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Abstract

State transition matrices as used in standard HMM decoders have two widely perceived

limitations. One is that the implicit Geometric state duration distributions which they model do

not accurately reflect true duration distributions. The other is that they impose no hard limit on

maximum duration with the result that state transition probabilities often have little influence

when combined with acoustic probabilities, which are of a different order of magnitude. Explicit

duration models were developed in the past to address the first problem. These were not widely

taken up because their performance advantage in clean speech recognition was often not

sufficiently great to offset the extra complexity which they introduced. However, duration models

have much greater potential when applied to noisy speech recognition. In this paper we present a

simple and generic form of explicit duration model and show that this leads to strong

performance improvements when applied to connected digit recognition in noise.
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1. Introduction
There are two widely perceived limitations of the implicit duration modelling inherent in standard HMM decoding.

1. The Geometric state duration distributions implicitly modelled in standard HMM decoding do not accurately

reflect true state duration distributions.

2. This model imposes no hard limit on maximum duration, which limits the impact transition probabilities can

have in combination with acoustic probabilities, which have a different order of magnitude.

This second limitation really has no theoretical basis, because the acoustic probabilities in Eq.(Eq. 2) are implicitly

divided by and are therefore not dependent on the acoustic vector dimension. The literature on explicit

duration modelling already shows that duration constraints can sometimes improve recognition performance [1, 2, 5,

10, 12, 13]. The problem is that for recognition of clean speech this improvement is not always very great compared

with the cost of implementation of what have previously been somewhat ad-hoc and/or computationally expensive

duration models, and if care is not taken performance can even be reduced.

However, most applications require recognition in noise, and in this case the benefits of duration modelling can be

much more pronounced. In this article we present a simple and theoretically consistent form of duration model

implementation which consid-erably improves recognition performance in a wide range of noise conditions. Time

normalised duration probabilities could also provide a useful measure of recognition confidence in other applications

such as two-pass processing and keyword spotting.

2. Decoding with explicit duration models
Let word, state and observation sequences be denoted , and

. The equations which provide the basis for Viterbi MAP (Bayes optimal) decoding for whole word

model HMMs are as follows.

(1)

(2)

2.1 Implicit state duration models

is equivalent to when the states for each word are modelled separately. Let and denote “the state at

time ” and “the kth of K state models” respectively. On applying the Markovian independence assumptions we get:

(3)

(4)

(5)

Model parameters for standard HMM based ASR comprise parameters for the state pdfs ; word and state

priors , ; word pair probabilities , and state transition probabilities .

In applying the Markovian assumption to obtain Eq.(Eq. 4)

P X( )

W w1 … wM, ,( )= Q q1 … qT, ,( )=

X x1 … xT, ,( )=

W° maxarg W Q, P W Q, X( )=

maxarg W Q, P W( )P Q W( ) p X Q W,( )=

Q Q W,( ) qt qk
t

P W( ) P w1( ) P wi wi 1–( )
i 2=

M

∏=

P Q W( ) P Q( ) P q1( ) P qt qt 1–( )
t 2=

T

∏= =

p X Q W,( ) p X Q( ) p xt qt( )
t 1=

T

∏= =

p xt qt( )
P wi( ) P qk( ) P wi w j( ) P qt qt 1–( )



IDIAP-RR 02-088

(6)

it is assumed that state transition probabilities depend only on the previous state , and not on the time spent

so far in that state. In this case the probability of a state change from a given state at any time step is constant, so

that the final duration  for each state  follows a Geometric distribution, with

(7)

(8)

Figure 1. Fitting duration model pdfs.Duration histograms for a multi-state word (top left), and one state inter-
word silence (top right), a typical within-word state (bottom left), and an end-word state (bottom right). Each case

also shows fitted Geometric, Gamma, Poisson and Uniform pdfs.
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P fdk d=( ) θ 1 θ–( )d 1–=



IDIAP-RR 02-08 9

In this model duration probability always decreases with . A more accurate model would describe duration

probability first increasing with  up to the average state duration, and only then decreasing.

2.2 Explicit state duration models

The state sequence implicitly specifies a duration for each state. In Eq.(Eq. 6) this information is simply ignored.

Explicit duration models replace Eq.(Eq. 6) by

(9)

A histogram of duration counts is first obtained for each state from a suitable speech database together with

its state level segmentation. Duration distributions are then obtained by first fitting a suitable parametric

pdf (e.g. Poisson or Gamma) to the histogram data (see Section 3), truncating it, and then weighting it with the

normalised histogram.

