A Multi-sample Multi-source Model for Biometric Authentication

In this study, two techniques that can improve the authentication process are examined: (i) multiple samples and (ii) multiple biometric sources. We propose the fusion of multiple samples obtained from multiple biometric sources at the score level. By using the average operator, both the theoretical and empirical results show that integrating as many samples and as many biometric sources as possible can improve the overall reliability of the system. This strategy is called multi-sample multi-source approach. This strategy was tested on a real-life database using neural networks trained in one-versus-all configuration.


Published in:
IEEE International Workshop on Neural Networks for Signal Processing (NNSP)
Presented at:
IEEE International Workshop on Neural Networks for Signal Processing (NNSP)
Year:
2002
Keywords:
Laboratories:




 Record created 2006-03-10, last modified 2018-03-17

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)