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Abstract. In this report, we provide a theoretical discussion on temporal data cluster analysis: does the data 
come from one source or two sources; is it better to cluster the data into two clusters or leave it as one cluster. 
Here we analyse only the simplest case: when the data comes from two symmetric Gaussian probability-density-
functions (pdfs), i.e., with same variance and same absolute value of the mean, with the same prior probability 
per Gaussian. The data consists of segments with an a-priori known segment length. It will be shown that if the 
data belongs to two different Gaussian models, the likelihood of two clusters is always higher or equal than the 
one of a GMM with two Gaussians for any mean, variance, and segment length. If the data belongs to the 
GMM, the likelihood of two clusters might be either higher or less than the GMM one. 
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1. Introduction 
In temporal data clustering problems such as clustering of speakers, protein chains, music, 
etc, the real number of clusters is not always known. In the case where the number of clusters 
is unknown the data is frequently clustered first according to a relatively high number of 
clusters [1], [2]. Each cluster iC  is defined by a parametric pdf with estimated vector of 

parameters ˆ
iΘ . When the clusters are created the next step is to decide whether there are 

clusters to be merged. One way of doing so is to create a new cluster using the union of the 
data of both clusters. The log-likelihood of the new cluster can then be compared with the 
accumulated log-likelihood of the two clusters. According to Bayesian model selection [3] 
the comparison can be done only if the number of parameters in both cases are the same 
(similar conclusions about model comparison can be achieve, under some assumptions, 

according to information theory on two-part message length [4], [5]). Let Θ̂  be the size of 

parameters vector Θ̂  of the new cluster. If 1 2
ˆ ˆ ˆΘ ≠ Θ + Θ  ( 1Θ̂  and 2Θ̂  are the estimated 

parameter vectors of the original clusters) a difference in the complexity should be taken into 
account, e.g., AIC, BIC, MDL or MML [3]-[6]. Otherwise, the decision can be taken 
according to the comparison of the likelihoods of the two systems. The case where 

1 2
ˆ ˆ ˆΘ = Θ + Θ  holds show very good results for speaker clustering and speaker change 

detection problems [2], [7]. In these problems the estimated parameters often come from 
GMMs with different number of Gaussian mixture components. Selecting the segment length 
is another important problem. This length should ensure a minimum duration to obtain 
sufficient statistics for cluster estimation. Another issue is the fact that segment lengths can 
vary from segment to segment, e.g., the duration of each speaker turn usually vary, although 
in several applications the length is known and constant [8]. Exactly the same logic can be 
used to ask if a given data should be split into two clusters or should remain as a single 
cluster. It seems very difficult to analyze the behavior of the general case, i.e., unknown 
density functions and segment length that is not constant or unknown parameter. An accurate 
analysis of the simplest case might give a significant insight on the behavior of such 
applications. 

The question of how to define a source is an additional problem that is usually task 
dependent. Different sources can be defined as different phonemes or different speakers. 
Minimum segment duration can be a helpful parameter for source definition. We will assume 
that two discrete stochastic process Strict-Sense Stationary (SSS) have the same source if 
they have the same n -th order pdfs for any sample of the process and for any n ∈ � . 

In this work, we will assume that the data consist of segments with constant and a-priori 
known length. These segments are streams of data and each stream comes from a single 
source. The question is then: “are all the streams coming from the same source or from two 
different sources?” The sources can be speakers, images etc. This is actually a hypothesis 
test: 0H  – all the segments come from the same source, 1H  – the segments come from two 

sources. The complete data pdf ( )xf α  should be approximated from a known parametric pdf 

model class ( ){ }Xf α= Θ� . The goal is to estimate the parameters Θ̂ , in order to maximize 

the likelihood. We would like to know whether the data comes from two different sources or 
from one single source. In this case the data is first clustered into two clusters 1C  and 2C , 

with two pdfs, ( )1
ˆ

xg α Θ ∈ �  and ( )2
ˆ

xg α Θ ∈ � . Then the likelihood using the estimated 

pdfs of the two clusters is compared with the likelihood using the estimated pdf of one large 

cluster, ( )ˆxf α ∈Θ � , with 1 2
ˆ ˆ ˆΘ = Θ + Θ . 
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In this report we analyze the case where the data comes from two symmetrical one-
dimensional Gaussians sources, i.e., the absolute value of their mean is the same, they have 
the same variance and the same prior probability for each Gaussian. This knowledge, of 
course, is not taken into consideration during the clustering process and parameter estimation. 
Additionally, we will assume that the segments (each source produces many streams, or 
segments, with fixed length) are statistically independent and the samples in each segment are 
independently and identically distributed (i.i.d.). The i.i.d. assumption is usually wrong but 
simplifies the problem to the estimation of one-dimensional pdf rather than a pdf of the 
dimension of the segment. It will be shown that in this simple case, it is always better to 
produce two clusters of one Gaussian each rather than one GMM with two Gaussian mixture 
components, in the case where the data comes from two different sources (Gaussians). It will 
be shown that the results are valid for any fixed a-priori known segment length. On the other 
hand, if the data comes from the same source modeling by a GMM with two Gaussian 
mixture components, the decision depends on the Gaussian parameters and the segments 
length. 

Another important assumption in all the following discussion is that the number of data 
samples, N , tends toward infinity. Let sN  be the segment length. In several cases sN  will 
also tend towards infinity. It is always assumed that 0sN N → , i.e., the number of data 
samples tends toward infinity, infinitely faster than the segment length (the number of 
segments in the data is infinite). 

In real life applications, due to the fact that our assumptions of independence, knowledge 
about segment boundaries, and the assumption about the model are not always valid, and 
most importantly, the choice of the complete data pdf model is usually not exact, the problem 
is of course much more difficult.  

The report is structured as follows: in section II the relations between Maximum-
Likelihood (ML) and Minimum-Entropy (ME) will be presented. Section III describes the 
calculation of the likelihood of multiple cluster case. In section IV an example of the segment 
length importance for clustering performance is analyzed. Section V presents the simplest 
case when the length of the segments is equal to one and the mean of the Gaussians is equal 
to zero or tends toward infinity. Section VI extends the problem in section V to any segment 
length when the data comes from two Gaussian sources. Section VII extends section VI for 
any value of the Gaussian mean. Section VIII presents partial results for the case where all 
the segments come from the same source. Section IX presents simulation results with 
artificial and speech data, and section X concludes the report. 