If histogram probabilities were entirely replaced by their parametric fit, one could save storage by storing only the pdf

parameters. However, except for pdfs where Eq.(Eq. 17) has closed form (for the Geometric pdf these are the constant

transition probabilities) it is better to store (probability final duration greater than or equal to) values, , for

each .

(10)

2.2.1 State sequence probability evaluation

The sequence probability used by the explicit duration models in this article is exactly the same as used by the

standard implicit model, i.e. the product over of the frame to frame state transition probabilities. For a

terminated utterance this is the probability of the given sequence of states having the given durations. During Viterbi

the current state is not terminated and its contribution to the state sequence probability is the probability that it will

have a final duration >= its current duration. This is exactly what is given by the product of transition probabilities up

to . This fact is not changed in any way when transition probabilities are duration dependent.

d

d

Q

P qt q1 q2 …q, , t 1–( ) P qt qt 1– dt 1–,( )≈

hk d( ) qk
Pk fd d=( )

Self transition probabilities
vary with time

Other probabilities from
transition matrix scaled
to sum to 1

Figure 2. Explicit duration model. Word pair probabilities and state transition
matrices are unchanged, but transition probabilities now depend on state duration.

Time at state must
be recorded.

Pkl

Pkm

Pkk

P jk

Pge d( )
d

Pgek d( ) P fdk d≥( )≡ P fdk d=( )
i d≥∑=

t 1…T=

t
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Probabilities  are not needed in practice, but can be recovered if necessary using

(11)

Duration dependent self transition probabilities

(12)

(13)

can be obtained from  values as follows:

(14)

(15)

(16)

i.e. (17)

Non self transition probabilities

(18)

can then be obtained by normalising the usual transition probabilities  from any state to sum to one:

, such that (19)

, but (20)

,   so (21)

i.e. (22)

2.2.2 Simplicity of implementation

An important point about this form of explicit duration model is its simplicity. Once these probabilities are

available for each state, there is no change required at all to the standard decoder which uses implicit duration models,

except to propagate the current state duration along each Viterbi path, and to provide a routine which provides

duration dependent transition probabilities given  and the static transition probabilities using Eqs (Eq. 17, Eq. 22).

2.2.3 Word duration models

One can obtain word duration models in exactly the same way as for state duration models, and propagate the current

word duration as well as, or instead of, the state duration. Word durations are much longer than state durations and are

more bell shaped, so that candidate word duration pdfs would include the Gaussian. However, it would not be correct

to multiply together word and state sequence duration probabilities, because they are two ways of modelling the same

P fdk d=( )

P fdk d=( ) Pgek d( ) Pgek d 1+( )–=

Pkk P qt qk= qt 1– qk= fdt 1– d≥,( )=

P fdt d> fdt d≥( )=

Pge d( )

P fd d>( ) P fd d> fd d≥∧( )=

P fd d> fd d≥( )P fd d≥( )=

P fd d> fd d≥( )⇒ P fd d>( )
P fd d≥( )
------------------------ Pge d 1+( )

Pge d( )
---------------------------= =

Pkk

Pgek d 1+( )
Pgek d( )

------------------------------=

P jk P qt qk= qt 1– q j k≠= fdt 1– d≥,( )=

P qk q j( )

P jk αP qk q j( )=

Pkk α P qk q j( )j k≠∑+ 1=

P jkj k≠∑ 1 P qk qk( )–= α 1 Pkk–( )
1 P qk qk( )–( )

----------------------------------=

P jk

1 Pkk–( )P qk q j( )
1 P qk qk( )–( )

------------------------------------------=

Pge

d

d
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sequence. At the end of each word one could replace the contribution of the state duration probability for this word by

the word duration probability -but we tried this for the tests described in Section 4 and performance was decreased.

3. Duration model estimation
Having obtained duration histograms for each word and/or state, these values must be smoothed before they can

be used reliably as probabilities. One could convolve the histogram with some arbitrary smoothing window, but it is

more common to make use of fitted parametric pdfs. To fit a parametric pdf we first estimate its mean and variance

 as the sample mean  and sample variance .

, , (23)

Figure 3. Performance of different parametric pdfs Top Fig. compares WIL for Gamma, Geometric, Poisson and
Uniform pdfs with subway noise when duration model scaling factor is optimised for clean data. Bottom Fig.

shows same when scaling factor is optimised for SNR 20dB.
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We have tested the Gamma, Poisson, Geometric and Uniform distributions [Eq. 4]. The Gamma pdf has two

parameters,  and . This allows independent control of the pdf shape and scale.

