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Abstract. We recently proposed a method to find cluster structure in home videos based on sta-
tistical models of visual and temporal features of video segments and sequential binary Bayesian
classification. In this paper, we present analysis and improved results on two key issues: fea-
ture selection and performance evaluation, using a ten-hour database (30 video clips, 1,075,000
frames). From multiple features and similarity measures, visual features are selected in order to
minimize the empirical probability of misclassification. Temporal features are chosen to reflect
the patterns existing in both shot and cluster duration and adjacency. Finally, we describe a
detailed performance evaluation procedure that includes cluster detection, individual shot-cluster
labeling, and prior selection.
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1 Introduction

The interest in developing efficient schemes for accessing and retrieving home video has increased [7],
[5], [6], [8], [10], [4], in view of the amount of available information and the variety of applications.
Home videos are composed of a set of events, each composed of a few video shots, randomly recorded
along time. However, and in spite of this lack of storyline, recent studies of home video databases reveal
that non-professional filmmakers implicitly follow certain rules of attention focusing and recording,
which induce structure in the video content [6], [4].

Specifically, we have argued that the cluster structure of home videos can be disclosed from such
rules, using a methodology based on two concepts: the development of statistical models of visual
and temporal features of video segments, and the reformulation of hierarchical clustering as sequential
binary Bayesian classification [4]. Such approach allows for the integration of prior knowledge of the
cluster structure of home videos, and offers the advantages of a principled methodology [3]. We have
shown its usefulness in real-life consumer videos.

In this paper, we show that the detailed analysis of a home video database under the Bayesian
perspective can be further employed both for determination of better feature spaces, and for a thorough
performance evaluation of video structuring algorithms. In the first place, we analyze the issue of visual
similarity of home video segments as a two-class problem. In other words, how similar are video shots
that belong to the same (or to a different) event? Using multiple shot features and similarity measures,
visual features are selected in order to minimize the empirical probability of segment misclassification.
In the second place, we analyze the temporal structure of home video clusters, and select temporal
features that reflect the patterns existing in both shots and clusters. To the best of our knowledge,
there are no reported studies of feature selection for home video structuring as we have defined it. In
the third place, we perform a detailed evaluation of the performance of our methodology on a ten-hour
video database, with respect to cluster detection, individual shot-cluster labeling, and the effect of
prior selection.

The paper is organized as follows. Section 2 describes the video structuring algorithm. Section 3
describes the procedures for feature extraction and selection. Section 4 presents the evaluation of our
methodology. Section 5 draws conclusions.

2  Owur approach

Hierarchical agglomerative clustering [3] has been previously used in video analysis [13]. In view of the
difficulty of defining a generic generative model for intra-cluster features in home videos, we proposed
to view hierarchical clustering as a sequential binary classifier, which at each step selects a pair of
video segments s; and s;. and decides whether they should be merged according to Bayesian decision
theory [3]. Let £ a binary r.v. that indicates whether any pair of segments correspond to the same
cluster. The Maximum a Posteriori (MAP) criterion establishes that given a realization ;; of X
(representing features extracted from s; and s;), and some knowledge about the world Z, the class £
that must be selected is

&= mwmgwummim_ﬁ@. (1)

Applying Bayes’ rule, the MAP criterion is expressed by

_p(zl€ =1,T)Pr(€ =1|7) ™

z L (2)

L =
pl€ =0, PrE =0) 1,

where p(x|€,7) are the class-conditional pdfs of the observed features, Pr(£]Z) is the prior of &,
L denotes the posterior odds, H; denotes the hypothesis that the pair of segments belong to the
same cluster and therefore should be merged, and Hy denotes the opposite. The prior allows for the
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introduction of knowledge about the characteristics of home video. After performing shot boundary
detection, our method starts by treating each video shot as a cluster, successively evaluates the pair
of clusters that correspond to the largest L, merges only when L > 1, and continues until H; in Eq.
2 is not longer valid for any pair of clusters. The algorithm does not require any ad-hoc parameter
determination, and generalizes previous time-constrained clustering algorithms [13].

In [4], the likelihoods are represented by Gaussian mixture models (GMMs) of global segment
visual similarity, temporal adjacency and duration. However, the selection of better features would
improve performance. A study of the cluster structure of the database, and of the discriminative
power of features and similarity measures is presented in the next section.

3 Feature Extraction and Selection

Our data set consists of 30 MPEG-1 video clips, collected from eleven subjects, and about ten hours
long (801 shots). Each sequence has a duration of around 20 minutes, and depicts typical indoor and
outdoor scenarios. A third-party ground-truth at the shot and cluster levels was manually generated.

3.1 Extraction of Visual Features

Home video shots usually contain more than one appearance, due to the typical hand-held camera
motion. In [4], we represented a shot by its mean color histogram. In this paper, we have adopted an
approach that (1) detects subshots inside each shot, which approximately correspond to an individual
scene appearance, and (2) extracts features from a set of random frames in each subshot. This
generates a three-level hierarchy, as shown in Fig. 1, where a shot s; consists of K subshots s,
s; = {sir}, and each subshot is represented by M random frames S;km,, Sit = {Sikm }. Additionally,
we selected joint histograms [9] to represent color and scene structure features of each random frame.
Investigated features included color in the RGB and HSV spaces, color ratios [1], edge density and
edge directions [12].