2. The Relations Between Maximum Likelihood and Minimum 
Entropy 

In many applications, given a dataset, we need to estimate the probabilistic model from which 
the data was derived. The actual pdf of the data ( )xf α  is usually unknown and a parametric 

model is assumed as a pdf ( )xf α Θ  from a parametric model class �  (assuming that 

( )xf α ��  are a set of regular functions). The most common approach is maximizing the 

likelihood (or log-likelihood) [9]: given a dataset with N  i.i.d. examples and a model class 
� , we would like to estimate the parameters Θ  that maximize the likelihood of the given 
data: 

 ( ){ } ( )
1

ˆ arg max arg max
N

n
n

l X p x
Θ∈ Θ∈ =

 Θ = Θ = Θ 
 
∏

� �

. (1) 
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We can maximize the log-likelihood instead of the likelihood function and get: 

 ( ){ } ( )( )
1

ˆ arg max arg max log
N

n
n

L X p x
Θ∈ Θ∈ =

 Θ = Θ = Θ 
 
∑

� �

. (2) 

As the dataset  consists of i.i.d. examples then the dataset ( ){ }
1

;
N

n n n
Y y f x

=
= = Φ  is also 

i.i.d. ( ( );if x Φ  is a parametric function of ix , with parameter vector Φ ). As Y  is i.i.d. then 

according to the law of large numbers: { }1
1

N

nN n N
y E Y

= →∞
→∑  if { }Var Y < ∞ , and this is the 

typical case, otherwise it is true in probability only. Let us define 

( ) ( )( )ˆ; logn n ny f x p x= Φ = Θ . Let us define the normalize log-likelihood as 

( ) ( )1ˆ ˆ
NNL X L XΘ = Θ . Then for N → ∞  we immediately get the next expression: 

 ( ) ( ) ( )( ){ } ( ) ( )( )1ˆ ˆ ˆ ˆNL lim L log logx x
N

X X E p x f f d
N

α α α
∞

→∞
−∞

Θ = Θ = Θ = ⋅ Θ∫ . (3) 

We will define: 
1. ( )( )xH f α  – the entropy of the random variable x  according to pdf ( )xf α . 

2. Cross-entropy – ( ) ( )( ) ( ){ }ˆ ˆ;x x xH f f E fα α αΘ = − Θ , expectation of the function ( )ˆxf α Θ  

according to the pdf ( )xf α . 

From (3) it can be seen that the estimation of the log-likelihood is equivalent to the 
estimation of the cross-entropy, i.e., maximizing the log-likelihood is the same as minimizing 
the cross-entropy between the real source pdf and the estimated source pdf 

( ( ) ( ) ( )( )ˆ ˆNL ;x xX H f fα αΘ = − Θ ). From the properties of the entropy we know that 

( )( ) ( ) ( )( ) ( ) ( );    x x x x xH f < H f g f gα α α α α∀ ≠  (the Kullback-Leibler Divergence is always 

greater than or equal to zero), so minimizing the cross-entropy will maximize the log-
likelihood. 

Let us examine a simple example. Let us assume that ( )0,1~ Uα  and that 

{ }( ) ( ){ }2

21 1
2 2

exp,xf xπσ σ
α µ σ µ=Θ = − − , i.e., in order to estimate the ( )ˆ

xf α Θ  function it is 

sufficient to estimate the mean, µ̂ , and the variance, 2σ̂ , that will maximize the log-
likelihood. The common way is to calculate the mean and the variance from the input data. 
To find the parameters using entropy minimization, we should solve 

( ) ( )( ); 0x xH f fα α∂
∂Θ =Θ : 

 

( ) ( )( ) ( ) ( )

( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )

2

2

3

22

1
; 0

ˆ   

1 1
;

ˆ ˆ0      

x x x

x

x x x

x

H f f f d

f d E

H f f f d

f d Var

α α α α µ α
µ σ

µ α α α α

α α α α µ α
σ σ σ

σ α µ α α α

∞

−∞

∞

−∞
∞

−∞

∞

−∞

 ∂ = − ⋅ − =Θ ∂

 ⇒ = ⋅ =

 ∂   = − ⋅ − −Θ   ∂  

 = ⇒ = − ⋅ =


∫

∫

∫

∫

 (4) 
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It is clear that in both cases we estimate the mean and the variance of the real distribution, 
( )xf α , and apply them to the assumed model. 

3. Likelihood of K clusters 

Assume that the data X  consists of M  statistically independent segments { } 1

M

m m
X X

=
= , of 

length mN . These segments are clustered into K  clusters { } 1

K

k k
C

=
. As a result of the clustering 

process we obtain: the estimated parameters of each cluster, { }
1

ˆ K

k k =
Θ , and the estimated labels 

of each segment, { } 1

M

m m
L

=
. Using the estimated parameters we want to estimate the likelihood 

of the data X . We must first define the pdf of one segment, mX , using estimated parameters 

{ }
1

ˆ K

k k =
Θ  and ( )( ){ } ( ){ }

1, , 1, ,

ˆ ˆarg max arg max
mm m X mm k k

k K k K

L p X g p X
= =

= =Θ Θ
� �

: 

 ( ) ( ) ( )
1

ˆ
m m

K

X m m X m k
k

g L k gδ
=

= = Θ∑  (5) 

where ( )mL kδ =  is an indicator function, i.e., equals one if mL k= , zero otherwise. 

As the segments are statistically independent, the pdf of the entire dataset will be a multiplication of 
the segment pdf functions. If the vectors in each segment are i.i.d., then each segment pdf is a 
multiplication as well: 

 
( ) ( ) ( ) ( )

( ) ( ),

11 1

,
1 1 1

ˆ

ˆ ˆ

m m

m

m m n

m k m k

M M K

X X m m X m k
km m

NK K

X m k x m n k
k X C k X C n

g g L k g

g g

δ

α

== =

= ∈ = ∈ =

 = = = Θ 
 

= Θ = Θ

∑∏ ∏

∏ ∏ ∏ ∏ ∏
 (6) 

As a consequence, the likelihood of the data X  will be as follows: 

 ( ) ( ) ( ),
1 1 1

ˆ ˆ
m

m k m k

NK K

m k m n k
k X C k X C n

l X p X p x
= ∈ = ∈ =

= Θ = Θ∏ ∏ ∏ ∏ ∏  (7) 

If the segments are all of the same size, , the number of segments in a cluster is kM  and the dataset 

size tends toward infinity ( : kk M∀ → ∞ ), then the estimation of the normalized log-likelihood can be 
written as follows: 

 ( ) ( ) ( )( )
1 1

ˆ;   ;  
K K

k
x k x k k

k k

M
NL X H f C g M M

M
α α

= =

= − Θ =∑ ∑  (8) 

where ( )x kf Cα  is the true pdf of the cluster kC . For simplicity we will use the following notation: 

( ) ( )( ) ( ) ( )( )ˆ ˆ; ;k x k x k x k xk k
P H f C g H P f C gα αα α⋅ = ⋅Θ Θ  kM

k MP = . This term represents the 

negative of the contribution of the k -th cluster to the normalized log-likelihood. 

