COMPARISON OF SUPPORT VECTOR
MACHINE AND NEURAL NETWORK FOR
TEXT TEXTURE VERIFICATION

Datong Chen and Jean-Marc Odobez
IDIAP, Switzerland
chen, odobez@idiap.ch

Abstract.

In this paper we propose a method for classifying regions of im-
ages and videos frames into text and non-text regions using support
vector machine (SVM). Different features are proposed to charac-
terise the texture formed by text characters and background. SVM
has an advantage that it is insensitive to the relative numbers of
training examples in positive and negative classes. This advantage
is are illustrated by comparing results with those obtained using a
multiple layer perceptrons (MLP).

INTRODUCTION

Text texture verification aims at distinguishing image regions containing text
characters from others that contain no text, so that text characters can be
located and extracted in the development of advanced video and image an-
notation and retrieval systems. Text embedded in image and video usually
provides brief and important information about the content, such as the name
of a player or speaker, the title, location and date of an event, the category
of the product etc. This kind of text is a powerful keyword resource in build-
ing image and video indexing and retrieval system. However, text characters
contained in video are of low resolution, of any grayscale value and embedded
in complex background. Experiments show that applying conventional OCR
technology directly leads to poor recognition rate due to background noises.
To improve recognition performance, an efficient algorithm for verifying text
texture is a necessary pre-processing to fulfil the task of extracting text from
images and videos.

One system for text extracting in covers of Journals or CDs is presented by
Zhong [11], where text is located using spacial variance and connected com-
ponent analysis. The approach assumed that text is in horizontal alignment
and therefore had a high variance in horizontal direction. Text block was de-
tected by finding regions with high horizontal variance and refined using the
spatical information of text string in a connected component analysis process.

Smith et al. [6] developed a text detection algorithm by using vertical edge.
In this method, vertical edges are first detected with a predefined template
and then smoothed with a smoothing filter. The smoothing process removes
isolated edge points yielded by the noise as well as connects vertical edges
into text clusters. Another scheme of text extraction in images is proposed
by Wu et al. [10], who describes a scheme for text location, segmentation and
recognition based on texture segmentation. In this scheme, texture feature
of each pixel is extracted in the derivatives of the image in Gaussian scale
space and classified into three classes (text, non-text, other) using a K-means
algorithm. In a more recent work, Garcia et al. [4] described a feature for
detecting text pixel using the variance of edge orientation. These methods
employ only texture information of single pixel, which can roughly detect
some candidate regions but not able to gain a satisfied verification.

In 1999, Sobettka et al. [7] suggested that baseline detection could be used
for text detection and location. In detail, if the top and bottom baselines
can be detected in image or block of image, there is one text string between
these two baselines. Otherwise, the image or block of image is regarded
as background. Since baselines can also be detected in many background
regions, plenty of false alarms are still produced using this method.

To exploit more texture information, Li et al. [5] presented a neural
network based method to classify image block instead of single pixel. The
method decomposes input image with Haar wavelet and employs a neural
network to verify whether a block of pixels (fixed size) contains text or not.
Because character scale is unknown, modelling text texture in wide varying
scales requires very large training data. Another drawback is that the relative
numbers of text regions and background regions are usually very different in
real case and neural network tends to classify every thing into the class with
majority number of training examples.

Addressing this problem, we have proposed a method for verifying text
textures using SVM from roughly detected candidate text regions in [2]. In
this paper, we compare SVM and a kind of typical neural network (MLP) for
text texture verification in different feature spaces. We first extract different
features for charactering texture of text of unknown grayscale values, which
is highlighted in Section 2. The Section 3 describes the modelling of text
texture using SVM. In the Section 4, we compare the performance of text
verifiers of using SVM and MLP in different feature spaces.

FEATURE EXTRACTION

The candidate text regions are roughly detected using the method described
in [2]. The method first clusters text regions using short vertical and hori-
zontal edges and refines regions using baseline detection and connected com-
ponent analysis. A yielded region is a rectangle whose size depends on the
scale of the embedded text strings, if there is any. To avoid modelling text
texture with different scales, candidate text regions are normalised into im-

age regions of 16-pixel high, locking the height/width ratio (see examples in
Figure 1).

