Fig. 2 summarizes the particle filter algorithm. The defamtof the IS function and observation models is
described in detail in following subsections.

Generate{k\", z{" 7"} from {k, (", 7D 1.
1. Conpute IS function I(-).
2. Resanpl i ng. Resample{kii)hxfﬁl} to generate{fci?hifﬁl} based or{r", }.
3. Prediction. Foreach{k”,,&" }:
(a) generate a uniformly distributed numkee [0, 1].
(b) if 8 < a,, sample fromy (x;) to produce(k”, ("), and setw” = 1.
(©) if o < B < v + s, sample froml, (x;) to produce(k!”, z{"), and setv\”) as in Eq. 4.
(d) if ar + i < B8, sample fronp(x;|x;_1) to produce(k”, z{") as follows and set\” = 1,
i. sample fromT . (z¢—1) to generatécii).
ii. sample frompy,n (x¢|zi—1) tO generate:!".

4. Measur enent . Re-weight each particle by computing the observationilikeld and weighting by the importance
weight, (" = w(Vp(y,|k”, 2{”). Normalize all weights such that, =1,

Figure 2:Mixed-state i-particle filter algorithm.

2.5 AV calibration

Single-camera AV calibration works have usually assumetpkiied configurations [25], [1]. For multi-
camera settings, authors have resorted to rigorous canadibmation procedures [28]. However, camera
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calibration models become more complex for wide-angledsrn® usual requirement in video conferenc-
ing/meeting). Furthermore,

Although audio localization estimates are usually noiag @sual calibration is affected by geometric dis-
tortion, their joint occurrence tends to be more consistéfet have therefore opted for a rough AV calibration
procedure, which estimates a mapping from audio configanmaiin 3-D onto the corresponding camera image
plane (or planes if there are overlapping FOVs) using aitigisequence, but without requiring precise geomet-
ric calibration of audio and video. For this purpose, weaxrtitd a sequence with a person speaking while per-
forming activities in the room in typical locations (walkipsitting, moving while seated, standing at the white-
board and projector screen areas). The audio localizatmreplure described in Section 2.8 was used to com-
pute 3-D pointsZ; for each frame, and a visual (shape-based) PF tracker, inaiaized in the proper image
plane, was used to compute the corresponding 2-D+cameex-points. The set of correspondences obtained
for the training set was used to define a mapping betweenetiéssets” : R3 — {0,.., Nx — 1} x R?, such
that 3-D positions are mapped into vectors containing carnmelex and image positiot;(Z;) = (k¢, 1%, T).

The mapping for new data is computed via nearest neighbortsea

2.6 AV fusion for measurement

We propose to combine shape and localization (audio and)coiformation in the measurement process.
The sole usage of shape information is clearly limited tariisinate between two different human heads.
In presence of multiple people or visual clutter, the shalpadihood is multimodal, and particles with large
weights would be generated for each person, and likely nethare even after a speaker turn. Furthermore, the
mean configuration (Eg. 3) would be a bad representationegbdisterior, as it would lie somewhere between
the peaks of the distribution without corresponding to abjeat. Fusing shape and localization information
(e.g. audio) in the observation process would solve the @laowbiguity, tracking speaker turns with lower
latency, and locking only onto the current speaker. We psepto fuse modalities as follows,

p(yelxe) = ply" % )p(y i Ixe), (6)

wherep(y;" |x;) denotes a shape-based observation likelihood papid©|x;) represents a localization likeli-
hood, that uses audio and color information, as describ#ukifollowing subsections.

2.7 Shape observations model

The observation model assumes that shapes are embeddattén [d]. Edge-based measurements are com-
puted alongL normal lines to a hypothesized contour, resulting in a wesfacandidate positions for each
line, y! = {v!,} relative to the point lying on the contouf. With some usual assumptions, the shape-based
observation likelihood fol, normal lines can be expressed as

L L 5l 12
Vi — Y,
p(yhx:) o Hp(y“xt) o Hmax (K, exp(—iH 572 ol )) , @)

=1 =1

where ! is the nearest edge detected on tHeline, and K is a constant introduced when no edges are
detected.

2.8 Audio observation model

The audio speaker localization approach used in our worlsistinof two steps: finding candidate source
locationsZ;, and classifying them as speech or non-speech. Details@esemqted in the following.

