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Abstract. This paper proposes the use of Gaussian Mixture Models to estimate conditional
probability density functions. A conditional Gaussian Mixture Model has been compared to the
geostatistical method of Sequential Gaussian Simulations. The data set used is a part of the
digital elevation model of Switzerland.
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1 Introduction

Environmental survey needs very reliable tools in order to facilitate decision making. An important
category of these tools is called “Risk Maps”. It consists of drawing various kinds of probability maps,
such as “indicator maps” (probability of exceeding a threshold), the “value at risk” (quantile map),
etc.

These problems can be solved using classical regression models such as K-Nearest Neighbors, In-
verse Distance, Indicator Kriging, Artificial Neural Networks, etc. However, it is known that regression
models based on minimization of the expected error have a smoothing effect and do not recover the
variability of data. In the case of risk mapping, this smoothing effect is not acceptable as one is espe-
cially interested in unusual events, i.e. events that are not necessarily extreme but often far from the
mean value. It was thus necessary to develop alternate prediction methods which would concentrate
on reconstructing not only the mean but also, at least, the variability of data.

In Geostatistics, Stochastic Simulations [3] were developed to solve these particular problems.
However, these methods have some drawbacks. The modelization process is usually very complicated
and necessitates a strong expert knowledge. In addition, they are often based on some assumptions
about data distribution (stationarity, normality, ...), and they do not provide any analytical model
of the local distribution of a sample point which can be reused for other tasks.

In this paper, we propose a method that can estimate the local probability density function (PDF)
for each data point, without making any assumption of the distribution of data. It is based on the
use of Gaussian Mixture Models (GMM) for conditional density estimation, by conditioning a global
PDF model on the sample location.

To evaluate the relative performance of this method, we compare it to the well-known Geostatistical
method of Sequential Gaussian Simulations (SGS).

We will first present the principles of conditional GMM and SGS algorithms. Then, we will describe
the methodology used to build, use and compare the models during the experiments. Finally, we will
present, the experiments themselves, the results and we will conclude on the efficiency of conditional
GMM for local PDF estimation.

2 Algorithms Description

2.1 Gaussian Mixture Models

A mixture of Gaussians is a natural extension of a Gaussian distribution. It has the property of being
able to represent any distribution as long as the number of Gaussians in the mixture is big enough.
The PDF of a vector v can be modeled as:

p(v) = .MUSS, "N (v, i, i) (1)

where w;, p; and ¥; are respectively the weight, the mean and the covariance matrix of the i** of
the n Gaussians of the model. All w; are positive and sum to 1.

In the present study, we are interested in modeling the distribution p(y|x) of a variable y given its
position x. The simplest way to do so is to start from the definition:

E?xv
ply|x) = ———. 2
who =02 )
We could model these two distributions separately. We have chosen instead to model the numerator
p(y,x) using a diagonal! GMM. It is then possible to write:

li.e. a GMM where the covariance matrix of each Gaussian is diagonal
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P, %) =Y wiN' (Y, i, oyi) N (X, fisci, Soci) (3)

i=1

and the denominator p(x) can be obtained by simply removing the y contribution to p(y,x). The
expression of p(y|x) becomes

MM@HH Ss..\/\\ﬁtv Hyiy Q,.S.v.\/\ﬁunv Mxi, Muunsv

= - 4
Plyf) Yoy wiN (X, pci Bxci) @

which is equivalent to:
p(ylx) = MU Wi(x)N (Y, pyis 0yi) (5)

i=1
with:
wiN (X, pixis Xxi)

Wi(x) = . 6
) e (6)

It is easy to show that )., Wi(x) = 1. The new expression of p(y|x) is then a Mixture of
Gaussians on y whose weights are conditioned by x. It is thus possible to model a dependency
between y and x as long as the GMM contains more than one Gaussian.

2.2 Sequential Gaussian Simulations

The idea of stochastic simulations is to develop a spatial Monte Carlo generator that will be able to
generate many, and in some sense equally probable, realizations of a random function (in general,
described by a joint probability density function).

Simulations differ from regression models as reconstruction of the histogram and of the spatial
variability of original data takes precedence over local accuracy.

In the present study, SGS were applied. This method consists of generating values corresponding
to a large number of given spatial locations, using a modelization of the spatial correlation (called
variogram model in Geostatistics) of a normally distributed known data set. The variogram model
is used to compute the weights of a linear regression method called Kriging [1] (related to Gaussian
Processes [4]). It is a weighted sum of a subset of data, allowing not only to estimate the value of new
datum but also to compute the variance of this estimation. Each simulated value is then generated
from a normal distribution whose mean and variance are computed by Kriging of the neighboring
(original and previously simulated) data points, based on the global variogram model.

3 Methodology

In the experiments presented in this paper, the data set is segmented into two parts. The first part is
the training set, defined as Z = (x;,2;), Vi=1,..., N, where x is the input vector (which represent
the co-ordinates of the sample on a map), and z is the scalar output (studied value). The second part
is the test set, defined as Y = (u;,y;), Vi=1,..., M, where u is the input vector, and the output y
is hidden to the models.