Figure 1: Intrashot hierarchy

The similarity between two shots s; and s;, can then be computed by d(s;, s;) = min{dss(six, sji)}-
In turn, the similarity between subshots s;i, s, whose random frames are represented by joint his-
tograms higm, Rjin, is defined as dss(sik, sji) = min{ds(Rikm, hjin)}, where dy was chosen among
the L; metric dy,,, the metric based on Bhattacharyya coefficient dg [2], and a measure based on
correlation coefficient d¢.

3.2 Selection of Visual Features

We are interested in knowing how similar video shots that belong to the same (or to a different) event
are. For this purpose, we estimated the distributions of intra- and inter-cluster visual similiarity,
p(d|€ = 1,Z) and p(d|€ = 0,Z), for all the features and metrics just described [11]. The empirical
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probability of error, assuming noninformative priors, can be computed by

1
Pr(e|Z) = mﬁuwﬁm_m =0,Z) + Pr(e| =1,7)), (3)
where Pr(e|l€ = 0,Z) and Pr(el€ = 1,7) are the overlapped areas between the two class-conditional

pdfs of visual similarity. Table 1 and Fig. 2(a-b) summarize the results.
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Figure 2: (a-b) Cluster visual similarity. (a) mean RGB histogram, (b) subshot analysis, RGB-edge
density. Intra- and inter-cluster pdfs are denoted by continuous and dotted lines. (c-d) Temporal
features. (d) Empirical pdf of normalized cluster duration, and fitted GMM (maximum duration:
1217 s). (d) Empirical pdf of number of shots per cluster. 50.3% (resp. 80.4%) of the clusters are
composed of two (resp. six) or less shots.

The advantage of using subshot detection and random frames (SS+RF) as opposed to averaged
shot information is shown in Fig. 2, as the former has increased the separability between the two
classes. Table 1 shows the empirical probability of error computed for RGB histograms with and
without subshot detection, and for 4-D histograms that combine color and edge density (EDEN),
edge directions (EDIR), and color ratios on the Y component (YR). No significant improvement was
found when using HSV color models. RGB-EDEN produced slightly better results than other 4-D
histograms. Additionally, dr, and dp produced better results than the correlation coefficient. The
Bhattacharyya coefficient can be interpreted as the cosine of the angle between two component-wise
square-rooted pdfs [2], so dr, and dp can be thought of as representating magnitude and angle, and
constitute the visual features in the clustering algorithm.

3.3 Selection of Temporal Features

Two features are typical in home videos: (1) people can focus their attention on what they record for a
limited amount of time [6], and (2) there exists continuity when recording portions of the same event.
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Indeed, the analysis of our database confirmed that (1) shot duration, cluster duration, and number of
shots per cluster all present definite patterns, and (2) clusters are localized in time, so strong temporal
adjacency can be exploited (pdfs not shown due to space reasons). Fig. 2(c-d) illustrates the patterns
of temporal features. The accumulated length of two individual segments is an indication about their
belonging to the same cluster (segments of increasing length become less likely to belong to the same
video cluster), and is defined as

Agj = min{lej — bil, |e; — bj[} (4)

where b; and e; denote the first and last frame number of s;. A feature vector is then defined by
X = (dr1,dB,A).

JointHist Type Pr(e)
RGB Shots Only | 0.364
RGB SS + RF | 0.319

RGB-YR SS + RF | 0.295
RGB-EDIR | SS + RF | 0.286
HSV-EDIR SS + RF | 0.284
RGB-EDEN | SS + RF | 0.280

Table 1: Feature Selection. L; metric

4 Performance Evaluation

The criteria for evaluation are C;: determination of the number of clusters, and C»: determination
of the cluster label for each shot, compared to the ground-truth [3]. Although many algorithms for
video clustering (home video or otherwise) have been proposed [13], [10], [7], their performance using
the two criteria is unknown in several cases. We are not aware of any comparative study of video
clustering techniques.

Results were generated with the leave-one-out method: one sequence was held for evaluation while
all the remaining were included in the training set for density estimation [3]. Given NC, the number of
clusters in the ground-truth (either in an individual sequence or in the whole database), C; is evaluated
by defining three variables: Detected Clusters (DC), False Positives (FP), and False Negatives (FN).
To evaluate Ca, Shots In Error (SIE) denotes the number of shots whose cluster label does not
match the label in the ground-truth. Finally, Correcting Operations (CO) indicates the number of
operations (merging/splitting) needed to correct the results so that SIFE is zero. We believe this is a
good indication of the effort required in interactive systems. We analyze the performance measures
as probabilities (denoted in the following by lowercase symbols) using two typical estimates: the
macro-average, which is the sample mean computed over the whole database, and the micro-average,
in which the measure is first estimated for each individual sequence, and then averaged over the whole
database. While the former assigns the same importance to each shot (or cluster) in the database, the
latter gives the same importance to each video sequence, regardless of its number of shots or clusters.