2.8.1 Source localization

To locate sources, a simple single source localizationnigcie based on Time Delay of Arrival (TDOA) is
used. In particular, we use the SRP-PHAT technique destiiti®], due to its low computational requirements
and suitability for reverberant environments.
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We define a vector of theoretical time-delays associateld avi-D locationZ < R? as

Zé(lZ

T T ,...,Tp’Z,...TP’Z), (8)

whereP is the number of pairs and’Z is the delay (in samples) between the microphones ingpair

_ Pl _ _ p
w2 = W2 =M= [|Z2 = M3 fs. ©)

c

whereM?, MY € R? are the locations of the microphones in paif}.|| is the Euclidean norny,s the sampling
frequency, ana: the speed of sound. Note that for a given time-delgyand a given paip there exists a
hyperboloid of locations satisfyingr?? = 7.

From two signals? (¢) andsh(¢) of a given microphone pajr, the frequency-domain GCC-PHAT [14] is
defined as:

“p s SO ISR
Gppar(f) = 1SP(f) - (S5

whereS?(f) andS%(f) are Fourier transforms of the two signals drjtl denotes the complex conjugate.
Typically the two Fourier transforms are estimated on Hangywindowed segments of 20-30 ms. By per-

forming an Inverse Fourier Transform, and summing the titosain GCC-PHATRY ,, ,-(7) across pairs,
we obtain the SRP-PHAT measure,

: (10)

P
Psrp_puar(Z) £ ZRI;’HAT(TP7Z)7 (11)
p=1

From this, the source location is estimated as

7 = arg max [PSRpprAT(Z)]a (12)
ZEeR3

Based on geometrical considerations, at least 3 microppaing (P > 3) are required to obtain a unique peak.
The maximization is implemented using an exhaustive semreha fixed grid of pointsi/  R? such that

VZeR® 3ZycH T(Z,Zy) <o, (13)

wherel'(Z;, Z5) is the distance in time-delay space (in samples),

P
1
[(Z1,Zy) = \J Iz Z (rr 2 — r22)?, (14)
p=1

and~, is the desired precision in samples. Since we typically oqpda the time-domain GCC-PHAT
functionRZ;HAT(T) with a factora,,;, (e.9. 20), the desired precision is set accordinghyte= 1/cv,,.

The gridH is built by picking points heuristically on a few concentsigheres centered on the microphone
array. The spheres’ radii were also determinedfyConceptually this approach relates to [9].

For each time frame, our implementation therefore appratsnEq. 12 with

Z = arg max [Psrp—prar(Z)). (15)

2.8.2 Speech/non-speech classification

Speech/non-speech classification is typically seen as-prpaessing step, often based on an energy thresh-
old criterion. In the current work however, we propose bgsire speech/non-speech decision purely on the
localization information, performing it after the locatiestimate has been obtained.
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Conventional single-channel speech/non-speech segtioera@proaches are based upon energy, SNR es-
timation (as in [5]) or more complex estimators such as zeossing rate [16]. While relatively robust, tech-
niques based on energy thresholding can often miss lowggmeginnings of words, or even entire speaker
turns, when these are short.

Here we pose the problem of speech/non-speech classifidatihe framework of localization. We first
run single source localization on each time frame, thesed on the localization results classify each frame as
speech or non-speech, relying on short-term clusteringaation estimates, as explained in the following.

Short-term Clustering Algorithm . Our motivation for short-term clustering is that noisydtion esti-
mates feature high variations over time, while locationnestes are consistent during speech periods. The
proposed algorithm has three steps:

1. build short-term clusters of frames whose location estrm are close to each other.
2. retain only “significant clusters” by applying a durationstraint.

3. label those frames belonging to any significant clustespagch, others as non-speech. The result can
then be used by the particle filter.

In step 1, two frames, and¢, belong to the same cluster if the following condition is true
d(Zy,, Zy,) < do and |ty —t1] < To, (16)

whered, andT} are fixed thresholds in space and time respectivily;, , Z;,) is a distance defined according
to the setup. For example, with a single, planar microphaereyat is reasonable to use the difference in
azimuth betweem1 and th In our experimentdy was set to 5 degrees. Fdy, a typical value should be
close to the length of a phoneme (e.g. 200 ms).

For step 2, within each cluster, we find the longest segmérhat segment lasts more than a threshold
T.onsec (typical value: 100ms), the cluster is kept as “significaattherwise it is dropped. Simpler criteria
such as minimum cluster duration or the minimum number gh&awithin the cluster did not prove adequate.
Additionally, to eliminate far-field noise sources (e.g.,P@ojector), we also discard clusters whose average
SRP-PHAT value is below a threshold.