4. Simple theoretical example 
In order to show when temporal data clustering is superior to static clustering a simple 
theoretical example is presented. Assume that the data comes with equal probability from two 
Gaussian sources, ( )2

1 ~ ,S N µ σ  and ( )2
2 ~ ,S N µ σ− , and all data points are statistically 

independent. The data should be clustered into two clusters, 1C  and 2C . Each cluster will be 
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modeled by only one Gaussian. We will consider two cases: first, assuming no knowledge 
about any dependency between the data points; and second, assuming that each pair of data 
points comes from the same source ( 2 2 1m i m im x S x S+∀ ∈ • ∈ ⇒ ∈� , { }1,2i ∈ ). 

For the first case, because of the symmetry of the problem and without loss of generality the 
clusters will be: { }1 0C x x⊇ >  and { }2 0C x x⊇ <  ( 0x =  can be attributed to any cluster). So 

the pdf given 1C  will be: ( ) ( ){ } ( ){ } ( )2 2

2 21 1 1
11 2 2 2

exp expxf UC
πσ σ σ

αα α µ α µ −
 = +− −− +   

( ( )1U x−  is a step function), and because of the symmetry ( ) ( )2 1x xf fC Cα α= − . 

In the second case the decision will be taken according to two points, so without loss of 
generality { }1 2 2 1 2 2 1, 0m m m mC x x x x+ +⊇ + >  and { }2 2 2 1 2 2 1, 0m m m mC x x x x+ +⊇ + <  ( 2 2 1 0m mx x ++ =  can 

be attributed to any cluster). The decision is taken according to two data points where each 
pair is i.i.d. In the two dimensional space the data will consist of two Gaussians with means at 

[ ],
Tµ µ  and [ ],

Tµ µ− −  and variances [ ]2 2,σ σ . The clusters boundary will be on the line 

1 2 0x x+ = . In order to find the pdf of iC  we need to calculate the marginal distribution of jx  

given iC . The pdf of 1C  will be computed according to (9) and ( ) ( )2 1x xf fC Cα α= − . Given 

the prior knowledge that both samples come from the same source ( 1S  or 2S ) only two terms 
of integration are present in (9). Without this knowledge two more terms of integration would 
be present for the cases where thet first input comes from 1S  and the second comes from 2S  

and the case where the first input comes from 2S  and the second comes from 1S . ( )ξΦ  is a 

distribution function (integral of the pdf function from zero to ξ ) of a normally distributed 
variable z , ( )~ 0,1z N . 

Figure 1a shows the pdfs of two sources, with means 1,2 1µ = ±  and variance equals to 

one; the pdfs of the clusters in the first case are shown in 1b, and the pdfs of the second case 
are shown in 1c. It can be clearly seen that the additional information about the duration 
dependency of the data significantly improves the clustering performance even in the 
simplest case where segment length equals two and each source consists of i.i.d samples. In 
more difficult cases, more sophisticated models and longer segment length information 
should be applied to reach significant improvement. 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 1 21 , 1

2 2

2 2

2 2

2 2

2 2

2 2

,

1 1 1 1
exp exp

2 22 2

1 1 1 1
exp exp

2 22 2

1 1 1 1
exp 1 exp 1

2 22 2

x x xf C f C d

d

d

α

α

α α β β

α µ β µ β
σ σπσ πσ

α µ β µ β
σ σπσ πσ

α µ α µα µ α µ
σ σ σ σπσ πσ

∞

−∞
∞

−

∞

−

=

   = − − − −   
   

   + − + − +   
   

 − − − +     = − − − Φ + − + − Φ           

∫

∫

∫

( ) ( )2 2

2 2

1 1 1 1
exp exp

2 22 2

α µ α µα µ α µ
σ σ σ σπσ πσ

  
    

+ −       = − − Φ + − + Φ             

 (9) 
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Fig. 1: Clustering of two Gaussian sources with means, 1,2 1µ = ±  and variances, 2

1,2 1σ =  (red 

line corresponds to 1 and blue line to 2). a) pdfs of the sources, b) pdfs of the clusters without 
duration constrain, c) pdfs of the clusters with segment length equal 2. 

Additional important characteristics of temporal data clustering can be observed from 
comparison between Figs. 1b and 1c. It is seen from the figures and it is easy to show that the 
variance of the data attributed to clusters of the first case is smaller than the variance in the 
second case. In the next section we will prove that the mean always become smaller and the 
variance larger as a function of the segment length. Moreover, in the limit the mean and the 
variance tend towards the values of the source mean and variance. 

5. Segment length equals one 
In this section, as segment length equals one, we will not assume that the data comes from 
two sources, each being a Gaussian, with same variances, and with prior probability of 0.5 , 
or from one GMM of two Gaussian mixture components. When segment length is equal to 
one, both cases are exactly the same. The data samples are assumed to be statistically 
independent. The question is, again, whether it is better to consider the data belonging to one 
source or two sources containing one Gaussian each. An additional assumption is that the 
data size is infinite. Intuitively it seems that when the means are close relatively to the 
standard deviation they should be considered as one model while when they are far they 
would be considered as two models. Consider, without loss of generality, that the data is 
distributed as follows: 

 ( ) ( ) ( ) ( ) ( )2 2 1 21 1 1 1
, ,

2 2 2 2x x xX f N N f fα µ σ µ σ α α= + − = +�  (10) 
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where ( )1
xf α  is a Gaussian distribution with mean µ , and ( )2

xf α  is a Gaussian distribution 

with mean µ− . The clusters with distribution ( )i
xf α  will be called iG . Each cluster contains 

all the data that was generated by ( )i
xf α . 