Table 2 evaluates the capability of our methodology to detect clusters. This is a hard problem, due
to the large variability in the number of clusters in home video. Macro-averages are over-optimistic
estimates as false positives in some sequences compensate for false negatives in others. In contrast,
micro-averages constitute reliable measurements. The estimated value for de was 0.75 (the ground-
truth would produce a value of one). Furthermore, our method has a tendency to oversegmentation
(compare fp and fn). Similar trends have been reported for other types of video [13], [10]. A detailed
analysis indicated that many false negatives consist of only one or two shots. As a baseline, we show
the poor result that is obtained with an algorithm that randomly estimates the number of clusters for
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Figure 3: (a) Posteriors of the probability of shot in error for different structuring algorithms. PC
denotes our approach. (c) Posteriors of the probability of correcting operations.

each video in the database. This result simulates the case in which home videos truly did not have
structure, so any random clustering would be equally good.

Method dem, fom | fnm
Random Clustering 0.470 | 0.514 | 0.015
Probabilistic Clustering | 0.750 | 0.171 | 0.079

Table 2: Cluster Detection Performance

Table 3 describes the performance in terms of shot-cluster assignment, for which both macro- and
micro-averages are useful measurements (the ground-truth generates a zero value for all cases). Dif-
ferences between them indicate variation of individual performance. We selected a number of baseline
methods for comparison, assuming the correct number of clusters for each sequence: By, which as-
signs a uniform number of shots per cluster; (ii) Bz, a version of K-means, in which the centroids were
initialized with randomly selected shots from each sequence; and (iii) Bz, K-means, with uniform ini-
tialization. We also present results for By (random clustering). Our methodology outperformed all of
the baseline methods. Using macro-averages (resp. micro-averages) as measurement, our methodology
assigned 71.1 (resp. 71.4)% of the shots to the correct cluster. Interestingly, uniform shot-assigment
performed better than K-means. A similar trend can be observed for the probability of correcting
operations (co). The mean number of shots per sequence is 801/30 = 26.7, and therefore with our
method 3.55 (resp. 4.62) operations are needed to correct the cluster assignments in a 20-minute
video.

Method siepr | copr | sien, COm

By 0.679 | 0.609 | 0.588 | 0.529

B, 0.453 | 0.167 | 0.430 | 0.200

B> 0.533 | 0.407 | 0.462 | 0.373

Bs 0.524 | 0.398 | 0.440 | 0.348
Probabilistic Clustering | 0.289 | 0.133 | 0.286 | 0.173

Table 3: Shot Assignment Performance

Using the Bayesian approach [3], suppose we observe n shots in error out of N. The likelihood
function Pr(n|sie) is a binomial distribution. Assuming a uniform prior, the expression for the pos-
terior is p(sie|n) oc sie™(1 — sie)¥ ™. Fig. 3(a) compares the posteriors over the probability of shot
in error, estimated for the different clustering methods. Fig. 3(b) presents the corresponding analysis
for the posterior of the probability of correcting operations p(co|n).

The effect of the prior distribution is shown in Table 4. A uniform prior does not make use
of knowledge of the problem: merging should be discouraged as most video clusters consist of a
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few shots. The results reflect this fact: no false positives were detected in the entire database, but
excessive merging affected performance. On the other hand, the ML-estimated prior for our database
is Pr(€]Z) = {0.87,0.13}.

Method dem, fom | fom | sienm | sienm
Uniform prior | 0.573 | 0.000 | 0.427 | 0.309 | 0.393
Empirical prior | 0.750 | 0.171 | 0.079 | 0.286 | 0.289

Table 4: Effect of Prior Probability

An example of the generated video structure in a tree fashion is shown in Fig.4. Each shot is
displayed as a column of random frames. Qualitatively, our methodology provides quite good results.
Fig. 5 shows typical merging errors. As a general trend, outdoor clusters are harder to segment. There
are three reasons for erroneous merging: (1) high visual similarity between semantically disjoint but
temporally adjacent video clusters, (2) shots of very short duration, and (3) clusters of very short
duration. The reasons for oversegmentation of clusters are (1) high intra-cluster visual variability, and
(2) unusually long clusters.

Figure 4: Examples of video structuring on two Family video sequences (detail). The root node
corresponds to the video sequence, the middle nodes to the clusters, and the leaves to random frames
from shots.

b c d

Figure 5: (a-b), (c-d) Frames extracted from pairs of video shots that were erroneously merged by our
methodology.

5 Concluding Remarks

A detailed analysis of the visual and temporal structure of a relatively large home video database
offered a number of clues for probabilistic video structuring. The obtained results are encouraging,



8 IDIAP-RR 02-11

but also illustrate the complexity of the problem at hand. In particular, to quantify judgement
differences between people, due to the uncertainty of the contents, an alternative for performance
evaluation could consist in the definition of a pdf of human judgment in a Bayesian context, and its
use to quantify automatic algorithms. This approach is under evaluation.

Acknowledgements. Several of the analyzed video sequences belong to the Eastman Kodak
Home Video Database(©.
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