In step 3, frames belonging to any significant cluster arelbas speech, others as non-speech. In the
usual case where the audio frame rate is higher than the frigiee rate, we downsample the audio by grouping
audio 3-D estimates between consecutive video frames.Xaonge, with audio frame rate 62.5 fps and video
frame rate 25 fps, there can be zero (non-speech), one, tifoaw (speech) audio 3-D estimal{aﬁt} per
video frame.

2.9 Importance sampling function

As stated before, the IS function is defined by audio and colflrmation. For each frame, each of the
audio estimates in 3-D is mapped onto their correspondirag@rplanes and 2-D locations (Section 2.5). In
the camera setup in the meeting room (Fig. 3), one cameraveaiapping FOV with the other two, while
these two cameras do not share FOVs with each other. We usegositynrule to keep all the proposals
C(Z:) = (k, T, TY) for the specifice; that has the largest number of audio estima¥gs

While multiple audio estimates are beneficial for samplinggome cases all of them are inaccurate (due
to errors in the audio localization and the AV mapping), lmutghly close to the true configuration. Therefore,
such estimates can be used as initial proposals, and edibghesing additional visual localization information
in the IS process. Specifically, skin color blobs are compateeach time for the camekg chosen by audio
as described before. A 20-component Gaussian Mixture M@IRIM) of skin color was estimated from a
training set of people of different ethnicities participgtin real meetings in the room, collected over several
days. Skin pixels were classified based on thresholding erskin likelihood, followed by morphological
postprocessing to extract blobs. Then, the centroid positof all NV skin blobs within a radius;, from any
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image-mapped audio estimate are also considered as ptépzaons. The IS is then defined &gk:, x¢) =
§(ky — k)IF (zy) whereIF (z;) is a GMM using all AV proposals as components,

NP +NY
(TP T, 00) = > NN, %) (17)
j=1

where) denotes the prior on the mixture, the meafs= (7", uI", 1) consist of either a projected
audio estimate onto the image plane or a skin blob centrogitipo (ul”, uI'"), and a camera-dependent,
time-independent scale factof, and the covariance matric8¥ are diagonal, with translation components
proportional to the (camera-dependent) mean head size ineiming set, and with scaling component propor-
tional to the variance in scale of head sizes. In case of peeeh, no IS function exists, so the filter draws
samples only from the dynamics.

Finally, the importance function is also used for the AV liation-based observation likelihood,

P(yi°|xe) oc Ii(x¢), (18)

in case there is audio, and it is a fixed constant otherwise.

3 Experimental setup

AV recordings were made in a 8.203.6mx 2.4m meeting room containing a 4.8.2m rectangular meeting
table, and equipped with fully synchronized video and awedioture devices [18]. The configuration is shown
in Fig. 3. The video equipment includes three identical RAlality, CCTV cameras (SONY SSC-DC58AP),
each with a wide-angle lens with adjustable FO8%( — 80°), connected to a MiniDV tape recorder. Two
cameras in opposite walls record frontal views of two pirtints at the table, including the workspace area.
These cameras were set in order to avoid occlusion by pzatits seated on the opposite side, and have null
overlapping FOVs. A third wide-view camera looked over the of the participants towards the white-board
and projector screen. The audio equipment consisted ofgint-element circular equi-spaced microphone
array centered on the table, with diameter 20cm, and condpefdgigh quality miniature electret microphones
(Sennheiser MKE 2-5-C). Video was captured at 25 fps, whildi@was recorded at 16kHz, with features
estimated at 62.5 fps. Images are 2880 pixels. In such setup, human heads are approximatehp35
pixels in the close-views, and about2B0 in the wide-angle view.

g Camera

Equipment
Rack

[ &a:y} I
O O

Meeting Table

[ Projector Screen | [ whniteboard

Figure 3:Meeting recording configuration.
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4 Results and discussion

4.1 Audio speaker localization evaluation

This section presents an evaluation of both parts of thecasmiaker localization system. Section 4.1.1 de-

scribes the test case, then Section 4.1.2 gives perfornaribe audio source localization system. Section

4.1.3 reports results of the speech/non-speech classifitstem, comparing with an energy-based approach.
Global audio performance is reported in Section 4.1.4.

4.1.1 Testcase

We recorded a human speaking the same utterance at nine kfixechlocations, including two seated posi-
tions and seven standing positions. These nine locaticensngal an area of 67 degrees in azimuth, and from
0.9m to 2m in radius.

