Mutliscale Facial Expression Recognition using Convolutional Neural Networks

Automatic face analysis has to cope with pose and lighting variations. Especially pose variations are difficult to tackle and many face analysis methods require the use of sophisticated normalization procedures. We propose a data-driven face analysis approach that is not only capable of extracting features relevant to a given face analysis task, but is also robust with regard to face location changes and scale variations. This is achieved by deploying convolutional neural networks. We show that the use of multi-scale feature extractors and whole-field feature map summing neurons allow to improve facial expression recognition results, especially with test sets that feature scale, respectively, translation changes.


Published in:
Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 02)
Presented at:
Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP 02)
Year:
2002
Publisher:
Ahmedabad, India
Keywords:
Note:
IDIAP-RR 02-52
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)