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Abstract. A speaker verification system which allows users to chose their own password is
presented. The system has no a priori knowledge of passwords. A hybrid HMM/ANN system
is used to infer the phonetic transcription of the password. The emission probabilities are then
modeled by a multi-Gaussians HMM model. Evaluation experiments, conducted on PolyVar
database, showed results comparable with a system where the correct phonetic transcription of
the password is known a priori.
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1 Introduction

In most text-dependent speaker verification systems, the password is constrained to be within a small
vocabulary. So, the system has some a priori knowledge (e.g., the phonetic transcription of the
word) about the password of the speaker. However, in speaker verification based on user customized
password (SV-UCP), users can choose their own password from an unconstrained vocabulary. This
enables better user friendliness and increased security. Nevertheless, the SV-UCP raises some issues
in both enrollment and test phases:

1. We have to automatically find (infer) the topology (in terms of sub-word models like phonemes)
of the password model from a few repetitions of the user password. The inferred model should
be representative of the lexical content of the password. This step requires a good speaker
independent speech recognition system:.

2. We have to quickly adapt the parameters of the inferred model towards the characteristics of
the speaker using only a small amount of the adaptation data.

3. We have to determine the a priori threshold (speaker dependent or speaker independent) for the
decision to accept or reject a speaker.

4. We have to find an appropriate world model for score normalization.

The approach presented here exploits some of the advantages of the hybrid HMM/ANN systems [1]
where an Artificial Neural Network (ANN) is used to estimate Hidden Markov Model (HMM) emission
posterior probabilities (or scaled likelihoods). In this framework, HMM/ANN systems usually yield
very good phonetic recognition rates, and are also well suited in estimating a confidence measure [2, 3],
which makes them particularly amenable to perform HMM inference from acoustic data. The emission
probabilities of the inferred HMM model are then modeled in terms of speaker adapted multi-Gaussians
HMMs models. Some related works can be found in [4, 5].

The rest of the paper is organized as follows: Section 2 briefly introduces the similarity measure
that we have used in experiments, while Section 3 describes the evaluation databases. Section 4
presents a detailed description of the method and Section 5 describes the experiments conducted and
provides an analysis of the results obtained.

2 SV-UCP Decision Rules

In SV-UCP, we are interested in estimating the joint posterior probability P (M, Si|X) representing
the probability that the correct speaker Sy has pronounced the correct password Mj, given the observed
acoustic vector sequence X. During verification, this probability is compared to the joint posterior
probability that any other speaker (impostor) may have pronounced the correct password P (M, Sg|X)
and to the joint posterior probability that any speaker (impostor or client) may have pronounced any
other password (text) P(Mjy,S|X). Hence, the decision rules can be formulated as follows:

S=08 if P(My,Sk|X)> P(My,Sk|X) (1)

and  P(My, St X) > P(Mx, S|X) (2)

Using Bayes rule, and assuming that the simultaneous probability of any speaker and any word is equal
for all combinations of speakers and words, decision rules (1) and (2) can be rewritten as follows:

P(X|My, Sk) > P (M, Sy)
P(X|My,Sy) ~ [ P(My, Sk)

=4 (3)
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P(X|My,S) ~ | P(My,Sy)

= Ay (4)

where A; and A, are the decision thresholds.
To estimate P(X M, S) we have used a Gaussian Mixture Model (GMM). So P(X|My, S) ~ P(X|S).
Taking the logarithm of (3) and (4), and normalizing each probability by the number of frames
in the test utterance, after having removed the silence frames, yields to the following log-likelihood
ratios:

{LLRl:LlogP(X|Mk,Sk) —ilogP(X|Mk,5k)] > 5)
N1 N2
[LLRZ: L log P(X|Mq, Sp) — —log P(X|S)] > ws 6)
N1 N?)