Gamma:

Poisson: one parameter, :

Geometric: one parameter, :

In every case, the pdf is forced to zero for durations less than the minimum number of steps through each state model,

or greater than times the observed range of durations (where is a given tuning factor) then normalised. The

histogram is then smoothed by first normalising it to have area 1, , then forming a weighted average

with the fitted pdf

(24)

Stepping in steps of and in steps of , tests in Section 4 gave best results with and . Figure

3 compares the performance of these four pdfs with increasing levels of subway noise (speech data as in Section 4).

The Gamma distribution gives the best results at all intermediate (i.e. realistic) noise levels, and so was used

throughout for subsequent tests. From figure 1 it is not surprising that the Gamma pdf performs best.

4. Experiments

4.1 Recognition system

Duration models were installed in the decoder for an HMM/ANN recognition system in which scaled state

likelihoods are estimated by an MLP [3]. The MLP used here had 64 input units, 400 hidden units,

and 118 output units. The decoder used is the same as for an HMM/GMM, except that the transition probabilities are

not trained but fixed. HMMs were whole word models with straight-through topology, with the same transition

probability used throughout. This probability was tuned for clean speech to the value 0.6.

4.2 Test database

The test database was Aurora 2.0 [Eq. 11] which is based on TIDigits (speaker independent connected digits, 0..9, oh,

silence), down-sampled to 8 kHz. Training used the full 8440 clean training set. Tests used the four noise types in test

set (a) (each test comprising 1001 utterances at SNR 0, 10, 20dB, and clean. Features were 32 ms 32 channel mel

scaled log filter-bank coefficients, together with first time differences, at 10 ms centres (the missing-data recognition

approach, with which the present duration models are intended to cooperate, can only use filterbank coefficients).

4.3 Test results

Following previous tests with different pdfs and pdf/histogram smoothing factors (see Fig.3), the tests made here all

use a truncated Gamma pdf to fully replace the original duration histograms, with a duration range factor of 2.0. The

top figure in Fig. 4 shows WIL scores (see Appendix A) for explicit and implicit duration models at four noise levels

for just two of the four noise types tested (subway and babble). In this figure the duration model scaling factor

is tuned for the clean condition. The middle figure shows the

α µ 2 σ2⁄= λ µ σ2⁄=

f α λ, x( ) x
α 1–( )

e
λx– λ α– Γ α( )⁄=

α µ= f α x( ) e
α– α x

x!⁄=

α 1 µ⁄= f α x( ) α 1 α–( ) x 1–( )=

F F

h i[ ] h i[ ] N⁄←

P fd d=( ) Pe d[ ]= θ h d[ ] 1 θ–( ) f d( )⋅+⋅←

F 0.5 θ 0.1 F 2= θ 0=

P qk x( ) P qk( )⁄

ω
P W Q, X( ) P W( ) P Q W( )ω

p X Q W,( ) 1 ω–( )⋅ ⋅∝[ ]
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same when the scaling factor is tuned for SNR 20dB. The bottom figure shows scores averaged over all of the four

noise types tested. These results show that explicit duration modelling results in between 8% and 15% absolute error

rate reduction for SNRs 0 to 20 dB.

5. Discussion and conclusion
When transition probabilities depend on state duration their values at Viterbi step at t+1 are dependent on the choice

of highest scoring path to each state at step t. This leaves open the possibility that a subpath of the optimal path may

be eliminated at some t < T, in which case the solution found would be suboptimal. However, this has not prevented

us from achieving a considerable performance advantage in noise. The durations cost at step used by the model

Figure 4. Performance of different parametric pdfs. Top Fig. compares WIL (%word information lost) for subway
and babble noises using implicit and explicit Gamma duration models when duration prob. scaling factor is

optimised for clean data. Middle Fig. shows same when scaling factor is optimised for SNR 20dB. Bottom Fig.
shows results averaged over all four noise types tested (subway, babble, car, exhibition).

See Appendix A for corresponding WER scores.
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described here was: the probability that all the states so far have the identity they have; so far terminated states have

the duration they have, and the currently open state will have a final duration >= its current duration. Though not

guaranteeing optimality, this makes maximum use of available causal information. Algorithms using semi-hidden

Markov models have previously been developed to find globally optimal solutions in conjunction with duration

models [Eq. 13], but these were computationally expensive. With whole word models it is not possible to enforce

minimum duration constraints by increasing the number of states, as this would result in an excessively long

minimum word duration.

