REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptual Artificial
Intelligence e P.O.Box 592 e
Martigny e Valais e Switzerland

phone +41 —27—-721 77 11
fax +41 —27—-721 77 12
e-mail secretariat@idiap.ch

internet http://www.idiap.ch

SEGMENTING MULTIPLE
CONCURRENT SPEAKERS USING
MICROPHONE ARRAYS

Guillaume Lathoud * Tain A. McCowan ?
Darren C. Moore
IDIAP-RR 03-21

APRIL 2003

TO APPEAR IN
Proceedings of Eurospeech 2003, Geneva, Switzerland, September 2003

2 IDIAP, Martigny, Switzerland






IDIAP Research Report 03-21

SEGMENTING MULTIPLE CONCURRENT SPEAKERS USING
MICROPHONE ARRAYS

Guillaume Lathoud Tain A. McCowan Darren C. Moore

APRIL 2003

TO APPEAR IN
Proceedings of Eurospeech 2003, Geneva, Switzerland, September 2003

Abstract. Speaker turn detection is an important task for many speech processing applications.
However, accurate segmentation can be hard to achieve if there are multiple concurrent speakers
(overlap), as is typically the case in multi-party conversations. In such cases, the location of the
speaker, as measured using a microphone array, may provide greater discrimination than tradi-
tional spectral features. This was verified in previous work which obtained a global segmentation
in terms of single speaker classes, as well as possible overlap combinations. However, such a global
strategy suffers from an explosion of the number of overlap classes, as each possible combination
of concurrent speakers must be modeled explicitly. In this paper, we propose two alternative
schemes that produce an individual segmentation decision for each speaker, implicitly handling
all overlapping speaker combinations. The proposed approaches also allow straightforward on-
line implementations. Experiments are presented comparing the segmentation with that obtained
using the previous system.
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1 Introduction

Segmenting the speech signal in terms of speaker turns is a necessary pre-processing task for many
applications: speech recognition needs segments of short length, and browsing of recordings is made
easier with a timeline showing who is speaking and when. Other applications include broadcast news
indexing, meeting summarisation and video surveillance.

While traditional audio features (LPCC, MFCC, energy, etc.) have been used successfully on
broadcast recordings and telephone speech, multi-party conversations such as meetings present a
more difficult case due to the high amount of overlapping speech in spontaneous conversations [1]. It
is difficult to resolve overlaps when using single microphone techniques, since speech from more than
one simultaneous speaker is often recorded by the same microphone (crosstalk phenomenon) [2].

In applications involving multi-party conversations, it may be possible to acquire the speech using
microphone arrays. By spatially sampling an acoustic field, microphone arrays provide the ability to
discriminate between sounds based on their source location. This directional discrimination can be
exploited to enhance a signal from a given location, or simply to locate principal sound sources in the
field.

In [3], we introduced an approach that processed location-based features from a microphone array
within a GMM/HMM framework to produce a global segmentation of speaker turns. The approach
gives accurate segmentation on test data including segments with two simultaneous speakers. However,
it suffers from the limitation that each possible combination of active speakers (including overlap) has
to be modeled with a separate HMM, leading to (2% — 1) classes, where K is the number of speakers.

In this work, instead of performing a global segmentation in terms of all possible single and multiple
speaker classes, we propose two techniques that produce K parallel individual speaker segmentations.
In this way, the need to define all possible combinations of active speakers is removed, and any number
of concurrent speakers is handled implicitly.

In experiments, results are compared to those obtained using the previous approach, demonstrating
that both new approaches successfully handle both single speaker and dual-speaker overlap cases.

Section 2 introduces the fundamentals of localisation using microphone arrays. Section 3 describes
the two proposed approaches that address the limitation of the previous approach. Section 4 presents
the experiments and a discussion of the results obtained.

2 Localisation Fundamentals

This section recalls the non-linear relationship between physical space and time-delay space, and
then summarises the Generalized Cross-Correlation method for time-delay estimation in the case of
the PHAse Transform (GCC-PHAT) [4]. We selected the PHAT because it is efficient in high-SNR,
reverberant environments such as meeting rooms.