The first decision rule (5) is used to verify if the speaker who pronounced the correct password
is the true claimant or not. The verification is mainly based on the characteristics of the speaker,
and hence, it represents the speaker verification part. The second decision rule (6) is used to verify
if what is pronounced (text) is the correct password of the claimed identity or not. This is the
utterance verification part, except that we use the speaker-dependent HMM password model instead
of speaker-independent HMM model.

Usually, the decision to accept or reject a speaker is taken in two steps. First, we perform an
utterance verification step, and if the score exceeds the threshold ws, then we perform a speaker
verification step. So, the speaker is accepted if the two scores exceed their respective thresholds
simultaneously. It has been found [6] that the combination of these two scores can significantly
improve the performance of the system. In this paper, among different combination techniques, we
have used a simple weighted combination technique. The final decision to accept a speaker can be
defined as follows:

a LLR1+ (1—a) LLR2 > § (7)

where 0 < a < 1. The values of the parameter « and the threshold § are optimized using a development
set.

3 Database, Protocol and Acoustic features

Two databases were used in this work. The Swiss French Polyphone database [7], was used to
train different speaker-independent speech recognizers. The speaker verification experiments were
conducted using the PolyVar database [7]. This database comprises telephone recordings from 143
speakers, each speaker recording between 1 and 229 sessions. Each session consists of one repetition
of the same set of 17 words common for all speakers. This set of 17 words was divided into three
subsets datal' and data2? with 7 words in each subset and data3 with the remaining 3 words. A
set of 38 speakers (24 males and 14 females) who have more than 26 sessions were selected. This
set was also divided into two subsets speakers! and speakers2 of 19 speakers. For each speaker in
speakers! and speakers2 and each word in datal and data2, the first 5 utterances of the same word are
used as training data, and between 18 and 22 utterances were used as client accesses with the correct
password. Each speaker in speakers! (respectively in speakers2) is considered as an impostor for each
speaker in speakersl (respectively in speakers2). Two accesses with the correct password from each
impostor (in speakers1 and speakers2) and 3 accesses with a wrong password® from each speaker (client

ldatal = { exposition, message, mode d’emploi, musée, précédent, quitter, suivant}
2data2 = { annulation, casino, cinéma, concert, galerie du manoir, gainadda, louis moret }
3chosen from data3
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and impostor in speaker!) are used as impostor accesses. Later we will refer to (speakersi, datal),
(speakersl, data2), (speakers2, data2), (speakers2, datal) as devl, dev2, eval and eva2 respectively.
Unlike dev! and dev?2, there is no impostor accesses in eval and eva2 with a wrong password; all the
test accesses are done with the correct passwords.

For acoustic parameters, two kinds of parameters were used: 12 RASTA-PLP coefficients with their
first temporal derivatives as well as the first and second derivative of the log energy were calculated
every 10 ms over 30 ms window, resulting in 26 coefficients. These coefficients, which are more
suitable for speech recognition, were used to train a speaker-independent multi-layer perceptron (SI-
MLP) which is used to infer the password of the user. In order to keep the characteristic of the
user, MFCCs were used for speaker adaptation. 12 MFCCs with energy complemented by their first
derivatives were calculated every 10 ms over 30 ms window, resulting in 26 coefficients.

4 The approach

The approach presented here is based on hidden Markov models (HMM). We started from:

1. A well trained Speaker-Independent Multi-Layer Perceptron (referred to as SI-MLP) with pa-
rameters f. This MLP was trained on Swiss French Polyphone database with RASTA-PLP
features. The SI-MLP had 234 input units with 9 consecutive 26 dimensional acoustic vectors,
600 hidden units and 36 outputs, each output associated with a specific phone. This SI-MLP
achieved 68% as a phonetic recognition rate. To this MLP, we associated an ergodic HMM
model M with 36 states. Each state belongs to a specific output of the SI-MLP.