The objective is to cluster the data into two clusters { } 2

1i i
C

=
 such that ( )2ˆ ˆ,ij i ix N µ σ�  and 

{ }ij ij ii x x CX ∈=  ( iX  is the data attributed to cluster iC ). It is important to notice that iC  is an 

estimated cluster while iG  is the theoretical, true, cluster. Because of the symmetry it is 
obvious, without loss of generality that the stable clustering will be: 

{ } { }1 1 2 21 20 0j j j jx x x xX X> <= =  ( 0x =  can be attributed to any cluster), and 1 2ˆ ˆµ µ= − , 

1 2ˆ ˆσ σ= . As each Gaussian is estimated from its cluster iC , we will end up with the true 
cluster pdfs: 

 ( ) ( )( ) ( ) ( )( ) ( ) {1 1

1 1
1 01 0 2 1    ;   0 0

i i

x i x xf C f f U U αα α α α α α α
+ +

− −
>= − > = − = <  (11) 

It is difficult to analyze the general case for any µ , hence we will first analyze the 
extreme cases when µ → ∞  and 0µ = . 

5.1 Notations 

For simplicity we will use the following notations: 
1. ( ),i xf α  – the true pdf of the i -th cluster iC . 

2. ( ),i xg α  – estimated pdf of the i -th cluster, ( )ˆ
x i

g α Θ . 

5.2 µ  tends toward infinity 

Without loss of generality, we will only analyze the case where 0α > . As µ → ∞  and σ  is 
finite the estimated parameters of the mean and the standard deviation will not be affected by 
the Gaussian with the mean of µ−  as for this Gaussian the probability of 0α >  is equal to 
zero. From that it follows that: µ̂ µ=  and σ̂ σ= . 

5.3 µ  equals zero 

In this case the GMM of two Gaussian mixture components with prior probability of 0.5  per 
Gaussian becomes a normal distribution with zero mean, and the pdf when 0α >  is 

( ) { } ( )2

211
1, 122

2 expxf U
σπσ

αα α−−=  (11). The estimation of the mean is: 

 ( )
0

2
ˆ 2

2
xf d

σµ α α α
π

∞

= =∫  (12) 

and the estimated variance is: 

 { } ( ) 2
2 2 2 2 2 2

ˆ ˆ ˆE
π σ

σ α µ σ µ
π

−
= − = − =  (13) 

5.4 The normalized log-likelihood of the two cases of µ  

As it was shown in section II, the normalized log-likelihood is equal to the negated cross-
entropy. In this sub-section we will show that the cross-entropy of two clusters always lower 
than the entropy of the data. First let us find the real pdf of the data attributed to each iC : 
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( ) ( )( ) ( )( )( )
( )( )

( )( )
( )( ) ( ) ( )( )

( )( ) ( ) ( )

1 1

1 1

, 11 1

1 2 2

1 2 2

1 0 1 0
1 0 2 1

1 0 1 0

1 1 1
1 exp exp

2 22

i i
x xi i

i x x xi i

i

f f
f f f U

P P

U

α α α
α α α α α

α α

α α µ α µ
σ σπσ

+ +

+ +
−+ +

+
−

− > − >
= − > = = = −

− > − >

    = − − − + − +        

�

.(14) 

Remind that ( ),i xg α  is the estimated pdf of ( ),i xf α  with the assumption of Gaussian pdf. 

When µ  tends toward infinity, ( ){ }2

21 1
2 2

exp
πσ σ

α µ− −  tends to zero 0α∀ < , and 

( ){ }2

21 1
2 2

exp
πσ σ

α µ− +  tends to zero 0α∀ > , hence (14) can be rewritten as: 

 ( ) ( )( )2

, 2

1 1
exp 1

22

i

i xf α α µ
σπσ

 = − + − 
 

. (15) 

In V-A, µ → ∞ , we showed that ( ) ( ), ,i x i xg fα α= . As each cluster has only half of the data, 

the normalized log-likelihood should be divided by two. The normalized log-likelihood of 

both clusters together is ( )( )21
,2 1 i xi

gH α=
− ∑  where ( ) ( ), ,i x i xg fα α= . Because of the 

symmetry, they are the same, i.e., the total normalized log-likelihood can be written as the 
entropy of ( )1,xf α , ( )( )1,xfH α− . On the other hand the normalized log-likelihood of ( )xf α  

is: 

 

( )( ) ( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

2

1 1 1

1, 2, 1, 2,

0

2, 1, 1,

0

0

1 1
log log

2 2

1 1 1 1
log log

2 2 2 2

1 1 1
2 log log

2 2 2

x x x x x x x

x x x x

x x x

H f f f d f f f f d

f f d f f d

f f d H f

α α α α α α α α α

α α α α α α

α α α α

∞ ∞

−∞ −∞
∞

−∞

∞

    − = = + +     

   = +      

   = = − +      

∫ ∫

∫ ∫

∫

 (16) 

As ( )log 01 2 <  the normalized log-likelihood of two clusters is higher than the one of a 

GMM of two Gaussian mixture components. 
We will use the following notation to calculate the normalized log-likelihood: 

1. ( ) ( )( ), ,;i i x i xP f gH α α−  – normalized log-likelihood of ( ),i xg α . 

2. ( ) ( )( ) ( ) ( )( )2

, ,1
;i i x i xx x i

P f gH f g H α αα α =
− = −∑ . 

Remind that ( ) ( ) ( )( )1
, 12 1

i
i x xf f U αα α +

−= − , then in the case where 0µ = : 

 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( )

( )
( )

0

2, 1,

0

0
22

2 2

22
2 2

0

log log

1 1 1 1
ˆlog exp

ˆ2 2ˆ2 2

1 1 1 1 1
ˆexp log

ˆ2 2 22 2 2

x x x x x xH f g f g d f g d

d

d

α α α α α α α α

α α µ α
σ σπσ πσ

α α µ α
σ σπσ π σ

∞

−∞

−∞

∞

− = +

     = + − − +        

     + − − − = −          − 

∫ ∫

∫

∫

. (17) 

On the other hand the normalized log-likelihood of the real pdf is 

( )( ) 1 1
log

22
xH f α

πσ
 − = −  

. If we subtract it from equation (17) the result will be: 
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 ( ) ( )( ) ( )( ) 1
log 0.5062 0

2 2x x xH f g H f
πα α α

π
 − + = ≈ > − 

. (18) 

As the result is greater than zero it means that two clusters have a slightly higher normalized 
log-likelihood than a GMM of two identical Gaussian mixture components. 