Figure 1: Normalized candidate text regions.

Four kinds of features are extracted from the normalised candidate text
regions will be extracted. They all share good properties with respect to
the unknown value of the text grayscale. Features are extracted in a 16x16
window sliding from left to right inside each region.

Distance map

The first feature is the distance map, which is independent to the grayscale
value of characters. The distance map [8] DM (X) of a window X is defined
by the set of all the associated distance values v (x,y) in the window X with
respect to a distance function (Equation 1).

V(z,y) € X,DM(x) = (xf;f?eB d[(zs,y:), (z,y)] (1)

Here, B is a set of points, B € X . We compute the point set B by extracting
strong edges in window X. The distance function used here is Euclidean.
The input feature vector x; of SVM has 256 dimensions corresponding to a
16x16 slide window:

xi:(f17f27---;f256) (2)

Although distance map is independent to grayscale value of characters, the
base set B still relies on the contrast between text and background and the
threshold employed in edge detection.

Derivatives

In order to measure the contribute of the contrast of text to text verification,
we introduce spatial derivatives of the image as the second feature. The

feature is computed using Roberts 2x2 operator in two directions. Therefore,
it has a feature vector of 512 dimensions in each sliding window instead of
256 dimensions.

Constant variance

In many text images, the contrast of text varies significantly in different
backgrounds, which implies that contrast may be not a stable feature for
text verification. We therefore compute the third feature, called constant
variance (CV), to normalise the contrast by local image variance. The local
image variance is a good measure of local contrast, where areas with low
variance are essentially flat and have low contrast, while areas with high
variance are often near edges and have high contrast. The local mean and
variance are computed from the pixels in a neighbourhood of each point in
the image. The contrast value of the point, subtracted by the local mean,
is then normalised by dividing by the standard deviation. The size of the
neighbourhood is 9 pixels in our system.

DCT coefficients

The last feature we used is coefficients of discrete cosine transform (DCT).
This feature is widely used in JPEG and MPEG compression scheme and
is a representative feature in frequency domain. We first reduce a image in
16x16 sliding window down to the 8x8 block, and compute DCT coefficients
using a fast DCT algorithm presented by Feig [3] (generate a vector with 64
dimensions in each sliding window).

TEXT TEXTURE MODELLING USING SUPPORT VECTOR
MACHINE

The SVM method

SVM is a technique motivated by statistical learning theory and has been
successful applied to numerous classification tasks. The key idea is to sep-
arate two classes with a decision surface that has maximum margin. The
extensive discussion of SVMs can be found in [9]. In this paper, we will
only consider a binary classification task with m labelled training examples:
(x1,y1), (2,92) ;.- ., (Tm,ym), where y; = £1 indicating two different classes
i=1,2,...,m.

For linear separable case, we have some hyper-plane w-z+b = 0 (decision
surface) that separates all the training examples:

zirw+b>+1lify; =+1 3)
zirw+b< -lify, =-1

or equivalently:

y,(mlw+b)2i1 Vi (4)

where w is normal to the hyper-plane.

The margin of such hyper-plane w - + b = 0 is defined by the sum of
the shortest distance from hyper-plane to the closest positive example and
the shortest distance from hyper-plane to the closed negative example. Since
this margin is simply ﬁ, where is the Euclidean norm of w, the maximum

margin can be given by minimising |Jw||* subjecting to the constraints Eq.
4. This learning task can be reduced to maximisation of the Wolfe dual
Lagrangian:

m

W(a) = Zai — % Z iy (T -) (5)

i=1 i,j=1
with respect to the Lagrangian multipliers «; subject to the constrains:

(677 Z 0

Yoy = 0 ©
A training sample z; is termed as support vector if the optimal o; > 0. This
method can be easily generalised to non-linear case. Noticing that training
of SVM only depends on examples through inner products, we can map the
training examples x; - ; into an alternative space ¢ (x;) - ¢ (z;), so called
feature space, by choosing kernel K (z;, 2;) = ¢ (2;) - ¢ (2;). The learning
task therefore is the maximisation of the Lagrangian:

m

W) =3 -5 O miagyiyK () 7

i=1 i,j=1

subject to constraints Eq. 6. W (a) can be solved using quadratic program-
ming techniques. Once we have found the optimal «;, the classification of an
unknown example is based on the sign of function:

G(2) = ajy;K (2, z;) + b (8)
j=1
For the non-separable case, the learning task involves the minimisation of
2
Jwl> +C Y& (9)
i=1

subject to the constraints:

& > 0V
where C' is the penalty to errors and &; are positive slack variables that
measure the amount of constraint violations.