The training set is used to tune the model’s parameters and hyper-parameters (cf. section 3.1
and 3.2 for details). The tuned models are then used to predict the corresponding local PDF of the
outputs of the test set. The relative performance of the models is evaluated on this last prediction.
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3.1 GMM Experimental Protocol

GMM are trained using the Expectation-Maximization (EM) algorithm [2]. However, many hyper-
parameters, i.e. user-defined parameters, need to be defined, such as the number of Gaussians in the
mixture, the lower bounds for the variances of each dimension of the Gaussians, and the Dirichlet
prior on the weights of the Gaussians. Moreover, in order to initialize the EM procedure, a few
K-Means iterations are first performed. K-Means itself is randomly initialized. For each set of hyper-
parameters studied, a k-fold cross-validation method is used to obtain out-of-sample estimation of the
Mean Absolute Error (MAE) between the real value y and the mean of the local PDF given by the
GMM. The model yielding the best estimation is kept and retrained on the whole training set.

It is important to note that the random initialization of K-Means introduces some variability in
the performance of a given hyper-parameter set. However, we consider that the variability was not
significantly perturbating the choice of the optimal hyper-parameter set.

For the present experiments, we used a 5-fold cross-validation procedure on 1000 training points.
The optimal hyper-parameter set found contains 1000 Gaussians. This is quite a surprising result as
GMDMs are known to be good for generalization. A hypothesis is that this large number of Gaussians
is caused by the complexity of the data set (cf. section 4.1).

3.2 SGS Experimental Protocol

SGS can only be used on normally distributed data. As a consequence, if this is not the case for
original data, a Normal Score transformation is needed. This transformation consists of the function
NS : Fz — N(0,1), where Fz(z) is the cumulative distribution function of z in Z. Then, one can
model the spatial correlation of the transformed data set (i.e. the variogram) and proceed to the
simulations.

One simulation procedure consists of first defining a random path visiting each location u of Y
once. Then, values §ng are obtained as described in section 2.2 and back-transformed using NS™' .
.>\AOQ Hv — Fz.

The model of spatial correlation was developed taking into account anisotropy of the data and
variability at different scales. 100 realizations were generated with SGS and post processed to extract
an estimation of the local PDF at each point.

3.3 Model Comparison Method

Comparing local PDF models is very difficult when there is only one realization of the studied phe-
nomenon. In order to solve this problem, we used large data sets (thousands of samples) from which we
only kept a small portion for training (a typical training set in Geostatistics contains a few hundreds
samples). Remaining data consitute the test set.

A Ek-nearest-neighbors (KNN) procedure can then be used on the test set to estimate the local
PDF’s central moments. For this paper, we used 20 neighbors? for each one of the 5000 test points.
The same estimation can be done by the local PDF models, and thus, an “absolute” error criterion
consists of comparing the Mean Absolute Errors made by each method while estimating these central
moments.

The second comparison method consists of comparing the distributions quantiles obtained by each
method at some points. The amount of data available in the test set is too small to permit a good
absolute comparison to a real data distribution, but it is interesting to visualize the way both methods
are constructing their local CDF. For both models, we used a 100-point random generation method
to compute the quantiles.

2Please note that this value is arbitrary. What only maters is to have enough points to model the central moments
and not too much to stay close to the studied point
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4 Experiments

4.1 Data description

The training and testing data sets were randomly extracted from the digital elevation model (DEM)
of Switzerland. This DEM is a grid of more than 95000 altitudes values, measured every 1 km. The
training set contains 1000 points while the test set was reduced to 5000 points in order to speed up
the computations.

The interesting aspect of this data set is that it is anisotropic (general tendency from South-West
to North-East) and spatially non-stationary (altitudes are low and flat in the upper-left half, high and
sharp in the other half). This is a typical case where Geostatistical methods are very difficult to use.

Note that for numerical stability reasons, the co-ordinate values and the altitudes have been linearly
transformed for GMM computations.

4.2 Moments prediction results

SwissDEM data set Sequential Gaussian Simulations | Conditional GMM
MAE on 1% moment 159 146
MAE on 27 moment 170 101
MAE on 3'Y moment 323 249
MAE on 4™ moment 253 142

Table 1: Mean Absolute Error (MAE) of SGS and GMM on the prediction of the first four local
central moments of the test set. The reference moments were computed using KNN on test data.
Values are expressed in meters.

Table 1 confirms that even if the 15 moment predictions from both methods give similar results,

the conditional GMM is significantly better than SGS in predicting the higher moments. This was
expected given the complexity of the data set for Geostatistical methods.

4.3 Quantiles evaluation comparison

SGS & GMM Quantiles for x = 0.513 SGS & GMM Quantiles for x = 0.743
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Figure 1: Comparison between altitude quantiles from SGS and conditional GMM for two different
points inside the test set. SGS quantiles curves are in plain red. GMM’s are in dashed blue
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In figure 1, the differences between SGS and conditional GMM for the reconstruction of the local
PDF are clearer. While quantile curves from the SGS are uni-modal and quite similar for both
locations, those from the conditional GMM are very different from one another. In addition, the
second curve of GMM is clearly a multi-modal local PDF, something which is impossible to model

with SGS.

5 Conclusion

Conditional GMM proved their efficiency in solving local PDF estimation on a complex data set. When
comparing with SGS, they appear to be more flexible (i.e. they need less theoretical constraints on
data). They also need less expert knowledge to be tuned. Another advantage is that they give an
analytical solution to local PDF estimation, which can be easily reused for risk mapping. However, the
method should be improved with a better initialisation of the k-means procedure. It is also necessary to
test the efficiency of GMM when the training inputs are not independently and identically distributed,
which is often the case in Geostatistics. It might also be possible to improve the training procedure
by optimizing directly a local model instead of conditioning a global model.
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