The recording was annotated in two manners:

e “Located Ground Truth (GT)": the true beginning and end afteaf the nine segments was determined
by a human listener (42 sec total). Each of these segmentthwsisnnotated with a beginning, an end
and a 3-D location.

e “Speech/non-speech GT": the entire recording (92 sec) e@sented in terms of speech and non-speech
by a human listener. The speech segments included the riattbsegments plus others of unknown

location.

4.1.2 Audio source localization

Audio source localization was evaluated on the nine locadgmnents. Cumulated error histograms are shown
in Fig. 4. We observe that most frames (70.5%) yield an angler delow six degrees, most other frames
having a much higher error. The latter may well corresporshtart silences between words. In contrast, the
radius estimates are not accurate, as expected with a simigilephone array.
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Figure 4:Source localization performance (cumulative histograms)

4.1.3 Speech/non-speech classification

After running source localization on all frames, we appliee speech/non-speech classification described in
Section 2.8.2. We used azimuth only and chose threshigldss degreesl = 200 ms and ;.5 = 100 ms.
The result was measured with:

e A =frame accuracy on ground truth speech frames.
e B =frame accuracy on ground truth non-speech frames.

The obtained results are= 0.766, meaning that the system missed 23.4% of humaneldbpkech frames,
and B = 0.984, indicating that false alarms happened in only 1.6%oa-speech frames. The pdid, B) is
indicated by a cross in Fig. 5.
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In order to compare our algorithm with a single-channel méftwe applied a threshold on frame energy
to determine an alternate speech/non-speech classificatid computed the correspondiy, B) pairs. By
varying the energy threshold we obtained the continuougeciarFig. 5. The energy-based system performed
noticeably lower, especially if we consider that

e To achieve a similar performance on speech frardes (0.766) the energy-based system induces many
false alarms on non-speech framés= 0.854).

e To achieve a similar performance on non-speech fraBes (0.984) the energy-based system induces a
much lower proportion of correct speech framds«0.428).

Since the recording contained only single source segmataamall background noise, we can anticipate
that the energy-based system would perform even worse ondiags with spontaneous, overlapping speech.

[
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N @ @
o o] S

N
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B: FA on non-speech frames

—— energy-based
+ location-based

20 40 60 80 100
A: FA on speech frames

=

Figure 5:Speech/non-speech classification performance.

4.1.4 Global audio performance

On the located speech segments, we counted the number ofdriaiting below an azimuth errat,, of

6° before and after speech/non-speech classification. Remdtreported in Table 1. For the energy-based,
baseline system, we chose a SNR threshold such that the &erneacy on GT non-speech frames would be
the same as for the location-based syst&n(.984).

It can be seen that the location-based system classifiesstbtiocorrect location estimates as speech
frames, as opposed to the energy-based system which missgsahthem. The maximum azimuth error
is also significantly reduced. This result is particularypiortant in the context of speaker tracking: we can
expect the location-based system to detect speaker chemgesell and with a very small delay.

speech/non-speech €, €az €az
classification <6° > 6° max
technique (frames) | (frames)| (degrees)
none 2081 626 179.6
location-based 2076 100 37.7
energy-based 1523 89 177.3

Table 1:Overall audio speaker localization performance.

4.2 AV tracking

Parameters in the model (dynamics and observations) wec#iggl by hand, and kept fixed for all experiments.
Regarding the dynamical models, the TPMs were defined by

0.90 0.05 0.05
Tpn (R*¥) = | 0.05 0.90 0.05 |,
0.05 0.05 0.90
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and

- 0.950 0.025 0.025
Ty (R¥) = | 0.025 0.950 0.025
0.025 0.025 0.950

Furthermore, in the current implementation we have usedtickd motion parameters for all models
P (Te|Te—1), Ann = [2 2], Ban =[;, 3], and the white noise process has standard deviations for transla-
tion and scaling equal to 4 and 0.0001, respectively. Fosliape-based observations, the number of measure-
ment linesL = 16, each with length 20 pixels, and a standard deviationm Eq. 7 equal to 5 pixels. Finally,
for the IS function, we used a uniform prior for all mixturensponents, X; = W) and a radius, = 70
pixels.

The results should be fully appreciated by looking direatiyhe AV sequences accompanying this paper
The sequences are encoded in AVI (using DIVX), and RealMixdiaats.