2.1 Link Between Location and Theoretical Time-Delays

We define the vector of theoretical time delays u;, € RF associated with the speaker location xj, € R3
as :

My £ f(xk) (1)
T
2 [ P WP ] @

where P is the number of microphone pairs and ,ugf ) is the theoretical time delay (in samples) between

the microphones in pair p, given by

o w (B —m =[x —mP]]) £
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where mgp ) and mgp ) are the locations of the microphones in pair p, || - || is the Euclidean norm,

fs is the sampling frequency, and ¢ the speed of sound in the air (usually 342 m/s).

2.2 GCC-PHAT time-delay estimation

Full details of this procedure can be found in [5]. From two signals s\”(t) and s () of a given

microphone pair p, GCC-PHAT is defined as:

SO [P ;)]
5P - [s¥ )]

CElar(f) 2 (4)

where Sy’ ) (f) and Sép ) (f) are Fourier transforms of the two signals and [-]* denotes the complex
conjugate. Typically the two Fourier transforms are estimated on Hamming-windowed segments of
20 to 30 ms.

The time-delay estimate (TDE) for the microphone pair p is then defined as:

702 argmax (BE)u(r)) (5)

where R\, ,,.(r) is the Inverse Fourier Transform of the GCC-PHAT function G}, .1 (f).
By applying this process for each microphone pair, we construct a vector of TDEs:

N

D 2 [#) ... 30 .. x» T (6)

3 Proposed Approaches

This section presents two new segmentation approaches based on the speaker location. As discussed
above, in contrast to [3], they avoid the need for explicit modeling of each overlap class by providing
parallel segmentations for each speaker, implicitly handling all overlap combinations. As such, the
computational load becomes linear in the number of speakers, rather than exponential.

As in [3], our model assumes that a speaker k is confined to a physical region centred at location
x; € R%. The two approaches presented in the following subsections unfold in two steps:

1. Classify each (speaker, frame) as speech or silence, independently of other speakers and other
frames, thus obtaining K binary series

*)

ss®) = (ss (k))

k
.,ssg),...,ssN

where k is the speaker index (1 < k < K), n the frame index (1 < n < N) and ss(nk) € {0,1}.
“0” denotes a silent frame, “1” denotes a speech frame.

2. For each speaker k, apply a simple dilation/erosion process to smooth the binary sequence ssk),
This operation aims at connecting frames belonging to the same utterance, as well as eliminating
spurious speech segments less than a specified minimum duration.

While the features and models used in the first step differ between the two approaches, the second
step is the same for both. We describe the first step in Section 3.1. The dilation/erosion process
common to both approaches is described in Section 3.2.
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3.1 Step One: Frame-Level Speech/Silence Classification
3.1.1 Speech/Silence Ratio Approach

The features used here are equivalent to those used in the HMM approach presented in [3], i.e. GCC-
PHAT TDEs, as defined in (5). For each frame n € [1... N], we extract a vector D,, of TDEs. For a
given speaker k and a given frame n, we model the likelihood of the observed TDEs with two possible
pdfs:

e Speech:
Phpten@nlxr) = N(pw, i) (7

where 3 is the covariance matrix (typically diagonal) and n the frame index. The Gaussian
distribution models the effects of variations in speaker location around xj, as well as uncertainty
in the observed TDEs due to reverberation and noise.

e Silence:
. 1
Dsilence (Dnlxk) = 5 i (8)
HZI::l 2 7—7(15)3.:6

where T,(,fgw is the maximum time-delay (in samples) between the microphones in pair p and n

the frame index. Tr(,fggc is directly proportional to the distance between the two microphones:

( _ . (p)
7—(1’) A ||m1 m, || fS (9)

max -
C

We can then define the Speech/Silence Ratio (SSR) as:

o
A Papeech (Dn |xx) 1
SSR(k,n) = Psitence(Dn|x1) (10)
For a given speaker k and a given frame n, speech/silence classification then amounts to:
k) — 0 if SSR(k,n)<1
5n { 1 if SSR(k,n)>1 (1)

3.1.2 Steered Response Power Approach

In contrast to the single stream of features used in the HMM and SSR approaches, we use here a
separate stream of features for each speaker. Therefore, multiple speakers can be active within the
same frame. For a given speaker k and a given frame n, we estimate the Steered Response Power
(SRP) using a measure known as SRP-PHAT [6]. We sum the time domain version of the GCC-PHAT
function defined in (4) at the theoretical time-delays associated with location x:

P
1 .
Pspp(k,n) = I E :Rgf}{AT (Mip)) (12)
p=1

where P is the number of microphone pairs and Rﬁf}l 4 (7) is the time-domain GCC-PHAT. We
have the property Psgp(k,n) € [-1,+1]. The higher the value of Psgp(k,n), the more likely it is for
speaker k to be active at frame n.