Advantage of SVM with respect to other methods

One of advantages of SVMs is that the learning task is insensitive to the
relative numbers of training examples in positive and negative classes. For
example, in our case, the candidate text regions usually involve 15.4% false
alarms (in terms of regions). The number of positive examples thereby is
roughly 6 times as the negative examples. Most learning algorithm based on
Empirical Risk Minimisation, for example MLP, will tend to classify only the
positive class correctly to minimise the error over data set. Since SVM aims at
minimising a bound on the generalisation error of a model in high dimensional
space, so called Structural Risk Minimisation, rather than minimising error
over data set, the training examples that far behind the hyper-planes will not
change the support vectors. Therefore, SVM is used to verify text regions in
the candidate text regions for achieving a lower false alarm rate.

Training of the SVM model

The aim of training a SVM is to find out a set of support vector to minimise
Eq. 7. Here, we use typical Radial basis function (RBF) kernel:

—llz—=]|

K(z,xzj) =€ 202 (11)

where the kernel bandwidth o is a parameter that close related with the
distribution of sample vectors in original input space. During the training
process, a wrong ¢ may lead to overfitting of the SVM, where the SVM gains
a low error rate on the training data but a high error rate on testing data.
In order to avoid overfitting, we perform K-fold cross-validation in training
process. The K-fold cross-validation can be described like that:

1 Partition the training data set into K parts of equal size, refer to as
”folds”.

2 Assign each fold a possible value of o.

3 For i =1 to K do Train the SVM using all the folds except the ith as
the training set and the ith o as parameter. Evaluate the error of the
output hypothesis using the ith fold as the test set.

4 Take the value of ¢ corresponding to the lowest error rate computed in
(3) as the optimal parameter and train the SVM using all the training
data to get a good support vector set.

The details of SVM training algorithm can be found in [9].

Text verification rating

During text verification, we extracted feature vectors by sliding 16x16 window
every 4 pixels through feature images of normalised candidate text regions.
Thus, for each candidate text region r, we obtained a set of feature vectors

Zy = (2],...,2]). Using support vector set S, we compute the magnitude of
G(=}) =Y ayK(2],z) +b (12)
;€S

as the confidence of that vector z] belongs to a text region. The confidence
of the whole candidate text region r is defined as:

1 &
Conf(r) = Z G(z]). e*70 (13)
rez, V2moy

where, d; is the distance from the centre of slide window i and the centre of
the text region r. We experimentally let oo = 10. A candidate text region r
is verified as a text region if Conf(r) >0 .

EXPERIMENTS

Experiments were carried out on a database consisting 2,400 candidate text
regions or 76,470 vectors for each of the four kinds of features, including both
real text regions and false alarms, resulting from the detection step [2] in one
hour video including advertisements, sports, interviews, news, movies and
50 compressed images including the covers of Journals, maps, fliers. Each
video frame or image has 352x288 or 720x576 resolution in JPEG or MPEG
format and been decompressed and converted into grayscale before applying
text location and verification. Some video frames contain the same closed
captions but with different backgrounds. The feature vectors are partitioned
into two sets: training set and test set, with the same size. We assure that
the training set of each feature contains the vectors extracted from the same
images and locations.

In order to have an idea about the generalisation capability of SVM and
to compare with an Empirical Risk Minimisation technique, we also train a
multiple layer perceptron (MLP) for comparison. The MLP consists of an
input layer, a hidden layer with 400 nodes and an output layer with two nodes
indicating text and non-text. The activity function of neural is sigmoid.