One cannot tune the duration scaling factor to the SNR (unless an SNR estimate is available), but even when no

duration probability scaling factor is used, the explicit duration models tested here still gave a strong performance

improvement in noise. One factor limiting the effectiveness of duration models is that durations vary greatly between

speakers, and with rate of speech. Duration constraints would be more effective if they were combined with a reliable

estimate of the current speech rate [Eq. 7]. One further problem we encountered is the difficulty in obtaining an

accurate duration model for the “silence” state. Before and after utterance silences can be of arbitrary length. Possibly

the silence duration should have been modelled as a uniform distribution - we did not test this. In contrast, between

and within word silences (or “spaces”) were always very short and are quite easy to model. We did test the use of a

separate space model, but this did not improve performance.

6. Future directions
An important feature of duration models is that their performance advantage is likely to be additive when combined

with other techniques for robust recognition which do not make use of duration information. Such techniques include

speech enhancement prior to recognition, multistream ASR [Eq. 9], and “missing data” methods [Eq. 6]. This was the

principal reason we decided to look again at duration modelling. After the positive results from these tests we will

next be experimenting with the way in which these duration models combine with other such techniques.
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Appendix A: Full recognition results (WER and WIL)

We include tables & plots are included for both WER and WIL scores comparing “implicit” and “explicit” duration

models. This is because the patterns of behaviour shown by WER and by WIL are very different. In Fig.5 and Tables

1,2,3 WER shows almost double the advantage shown by WIL for explicit models over implicit duration models at

SNR 20 dB, followed by a return to an advantage for implicit over explicit models for SNR < 10 dB. In contrast, WIL

in Fig.4 shows a consistent advantage for explicit duration models at all SNR < clean.
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Figure 5. Performance of different parametric pdfs (WER scores as opposed to WIL). Top Fig. compares WER for
subway and babble noises using implicit and explicit Gamma duration models when duration prob. scaling
factor is optimised for clean data. Middle Fig. shows same when scaling factor is optimised for SNR 20dB.

Bottom Fig. shows results averaged over all four noise types tested (subway, babble, car, exhibition).
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For recognition in noise it is especially important to use an accurate measure of recognition performance. From this

point of view the usual word error rate measure

(25)

is not satisfactory. Besides the fact that it is not bounded above and is therefore not a true percentage, it is not

symmetric in D and I. Insertion and deletion errors should normally have equal weight (unless the particular problem

in hand necessitates otherwise), but the WER score puts more weight on insertion than deletion errors and is therefore

not an accurate measure of performance. For this reason in this report we have used the WIL D/I symmetric word

error rate [8]

(26)

This was used for both duration probability scaling factor tuning and for recognition scoring. In considering the

confusion matrix (from which HSDI counts are obtained) as a contingency table, it is shown in [8] that WIL (before

normalisation to have a maximum value of 100) is approximately proportional to the Pearson large sample statistic

which is used for testing for association in contingency tables. There it is also shown that the mutual information

between the true and recognised sequence is proportional to the same statistic. WIL is therefore a direct measure of

the proportion of information loss, which an ideal classifier should minimise. It is also a true percentage.

The WIL measure is not yet widely in use, but that does not mean it should not be used where appropriate.

WER/WIL SNR 0 SNR 10 SNR 20 clean

subway 90.82/96.12 80.38/82.45 57.91/55.42 6.48/10.36

babble 88.94/96.13 71.98/76.09 46.67/40.74 7.62/11.96

car 91.14/97.42 74.23/81.91 49.24/43.80 6.98/11.34

exhibition 88.46/95.93 78.56/83.82 56.53/53.81 6.02/ 9.26

Table 1: Implicit, tuned on clean or SNR 20 dB (DM scaling factor = 0.7)

WER/WIL SNR 0 SNR 10 SNR 20 clean

subway 119.93/93.90 100.77/80.39 48.08/46.36 5.56/ 9.03

babble 99.21/92.59 78.66/67.22 33.62/32.23 6.77/10.87

car 92.42/93.76 78.14/ 71.67 33.70/33.27 6.29/10.41

exhibition 99.44/94.00 94.85/82.49 36.44/39.69 5.18/ 8.19

Table 1: Explicit, tuned on clean (DM scaling factor = 0.5)

WER/WIL SNR 0 SNR 10 SNR 20 clean

subway 118.62/93.36 78.63/77.42 24.81/37.23 9.24/14.90

babble 98.61/92.23 63.81/67.00 19.68/26.66 8.43/13.84

car 98.66/94.32 68.42/72.92 21.89/29.61 8.44/13.92

exhibition 110.27/96.50 62.08/75.54 19.50/31.38 8.61/14.84

Table 1: Explicit, tuned on SNR 20 dB (DM scaling factor = 0.8)

WER 100 S D I+ +( ) H S D+ +( )⁄=

WIL 100 1 H
2

H S D+ +( ) H S I+ +( )⁄–[ ]=
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