2. A HMM speaker-independent speech recognition (which we will refer to as \) with 36 context-
independent phone models. The phone models consisted of 3 states left-to-right HMM with
3 mixtures/state. This HMM model was used as a prior distribution for MAP (maximum a
posteriori) adaptation [8] of a new client and to build the “world model” for score normalization.
This HMM model was trained on Swiss French Polyphone database with MFCC.

3. A GMM with parameters A was modeled by 150 (diagonal covariance) Gaussians and trained
on Swiss French Polyphone database with MFCC. This GMM was used for utterance score
normalization.

4.1 HMM topology inference

For each new customer, we match (using Viterbi alignment) each of the utterances (5 repetitions)
in the enrollment data with the ergodic HMM model M using local posterior probability p(qe|zy,6)
estimated by the SI-MLP (6). The result is 5 phonetic transcriptions from which we select the best
one to build up the user HMM password model. Two criteria were used to determine the best phonetic
transcription:

1. The highest, time normalized accumulated log posterior probability (HNPP) defined as:

o~

N;
1 - n,i
M = arg max | < E_llogP(qz |0,i,0) (8)

th

where q?’i represents the phonetic symbol associated with the acoustic frame xz,; of the i
repetition. N; is the length of the utterance i.

2. The highest, global average time normalized accumulated log posterior probability (HANPP):
we force align all the enrollment utterances on each phonetic transcription using local posterior
probability estimated by the SI-MLP. The best phonetic transcription is the one which best
match all the enrollment utterances.
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The topology of the user customized HMM model M}, is then simply built-up by strictly concatenating
left-to-right (with only loops and skips to the next state) HMM states corresponding to each of the
phones in the above “optimal” phonetic sequence M.

4.2 HMM parameter adaptation

Once the user HMM model My, is inferred, a MAP adaptation procedure using all the enrollment data
is performed. This procedure consisted of adapting the mean of the Gaussians of the phone models of
the speaker independent speech recognizer (A) which constitute the inferred model M} as well as the
transition probabilities between these phone models. The result is a speaker-dependent HMM model

(Ak)-

4.3 Score computation

Having created all models, the two log-likelihood ratios LLR1 and LLR2in (5) and (6) are estimated
as follows:

1 1
LLR1 = — log P(X|My, \i) — — log P(X | My, \) (9)
N Ny
1 1
LLR2 = — log P(X| My, M) — — log P(X|A) (10)
N N;

During verification, a simple silence detector based on an unsupervised bi-Gaussian model [9] was
used to remove the silence frames before GMM score computation, while in the HMM a silence model
is applied in the beginning and the end of the password Mj,.

4.4 Threshold determination

The performance of the method was optimized using a development set to minimize the equal error
rate (EER) using a speaker-independent threshold. In our experiments, to assure that speakers in
development (dev! and dev2) and evaluation (eval and eva2) sets have different passwords, we have
estimated the thresholds §; and &2 using devl and dev2 respectively, and we have used them as a
priori thresholds on eval and eva?2 respectively.

4.5 Decision

To take the decision to accept or reject a speaker, first we normalize the score (7) (to get a common
prior threshold for all speakers) of a test access from a speaker in eval (respectively in eva2), by
subtracting the threshold §; (respectively d2) from the score of the test access. If the normalized score
is positive, then the speaker is accepted, otherwise, the speaker is rejected.

5 Experiments and Results

All experiments reported here were conducted using the Torch library*. For comparison purposes,
results with the correct phonetic transcription of the password are also given. This is the reference
system.

5.1 Results

Figure 1 shows the performance of the reference (COR) and the SV-UCP systems with the two
criteria, used for HMM inference. The circles correspond to the performance of the systems with
a priori threshold. Table 1 gives more details.
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Figure 1: DET curve comparing the performance of the reference system and the UCP systems on the
evaluation set. FA [%] is the false acceptance rate and FR [%] is the false rejection rate.

| |  Threshold | Fa [%] [ Fr [%] | Hrer[%] ]

POSTERIOR | 3.084 | 3979 | 3.981
HANPP —pqioR 8.156 | 1.971 | 5.064
xpp | POSTERIOR | 3.060 | 3.600 | 3.600

PRIOR 7.915 | 2.083 | 4.999
cor | POSTERIOR | 3482 | 3.491 | 3.8

PRIOR 7.455 | 1.764 | 4.609

Table 1: The peformance of each system on the evaluation set: The first line is the EER estimated a
postoriori and the second line is the HTER estimated using a priori threshold.