To conclude this section it could be said that for the two extremes of the mean value 
(zero and +∞ ), two clusters are better than one GMM if segment length is set to one, 1sN = . 
In the next section we will see that the same happens for 1sN ≥ , and in section VII we will 
show that it is valid for all µ . 

6. General case at the extremes when 1sN ≥ , { }0,µ ∈ ∞  

This section deals with the general case from the point of view of segment length only. We 
will still assume the extreme values of the mean, 0µ =  and µ → ∞ . The data is assumed to 
come from two Gaussian sources, i.e., not from one GMM of two Gaussian mixture 
components. First, the pdf of each cluster will be found, for any 0µ ≥ , under the segment 
length restriction. Then the normalized log-likelihood will be found for µ → ∞  and it will be 
shown that it is the same as for 1sN = . At the last part of this section, a more difficult case of 

0µ =  will be analyzed. 

6.1 Notations 

The following notations will be used: 
1. ( ), , si x Nf α  – the true pdf of the i -th cluster iC , given segment length sN . 

2. ( ), , si x Ng α  – estimated pdf of the i -th cluster, ( )ˆ
x i

g α Θ , given segment length sN . 

6.2 Cluster pdfs 

In this section it is assumed that the data consists of segments with length sN , i.e., data 

samples { } ( )1

1
  ,  ks

s

N k

jk j N k
x

+

= +
= ∈X � , are generated from the same Gaussian. For the GMM of two 

Gaussian mixture components, the clustered data will be divided into two symmetrical 

clusters: 1C  is the union of all the segments such that 
( )1

1
>0  ,  ks

s

N k

jj N k
x

+

= +
∈∑ �  (19), and 2C  is the 

union of all the segments such that 
( )1

1
<0  ,  ks

s

N k

jj N k
x

+

= +
∈∑ �  (

( )1

1
=0  ,  ks

s

N k

jj N k
x

+

= +
∈∑ �  can be 

attributed to any cluster). Let us define a new random variable 
( )1

1

s

s

N k

k jj N k
y x

+

= +
= ∑ . As all the 

variables in the k -th segment are i.i.d. It means that ( )2,k s sy N N Nµ σ� . From the point of 

view of ky  the clustering is identical to the analysis in section V. From now on, without loss 

of generality, the set of random variables belonging to a segment will always be { }
1

sN

j j
x

=
, 

instead of { } ( )1

1
  ,  ks

s

N k

j j N k
x

+

= +
∈ � . To find the pdf of a random variable jx  that belongs to 1C  we 

need to find the marginal pdf of all the segments given 
1

>0sN

nn
x

=∑ : 
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( )
1 2

1 2

1 21, , , , ,
1 11

, , ,
11

, , ,0
s ss

ss Ns

ss

Ns

N NN

N nx N j x x x x nj n
n nn

n j

NN

x x x nn
nn
n j

f f f d

f d

α α α αα αα α

αα

∞

= == −∞ Α ≠

∞

==−∞
≠

  
 = =>      

 
= Α 

 

∑ ∏∑ ∫∫∫

∏∑∫∫∫

�

�

�
���	��
�

�
. (19) 

First let us find the conditional probability of all segments (20). The last form of (20) is 
correct only because of the assumption that all the samples of one segment belongs to the 
same Gaussian and they are all i.i.d. 

To simplify equations the following notation will be used: 
1, n

sN

nn j
dα

= ≠∏ -jd�  and 

1, n

sN

nn j
α

= ≠∑ -j� . Using this notation and the conditional pdf properties, (19) can be rewritten 

in a simpler way as in (21), where ( )
j

i
x jh α  is the multiple integral of ( )

1

s

n

N
i

x n
n

f α
=

∏ , and 

-m assumes that m j≠ . The second part in the third equality is correct only because each 

segment can belong either to 1
xf  or to 2

xf . The case where the segment belongs to one GMM 
will be discussed in section VIII. 

 

( ) ( )

( ) ( ) ( ) ( )

( )

1 2

1
1 1

, , , 1 2
1

1 1

1
Equals 

2

11 1 2 2
1

1 2

1

0 0

, , ,

0 0

2 0

s s

s

N ss s s

s

s

n n

N N

x n x nN
n n

x x x N n N N
n

n n
n n

N

nx x
n

N

x n x
n

f P f U

f

P P

Uf G P G f G P G

f f

α α
α α α α

α α

α

α

−
= =

=

= =

−
=

=

   
Α > Α Α >        = =        > >   

   

 
= > Α Α∈ + Α Α∈    

 

= +

∑ ∑
∑

∑ ∑

∑

∏

�

�

���	��


� �

( ) 1
11

0
s sN N

n n
nn

Uα α−
==

   
>  

  
∑∏

. (20) 

 

( )
( )

( ) ( ) ( )

( ) ( )

1 2

1 2

, , , 1 2 1
1

1, ,

1

1 2
, , , 1 2

1 1

1 2

, , , 0

0

2 , , ,

s

N ss

j s s

s s

N ss

j j

N

x x x N n
n

x N j N

n
n

N N

x x x N x n x n
n n

x j x j

f U

f

P

f f f

h h

α α α α
α

α

α α α α α

α α

−∞
=

−∞

=

∞ ∞∞ ∞

= =−∞ −∞

 
> 

 =
 

> 
 

= = + =

= +

∑
∫∫∫

∑

∏ ∏∫ ∫ ∫ ∫∫∫ ∫∫
-m -m

-j

-j -j

d

d d

�

�

�

�

�

� �  (21) 

As { }
1

sN

j j
x

=
 are a sequence of Gaussian i.i.d. random variables, if we define 

1,

sN

nn n j
z x

= ≠
= ∑ , z  

will have a Gaussian distribution with ( )1z sNµ µ= −  and ( )2 21z sNσ σ= − . It is easy to show 

that ( )1

j jxh α  can be written in terms of ( )zf γ  as: 



12 IDIAP Research Report 02-56 

 

 

( ) ( ) ( )

( ) ( ) ( )

2 21
2 2

1 1

1 1 1 1
exp exp

2 22 2

1
1

1

x z
zz

sz
x x

z s

h d

N
f f

N

α

α α µ γ µ γ
σ σπσ πσ

α µα µα α
σ σ

∞

−

   = − − − −   
   

 + −  − − = − Φ = Φ     − ⋅    

∫
 (22) 

and in the same way: 