For a given speaker k and a given frame n, speech/silence classification then amounts to:

ss®)  — {0 if Psrp(k,n) < Osgrp

1 if PSRP(k,n)ZQSRP (13)

where fsgp € [—1,+1] is a threshold value that has to be tuned. In practice, most values
Pspp(k,n) are positive and a typical threshold value is §sgp = 0.25.
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3.2 Step Two: Dilation/Erosion Process

Speech from one person mostly consists of short spurts (phonemes, words), interspersed with short
silences. In obtaining a smooth speech/silence segmentation for each speaker, it is desirable to achieve
two goals:

e Goal 1: to group spurts in order to form utterances. For a given speaker, two spurts that are
separated by a small silence (e.g. less than 1 second) must be linked into the same segment.

e Goal 2: to remove any isolated spurt that lasts less than a minimum duration (e.g. 200 ms).
We assume that such a spurt contains noise rather than speech.

Initially, we attempted to use single speaker HMMs to achieve the above goals. However, since a
speech segment contains short alternating periods of speech and silence, it was found that a complex
HMM topology was required, similar to that proposed for the overlaps in [3]. In addition, obtained
results were significantly less than those of the previous work. In the current work, we instead achieve
the above goals using an alternative approach based on simple binary dilation and erosion operators.

We apply a sequence of such operators on the binary series ss(¥), thus achieving an effect similar to
low-pass filtering in signal processing. The L-frame dilation operator for a binary sequence u = {u,}
(with values in {0,1}) is defined as:

u={un} = v=ff(u)
where Vn v, = max (Un_L,--- ,Unt+L)
The L-frame erosion operator for a binary sequence u = {u,} is defined as:

u={u,} — v=FfL (v)

ETO0
where Vn v, =min (up—r,--- ,Un+L)

In practice, the beginning and the end of u are mirrored to solve boundary problems.
For a given speaker k, the two goals mentioned above are achieved using a succession of dilations
and erosions:

sst) o gs2(k) = iﬁ ( £%+L1 ( cﬁ; (ss(k))))

where L; is the maximum “small silence” duration in frames (relates to goal 1.) and L, is the minimum
speech duration in frames (relates to goal 2.). This operation can be implemented online with a buffer
of 2 x (Ly + Ly) frames, incurring a delay of L; + Ly frames.

4 Experiments

With the two proposed methods, we segmented two data sets including segments with a single speaker
and segments with two overlapping speakers. In order to compare with the single timeline of segments
produced by the HMM approach [3], we combined the K binary series ss*) into one sequence of
integer tags (one tag per frame):

K
T, = Z ssg‘) - ok=t (14)
k=1

For each frame n, T}, describes the combination of active speakers. To assess the performance of
each proposed method, we compared the sequence {T),} with the ground truth.
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Figure 1: Experimental setup

4.1 Evaluation Criteria

To assess the system performance, we used frame accuracy (FA), precision (PRC), recall (RCL) and
F-measure (F):

number of correctly labelled frames

I
FA - total number of frames x 100 %
PRC 2 number of correctly found segment boundaries

B number of segment boundaries detected
RCL 2 number of correctly found segment boundaries

a number of true segment boundaries
I a 2xPRCxRCL

B (PRC +RCL)

F varies between 0 and 1. In most cases, a short interval of silence exists between two consecutive
speech segments, and so in comparing segment boundaries to the ground truth, a tolerance interval
of £1 second was chosen.