From Figure 1, we can see that the circles are not close to the EER region (crosses). Indicating
that both development and evaluation sets have two very distinct thresholds. This is probably due
to the fact that both development and evaluation sets have different passwords and we do not have
enough words in the development set to reliably estimate a speaker independent threshold. Figure 1
and Table 1 show that the two SV-UCP systems have comparable performance, but they perform
slightly worse than the reference system.

5.2 Analysis

To determine the reasons for these results, and to evaluate how good the inferred HMM model is, we
plot the variations of the EER on the development set and the associated HTER, (Half Time Error
Rate) estimated with a priori threshold on the evaluation set as a function of the combined parameter
a. The results are shown in Figure 2.

There are two informative values of o which can help us to analyze the results obtained above.
These values correspond to the performance of the system where « = 0 and a = 1.

e For « = 0, the performance of the combined system becomes equal to the performance of
the utterance verification part (LLR2). In this case, the reference and the SV-UCP systems
will have the same normalization model (GMM) to estimate LLR2. So, if one of these systems
performs better than the others, this should be attributed to the user HMM password model. Or

4http://www.Torch.ch
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Figure 2: EER variations on the development set and HTER variations on the evaluation set as a
function of the combined parameter .

the HTERs on the evaluation set for the reference and the SV-UCP systems show no difference
between these three systems. This indicates that the small improvement of the reference system
can not be attributed to the fact that in this system we use the correct phonetic transcription
of the password while for the other systems, we infer the phonetic transcription.

e For « = 1, the performance of the combined system becomes equal to the performance of
the speaker verification part (LLRI). To estimate LLR1, the client model (My,\;) and the
normalization model (Mj,,\) have the same topology® within the same system, but it is different
from one system to another. In this case, if one system performs better than the other, this
performance can be attributed to either the user model (inferred HMM password) or the nor-
malization (world) model. As we have just seen in the case for a = 0, the client model performs
comparably for all the systems. So, the improvement in the reference system is mainly caused
by the normalization (world) model which is better than the one used in the SV-UCP.

One possible explanation is that the world model should reflect how speakers pronounce the password
and not how the client pronounces it as used in this experiment for the SV-UCP. The simplest way
to model this inter-variability in pronunciation is to choose the correct phonetic transcription of the
password as a world model. This is another reason why we need good phonetic speaker independent
speech recognition.

6 Conclusion

In this paper, user customized password speaker verification based on hidden Markov models is pre-
sented. A hybrid HMM/ANN was used to find phonetic transcriptions of the enrollment utterances,
from which we built up the user HMM password model. The system gave comparable results com-
pared to the reference system, where the correct phonetic transcription of the password is known a
priori. The main conclusions are:

1. As we can expect from the results, randomly choosing one of the phonetic transcriptions to build
the HMM model does not significantly affect the performance of the system. However, we have
to make sure that the speaker effectively pronounces the same password.

2. In SV-UCP within the HMM framework, not only how to infer the HMM password is important,
but which model we use as a “world” model for score normalization is also important.

5By the same topology, we mean the same states and the same connections between states
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3. The technique used here for HMM inference is based on single pronunciation modeling. As a
speaker can not pronounce exactly the same word in the same manner from one trial to another,
choosing one phonetic transcription to model the password is not a good choice. It is clear that
the word model allowing more than one pronunciation should perform better than word model
allowing just one pronunciation. One solution is to use all the inferred phonetic transcriptions
to model the HMM password by keeping them separately, or we can merge them to build one
HMM model [10].
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