 ( ) ( ) ( )2 2 1

1
s

x x

s

N
h f

N

α µ
α α

σ
 − − 

= Φ  − ⋅ 
 (23) 

and the final expression for (19) is: 

 ( ) ( ) ( ) ( ) ( )1 2
1, ,

1 1

1 1s

s s
x N x x

s s

N N
f f f

N N

α µ α µ
α α α

σ σ
 + −   − − 

= Φ + Φ      − ⋅ − ⋅   
. (24) 

The same technique could be used for the second cluster and the final result is: 

 ( ) ( ) ( ) ( ) ( )1 2
2, ,

1 1

1 1s

s s
x N x x

s s

N N
f f f

N N

α µ α µ
α α α

σ σ
 − − −   − + − 

= Φ + Φ      − ⋅ − ⋅   
. (25) 

To give a feeling of the correctness of the final results, assume 1sN =  and zero mean. Then 
the ( )Φ •  acts exactly as a step function (for negative jα , the argument of ( )Φ •  tends toward 

−∞  and the result is zero, for positive jα , the argument of ( )Φ • tends toward +∞  and the 

result is one) and ( ) ( )1 2
x xf fα α= , i.e., the pdf of 1C  is identical to the one found in sub-

section V-C, ( ) ( ) ( )1, 12x xf f Uα α α−= . 

6.3 µ  tends toward infinity 

If we push µ  towards infinity in (24) the ( )Φ •  in the first term tends toward one and to zero 

in the second term, for any value of jα , i.e., ( ) ( )1
1,x xf f

µ
α α

→∞
→ . In this case, like when 1sN = , 

the estimation of the mean and the variance will be: µ̂ µ∞ =  and 2σ̂ σ∞ = . Similarly, for 

( )2,xf α  the estimation of the mean and the variance will be: µ̂ µ∞ = −  and 2σ̂ σ∞ = . 

As in the case 1sN = , the normalized log-likelihood will be higher by ( )log 2 . 

6.4 µ  equals zero 

For 0µ =  the equality holds for ( ) ( ) ( )1 2
x x xf f fα α α= =  and the pdf of 1C  is: 

 ( ) ( )1, , 2
1sx N x

s

f f
N

αα α
σ

 = Φ − ⋅ 
. (26) 

First let us remind the following properties: ( ) ( )x xf fα α=  and 

1
1 1s sN N

α α
σ σ

−   
Φ = − Φ   − ⋅ − ⋅   

. These will help us understand the properties of the mean 

and variance of 1C . 
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( ) ( )

( )

( )

( )

1, ,

0

0

0 0.5

Greater or equal to 0 0

ˆ 2
1

2
1 1

2 2 1 0
1

s sN x N x

s

x

s s

x

s

f d f d
N

f d
N N

f d
N

α

α

αµ α α α α α α
σ

α αα α α
σ σ

αα α α
σ

∞ ∞

−∞ −∞

∞

∞

≥ ⇒Φ • ≥

∀ ≥

 = = Φ − ⋅ 
 −   = Φ − Φ    − ⋅ − ⋅     
  = ⋅Φ − >  − ⋅  
  

∫ ∫

∫

∫
���	��


�����	����


. (27) 

For 1sN = , ( )Φ •  becomes a step function and we get exactly (12). For sN → ∞ , the 
value of ( )Φ •  is zero for any α  and the integral is zero, i.e., ˆ 0µ∞ = . Now let us show that 
ˆ

sNµ  is a monotonically decreasing function of sN , bounded by 0µ̂  and µ̂∞ . As 

1s sN N

α α
σ σ

   Φ > Φ   + ⋅ ⋅   
 for 0α∀ > . It leads to: 

 ( ) ( )1

0 0

ˆ ˆ2 2 1 2 2 1
1s sN x x N

s s

f d f d
N N

α αµ α α α α α α µ
σ σ

∞ ∞

+
      = ⋅Φ − < ⋅Φ − =      ⋅ + ⋅         

∫ ∫ . (28) 

Now we can show that the variance is a monotonically increasing function of sN  (29). As 2σ  
is the variance of the zero mean Gaussian data, it is constant. In (28) we showed that ˆ

sNµ  is 

monotonically decreasing. From these two facts we obtain that 2ˆ
sNσ  is a monotonically 

increasing function of sN . 2ˆ
sNσ  is bounded by 

( ) 2
2
1

2ˆ
σπσ

π
−=  according to (13), and 2 2σ̂ σ∞ = . 

 

( ) ( )

( )

2 2 2 2 2
1, ,

2 2 2 2

0

Equals 1

ˆ ˆ ˆ2
1

ˆ ˆ2 1
1 1

s s s s

s s

N x N N x N

s

x N N

s s

f d f d
N

f d
N N

ασ α α α µ α α α µ
σ

α αα α α µ σ µ
σ σ

∞ ∞

−∞ −∞

∞

 = − = Φ − − ⋅ 
 −   = Φ + − Φ − = −    − ⋅ − ⋅     

∫ ∫

∫
��������	�������


. (29) 

We obtain the same result for the mean and variance of 2C  with the exception that the mean 
will have a minus sign (but the absolute value of the mean is still a decreasing function of sN , 

and 2ˆ
sNσ  an increasing function of sN ). 

We showed that the mean is a monotonically decreasing function of sN , the variance is a 
monotonically increasing function of sN  and we gave the normalized log-likelihood for 

1sN =  and sN → ∞ . We now need to show that the normalized log-likelihood is a 
monotonically decreasing function of sN . Let us first define ( )1, , sx Ng  as a Gaussian pdf for 

cluster 1C  with mean ˆ
sNµ  and variance 2ˆ

sNσ ; in the same way ( )2, , sx Ng  is a Gaussian pdf for 

cluster 2C . As each cluster has only half of the data the normalized log-likelihood is: 

 
( ) ( ) ( ) ( ) ( )

( ) ( )( )
1, , 1, , 2, , 2, ,

1, , 1, ,

1 1
log log

2 2s s s s s

s s

N x N x N x N x N

x N x N

NL f g d f g d

H f g

α α α α α α α

α α

∞ ∞

−∞ −∞

=   +     

= −

∫ ∫
. (30) 
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Given the symmetry, in order to show that ( )
sNNL α  is a monotonically decreasing function of 

sN , the sufficient condition for any sN  is to prove that 

( ) ( )( ) ( ) ( )( )1, , 1, , 2, , 1 2, , 11 2 , 1 2 , 0
s s s ss x N x N x N x NN

f g f gH Hα α α α+ +∆ = − + >  is according to (31). 