4.2 Test Sets

The two test sets defined in [3] were used. Both sets were created by mixing four five-minute mul-
tichannel recordings of read speach from four speakers seated as shown in Figure 1. We used a
microphone array with 4 microphones on a 14 cm-sided square.

e non-overlap test set: 9 files of 10 single-speaker segments (5 to 20 seconds per segment).
e overlap test set: 6 files of 10 single-speaker segments (5 to 17 seconds per segment) interleaved

with 9 two-speaker segments (1.5 to 5 seconds per segment).

4.3 Parameters

In the experiments, we used a sampling frequency f; = 16kHz and computed features from 32 ms,
50% overlapped, Hamming-windowed frames. For the dilation/erosion process described in Section
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approach FA PRC RCL F

HMM 99.5% 1.0 1.0 1.0
SSR 99.1% 0.99 099 0.99
SRP 96.3% 0.85 096 0.90

Table 1: Results on the non-overlap test set

3.2, we used L1 = 63 frames (1 second) and L, = 13 frames (200 ms). We used all possible microphone
pairs from the 4-element array (P = 6). For the SSR approach we used a diagonal matrix of ones
for ¥, (tuning it did not bring any significant change in the results). For the SRP approach we used
Osprp = 0.25.

4.4 Results and Discussion

Tables 1 and 2 show results obtained on each test set. In both sets of results, the performance of the
SSR approach is comparable to that of the HMM approach, while the SRP approach performance is
less but still provides a good segmentation. In particular, both approaches performed well on data
containing overlapping speech. We noted that FA calculated on overlap segments was less for the two
new approaches, compared to the original HMM system. This may be attributed to the fact that the
new techniques do not have any explicit overlap classes, and as such do not impose any minimum
duration constraint on overlap segments.

The similar performance between the HMM and SSR approaches was expectable, since exactly the
same features are used in each case (see Section 3.1.1). The degradation in performance observed for
the SRP approach (particularly on overlap frames) is at first surprising, since the SRP-PHAT features
should be able to handle multiple concurrent speakers. Our understanding of this degradation is
that it is difficult to give meaning to the absolute numerical values obtained by SRP computation.
Therefore the single, constant threshold strategy defined in (13) is not an optimal approach: the true
speech and silence distributions may significantly overlap and/or vary over time.

Despite this, both approaches proved effective on the read speech, including the segments with two
overlapping speakers. While in these experiments we used the same data as in the previous work [3] for
comparison purposes, this data does not constitute a comprehensive test-set, as it only contains read
speech and is limited to overlap segments with two concurrent speakers. The proposed techniques
have also been successfully applied to real meeting recordings' containing spontaneous speech and
segments of up to four concurrent speakers, however as a ground-truth segmentation does not yet
exist for these recordings, we are unable to present results at this stage.

Implicit in all of the above approaches is the assumption of prior knowledge of each speaker’s
location, and therefore the number of speakers. Ongoing work will investigate ways of relaxing this
assumption by clustering the output of a source localisation system. Another core assumption made,
is that each speaker is associated with a single region through a recording. This could potentially
be addressed by combining with a speaker clustering strategy based on traditional acoustic features,
such as [7].

5 Conclusion

This paper has presented two approaches for segmenting speech from multiple concurrent speakers
using microphone arrays. Previous work in [3] provided a global segmentation in terms of single
speaker classes and possible overlap combinations. The proposed approaches instead segment speakers
individually, avoiding the need to define all possible combinations of active speakers. In this way, the
major benefit of the proposed approaches is the ability to scale to all possible overlap cases (involving

lhttp : //mmm.idiap.ch
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approach FA PRC RCL F
HMM 96.2% (88.1%) 0.93 093 0.93
SSR 95.4% (79.9%)  0.91 094 0.92
SRP 92.1% (68.9%) 0.85 0.84 0.85

Table 2: Results on the overlap test set. The FA calculated only on actual overlap segments is shown
in parentheses.

any arbitrary combination of speakers), with a computational load that is linear in the number of
speakers. In experiments, the proposed approaches performed well on both single-speaker data and
two-speaker overlap data, achieving similar performance to the global HMM strategy employed in [3].
In addition, we note that a straightforward on-line implementation is possible. Future work will verify
the techniques on real meeting recordings and will aim to remove the assumption that each speaker’s
location is known and static throughout a recording.
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