The performance of verification listed in table 1 is measured in error rate
of sample vectors. We can see that SVM shows better performances than
MLP in any feature spaces due to its insensitive to the relative numbers of
training examples in positive and negative classes. Using SVM, the constant
variation feature illustrates a good performance in characterising texture of

TABLE 1: ERROR RATE OF SVM AND MLP FOR TEXT VERIFICATION. DIS: DIs-
TANCE MAPPING FEATURE; DERI: DERIVATIVE OF IMAGE; CV: CONSTANT VARIA-
TION FEATURE; DCT: DCT COEFFICIENTS

Training Tools | DIS | DERI | CV DCT
MLP 7.70% | 6.00% | 7.61% | 5.77%
SVM 2.56% | 3.99% | 1.07% | 2.92%

text of unknown grayscale by obtaining the best performance of 1.07% error
rate, though it is not the best feature in MLP.

Using the confidence value computed by Eq. 13, we can remove all the
false alarm regions from the 2,400 samples. Applying both text location and
verification algorithms on our original database, Figure 2 shows some text
verification results (text string has less than 2 characters is not regarded
as a text string because it is difficult to be used as a keyword in indexing
and retrieval task). The present method correctly located 98.7% text regions
without producing any false alarms. The missing text regions are mostly
yielded during the roughly detection step.

Figure 2: Verified text regions and false alarms in images or video frames.

CONCLUSION

In this paper, we proposed a SVM based method for verifying the texture of
embedded text of any grayscale value in images and videos. Four kinds of fea-
ture: distance map, derivative of image, constant variation feature and DCT
coefficients are presented and compared in this method. The experiments
show that SVM is a better technique than MLP for addressing text texture
verification problem and constant variation is the best feature in all the four

proposed features in characterising text textures. As a pre-processing step,
the presented verification method leads to a satisfied character and word
recognition results in extracting text from images and videos. We apply text
segmentation [1] and OCR on the verified text region and achieved a 92.5%
character recognition rate and 91.7% word recognition rate.

ACKNOWLEDGMENT

The authors would like to thank Dr. Samy Bengio, Ronan Collobert, and
Dr. Sebastien Marcel for their comments on this work.

REFERENCES

[1]
[2]

(3]
[4]

[9]
[10]

[11]

D. Chen and J.-M. Odobez, “Text Recognition in Complex Background Based
on Markov Random Field,” in ICPR, 2002.

D. Chen, K. Shearer and H. Bourlard, “Video OCR, for Sport Video Annota-
tion and Retrieval,” in Proc. of the 8th IEEE Int. Conf. on Mechatron-
ics and Machine Vision in Practice, Aug. 27 2001, pp. 57-62.

E. Feig and S. Winograd, “Fast algorithms for the discrete cosine transform,”
IEEE Trans. Signal Processing, vol. 40, no. 28, pp. 2174-2193, Sept. 1992.
C. Garcia and X. Apostolidis, “Text detection and segmentation in complex
color images,” in ICASSP, 2000, pp. 2326-2329.

H. Li and D. Doermann, “Text enhancement in digital video using multiple
frame integration,” in ACM Multimedia, 1999, pp. 385-395.

T. Sato, T. Kanade, E. K. Hughes and M. A. Smith, “Video OCR for digital
news archives,” in IEEE Workshop on Content Based Access of Image
and Video Databases, Jan. 1998, Bombay.

K. Sobottka, H. Bunke and H. Kronenberg, “Identification of text on colored
book and journal covers,” in ICDAR, 1999, pp. 57-63.

J. Toriwaki and S. Yokoi, “Distance transformations and skeletons of digitized
pictures with applications,” Pattern recognition, pp. 187-264, 1981, L. N.
Kanal and A. Rosenfeld editors.

V. Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.

V. Wu, R. Manmatha and E. M. Riseman, “Finding text in images,” in Proc.
ACM Int. Conf. Digital Libraries, 1997, pp. 23-26.

Y. Zhong, K. Karu and A. K. Jain, “Locating text in complex color images,”
Pattern Recognition, vol. 10, no. 28, pp. 1523-1536, 1995.