Until now we have shown that the normalized log-likelihood of two clusters is higher 
than the one of a GMM of two Gaussian mixture components for any segment length when 

0µ =  or µ → ∞ . In the next section we shall extend this result for any value of the mean. 

7. General case – 1sN ≥  and 0 µ< < ∞ 

As in section V, it is obvious that when sN  tends toward infinity, the means and the variances 

will be identical to the true Gaussian mean and variances, i.e. µ̂ µ∞ =  and 2 2σ̂ σ∞ = . We will 

show that 1µ̂ µ>  and 2 2
1σ̂ σ< . We will then show that the mean is a decreasing function of 

sN  and the variance is an increasing function of sN . These facts will help us to show that the 
normalized log-likelihood is an increasing function of sN , while the normalized log-
likelihood for 1sN =  is greater than the GMM normalized log-likelihood. This will conclude 
the proof that for any mean and any segment length, two single Gaussian clusters are better 
than one GMM of two Gaussian mixture components, if the data really comes from two 
Gaussian sources. 

First let us show that 1µ̂ µ> . The value of the real mean can be written as a difference of 
two integrals as in (32). 

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1, , 1, , 1

2

2

1

1

log log
1

1 1
ˆlog

2ˆ1 2

1 1
ˆlog

2ˆ2

s s s

s

s

s

s

N x x N x x N

s s

x N

s N

x N

s N

f g d f g d
N N

f d
N

f d
N

α αα α α α α α
σ σ

αα α µ α
πσ πσ

αα α µ α
πσ πσ

∞ ∞

+
−∞ −∞

∞

−∞

∞

+
−∞ +

      ∆ = Φ − Φ      − ⋅ ⋅   
    = Φ − −    − ⋅      

    − Φ − −    ⋅      

∫ ∫

∫

( )

( ) ( )
2

1

ConstantOdd function

2

2

ˆ  by defi

ˆ 1
log log

ˆ ˆ1 1 2

1
ˆ

ˆ2 1

s

s s

s

s

Ns

N
x

Ns s s N

x N
N s

f d
N N N

f d
N

σ

σα α αα α
σσ σ σ πσ

αα α µ α
σ σ

∞
+

−∞

∞

−∞

           = Φ − Φ − Φ ⋅            − ⋅ − ⋅ ⋅              

 − Φ − − ⋅ 

∫

∫

∫

���	��
�������	������


( ) ( )

( )

2
1

2

12
1

ˆnition  by definition

1

0 

1
ˆ

ˆ2

ˆ
log 0

ˆ1

s

s

Ns

s

s

s

x N
N s

N
x

Ns

N

f d
N

f d
N

σ

αα α µ α
σ σ

σαα α
σσ

+

∞

+
+ −∞

∞
+

−∞

> ∀

 + Φ − ⋅ 

   = Φ >     − ⋅   
  

∫

∫

��������	�������
 ��������	�������


��	�

 (31) 

 

( )

( ) ( )  

2

1 22 2
0 0 0 0

1 1
exp

22

1 1 1 1
exp exp

2 22 2

d

d d I I

µ α α µ α
σπσ

α α µ α α α µ α
σ σπσ πσ

∞

−∞
∞ ∞

> >

 = − − 
 

   = − − − − + = −   
   

∫

∫ ∫
 (32) 

while the estimated one is a sum of the same integrals: 
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( ) ( ) ( )

( ) ( )

1 1

0

2 2
0 0

1 2 1 2

ˆ

1 1 1 1
exp exp

2 22 2

x j xf U d f d

d d

I I I I

µ α α α α α α α

α α µ α α α µ α
σ σπσ πσ

µ

∞ ∞

−
−∞

∞ ∞

= =

   = − − + − +   
   

= + > − =

∫ ∫

∫ ∫ . (33) 

Now we can find the sign of the value 1ˆ ˆ
s sN Nµ µ +− . To find this we first need to find the next 

values: 

 
( ) ( )

0

1 1
1

1 1
s ss s

s s

s s s s

N NN N
N N

N N N N

α µ α µα µ α µ α µ
σ σ σ σ

<

  − −   − − − − Φ ⇔ > > Φ ⇒ > − −       ⋅ ⋅ − ⋅ − ⋅     
���	��


 (34a) 

 
( ) ( )

0

1 1
1

1 1
s ss s

s s

s s s s

N NN N
N N

N N N N

α µ α µα µ α µ α µ
σ σ σ σ

>

  + −  + −+ +  Φ < Φ ⇔ < ⇒ < −     ⋅ − ⋅ ⋅ − ⋅     
���	��


 (34b) 

then 1ˆ ˆ
N s ss

N Nµ µ µ +∆ = − : 

 

( ){ } ( )

( ){ } ( )
1

0
2

2

0

0

2

2

11 1
exp

22 1

11 1
exp

22 1

Ns

s s

s s

I

s s

s s

N N
d

N N

N N
d

N N

µ
α µ α µα αα µ

σπσ σ σ

α µ α µα αα µ
σπσ σ σ

−∞

<

>

−∞

  + −  + ∆ = Φ − Φ− −      − ⋅ ⋅     

  − −  − + Φ − Φ− +      − ⋅ ⋅     

∫
��������	�������


����������������	���������������


( ) ( )

( ) ( )

2

3

0

2

2
0

2

2

11 1
exp

22 1

11 1
exp

22 1

I

s s

s s

I

s s

s

N N
d

N N

N N

N

α µ α µα α µ α
σπσ σ σ

α µ αα α µ
σπσ σ

∞   + −  +  + − − Φ − Φ       − ⋅ ⋅       

 − −  − + − + Φ − Φ    − ⋅   

∫

∫

����������������	���������������


����������������	���������������


4

0

0

0

1 2 3 4

0

0

s

I

d
N

I I I I

µ α
σ

∞

>

>

=

  
  ⋅   

= + + + >

∫
��������	�������


����������������	���������������


�	


 (35) 

and this means that ˆ
sNµ  is decreasing and bounded between 1µ̂ µ>  and µ̂ µ∞ = . 