Fig. 6 shows the results of tracking four speakers engagethin-minute conversation in the meeting room
(3000 frames), using 500 particles (weighted mean of théepios in red, estimated by Eq. 3, and standard
deviation from the mean in yellow). Speakers talk at a nhppae, and one of the participants stands up and
addresses the others from the projection screen and whitglaoeas (see sequentgmo—test—seql.avi).
Audio data are non-continuous (1815 audio samples in 3G08@ds), and there is a considerable amount of
overlapping speech. The tracker is automatically inséedi when a person starts talking, and remains for
the most part in accurate track across participants forabeaf the sequence with small latency. In case of
overlapping speech, the tracker locks onto only one speakeicking is more challenging for the objects
observed by the wide-view camera due to distance from tlag amd object size.

Table 2 presents an objective evaluation of the resultagusisemi-automatically generated ground-truth
(GT) of speaker segments, which consists of the camera iadéxhe approximate speaker’s head centroid
in the corresponding image plane for each speaker segmegmedts with overlapping speech were not
considered for evaluation, as our tracker does not outguttefor multiple simultaneous speakers.

We define two performance measures, and present resultgazeover ten runs of the particle filter. The
first measure is the error on the estimated camera indjc@sith range [0,1]). Results are presented for each
camera, and for all the results combined. Camera indiceseayewell estimated for cameras 1 and 2. Most
errors arise from the wide-view camera: the tracker hasdetgey to lock onto the speakers at the table, given
their shorter distance to the microphone array, which aagtsmall audio activity. Globally, the camera indices
were correctly estimated in 88.73% of the frames labeletlénGT.

The second performance measure is the median over time efribein the image plang - 1), between
the GT and estimated mean 2-D positions, computed over @detframes for which the estimated camera
index was correct. The main source of error for cameras 1 asth2 fitting of the contour template onto the
neck contour rather than onto the chin. It is interestingdtce that for the wide-view camera, the camera
index was more difficult to predict, but the error in 2-D foetbases for which the index was correct remained
small.

error type | modality | cam, | camy | cany | global
ex(x1072%) AV 1.91| 031 25.00| 11.27
(0.09) | (0.09) | (0.39) | (0.18)

€(T%,Tv) AV 188| 1.69| 0.40 1.00
(0.08) | (0.18) | (0.01) | (0.03)

A 11.39 | 11.86| 10.60 | 11.20

Y, 457 | 4.88| 219 3.52

Table 2:AV tracking results. The std of each measure is shown in plaesis; the units of 1= rv) are pixels.

For comparison, the results of audio-only localizationas® shown in Table 2. Figures have been com-
puted only taking into account frames with detected spe€bh.errors reported correspond to the median over
1

www.idiap.ch//Agatica/av—tracking—multicam.html.



IDIAP-RR 03-25 13

time of the mininum error between the GT and all the audiovestiés available at each frame. Such errors are
the combined effect of 3-D localization and AV calibratioiWe have also included the results obtained by a
visual-only, histogram-based tracker [24] initialized lignd at each speaker turn. Errors are slightly higher,
although visually the performance is similar. For this sme, AV fusion has shown better performance than
each independent modality.

The benefit of using color and audio information comparedui@only in the 1S function (Eq. 17) and
in the measurement process (Eq. 6) can be appreciated irdoerscerideo2.avi. In this video, the GMM
defining the IS function consists only of audio estimatescalt be observed that tracking is less accurate
than the observed in the previous example, due to the inhénetations of single microphone-array esti-
mates and the errors introduced by 3-D-to-2-D mapping tteahat being improved by the use of color, as in
demo—test—seql.avi.

Performance of the method on a cluttered background is shrokig. 7, and in video8emo—test—seq2.avi
(1200 frames), andemo—test—seq3.avi (800 frames). The sequences display a four-party convensaith
a fifth person walking in the room, and creating visual diticans by approaching the speakers. The tracker
can get momentarily distracted by the walking person, ohgyltackground visual clutter, but recovers in all
cases. Although not shown here, work for a single-camesaaeof the system has shown that our formulation
can also handle reinitialization in cases of total AV ocdud7].
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Figure 6:Tracking speakers in the meeting room. Frames 100, 500,, 1800, 1900, and 2700.
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Figure 7:Tracking speakers with visual distractions. Frames 313, 564, 640, 645, and 731.

15
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5 Conclusions

We have shown that AV fusion via mixed-state i-particle fdtenakes good use of the complementary ad-
vantages of individual modalities for speaker tracking imalti-camera room. Our method can consistently
track speakers in multi-party conversations. Current wakcentrates in the generalization of the method
to a multiple-object tracker, which involves the integoatiof person-dependent color object models, and the
consistent labeling of tracked objects along time and aarameras.
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