Then the variance can be found as: 

 

( ) ( )

( ) ( )

( )
2 2

22 2
2

22 2
2

22 2 2 2 2 2
2

11 1
ˆ exp

22 1

11 1
ˆexp

22 1

1 1
ˆ ˆexp

22

s

s

s s

s
N

s

s
N

s

N N

N
d

N

N
d

N

d

σ µ

α µ
σ α α µ α

σπσ σ

α µ
α α µ α µ

σπσ σ

α α µ α µ σ µ µ σ
σπσ

∞

−∞

∞

−∞

∞

−∞

+

 + −  = − − Φ    − ⋅   
 − −  + − + Φ −    − ⋅   

 = − − − = + − < 
 

∫

∫

∫
��������	�������


 (36) 
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As the mean is a decreasing function, the variance is an increasing function of sN  and 

bounded between 2 2σ̂ σ∞ =  and 2 2
1σ̂ σ< . 

To show that the normalize log-likelihood of two clusters with 1sN =  is higher than the 
one of a GMM of two Gaussian mixture components, let us first choose a sub-optimal 
estimator of ( )1, ,1xf α . Assume that the values of the estimator are 1µ̂ µ=  and 2 2

1σ̂ σ= . As this 

is not the best estimator, if the normalized log-likelihood with this parameters is higher than 
the log-likelihood of a GMM of two Gaussian mixture components, then the normalized log-
likelihood using ML estimator will be higher for sure. Since 0jα∀ ≥ : 

 
( ) ( ) ( )

( )

2 2

2 2

2

2

1 1 1 1 1
exp exp

2 2 22 2

1 1
exp

22

xf α α µ α µ
σ σπσ πσ

α µ
σπσ

    = − − + − −        
 ≤ − − 
 

 (37) 

and the same can be said with the second cluster for 0α∀ ≤ , then: 

 ( ) ( )( ) ( ) ( )2

2
0 0

1 1
log log exp

22
x x xf f d f dα α α α α µ α

σπσ

∞ ∞   < − −    ∫ ∫  (38a) 

 ( ) ( )( ) ( ) ( )
0 0

2
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For the case where sN → ∞ , the estimated pdf of the cluster ( ), ,i xg α∞  is equal to the real 

pdf of the cluster ( ), ,i xf α∞ , and we can write: 
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. (39) 

The normalized log-likelihood for any value of sN  is then: 
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∫

∫
. (40) 

Since 2ˆ
sNσ  is an increasing function, the normalized log-likelihood is a decreasing 

function of sN . As for sN → ∞ , the normalized log-likelihood of two clusters is higher than 
the one of a GMM of two Gaussian mixture components, consequently it holds for any sN . 
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8. Single Source Data 
When the data comes from a single source, (20) cannot be applied. Now there are much more 
options than the data only belongs to 1G  or 2G . In this case it is possibly that one part of the 
variables in the segments comes from 1G  and the other part from 2G . It makes the problem 
combinatorial: 
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. (41) 

In the same way as was done in (21)-(25) the probabilities of the two clusters will be: 
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From (42a) and (42b) it can be seen that for 0µ =  we will get the same result as in the 

two-source case. In this case ( )Φ •  gets out from the sum and ( )1 1

0

1 2s s
N Ns
n

N
n

− −
=

− =∑  and the 

result is as in (24) and (25) for 0µ = . When 1sN =  the results are the same. This is also 
intuitively expected. In both cases it will be estimated that two clusters are better. 

Intuitively we can say that if 0µ >  and the segments are sufficiently long then one GMM 
will be better. It is very difficult to find this sufficient length but the case of sN → ∞  can be 
analyzed. The analysis will be only for 1C , but the same analysis is valid for 2C  as well. Two 
cases can be observed and in both ( ) constΦ =• . 
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The probability of each case is half, so equation (42a) becomes: 
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 (44) 

The Gaussian estimation of such pdf gives ˆ 0µ∞ =  and 2 2 2σ̂ σ µ∞ = + . In this case the 
normalized log-likelihood will be the negative cross-entropy between the GMM and one 
Gaussian, ( ) ( )( ) ( )( )

1 ,;   ,  0x x x
f gH H f µα α α∞− < − ∀ > . 

 ( ) ( )( )1, , 2 2

1 1 1 1
; log log

2 2ˆ2 2
x xH f gα α

πσ π σ µ
∞

∞

   − = − = −   +   
. (45) 

In this section we have shown that in the one-source case the decision about one or two 
clusters is not clearly defined like in the two-source case. While we are sure that for 1sN = , 
two clusters are better than one and for sN → ∞  one cluster is better, for any other value of 

sN  it will depend on µ  and σ . 
The following experiments also support the fact that a sufficient segment length is 

required to reach the decision that one GMM is better than two clusters. 

9. Experiments 
Simulations were performed with artificial data to demonstrate the correctness of the 
theoretical analysis. Then real speech data from two speakers was used for a speaker 
clustering application. 

9.1 Artificial data 

In the simulations the data was derived from two one-dimensional Gaussians with unit 
variance and with equal prior probability for each Gaussian. The mean varied from zero to 
four by steps of 0.4  (taking 11 different values). For each value, 11 datasets where created. 
Each dataset has a constrain about the length of a segment from the same Gaussian. It 
simulates data coming from two sources. Segment length was 0, ,102k

s kN ==
�

. For each 

segment length sN , two tests were performed: first, assuming data coming from two sources 
and second assuming data coming from one source (a GMM of two Gaussian mixture 
components). 

Figure 2 shows the results from clustering the data with the segment length constraint. 
As was proved it can be seen that two clusters are always better than one GMM. When the 
mean becomes sufficiently large (about three times the variance) segment length does not 
make any difference due to the fact that the probability of negative data attributed to the 
Gaussian with positive mean, tends to zero and vice versa. 

It can also be seen that for 0µ =  and 1sN =  the normalized log-likelihood of two clusters 
is higher by about a half, as expected from (18). When 4µ =  the difference is about 

( )log 0.72 ≈ . This is due to the fact that for 2 1σ = , 4µ =  can be approximated by µ → ∞ . In 
this case the normalized log likelihood of the GMM can be approximated as: 
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 (46) 

and the normalized log-likelihood of two clusters is according to (40). If we apply 2ˆ 1σ =  the 
difference is exactly ( )log 0.72 ≈ . 

Figure 3 shows the results for the one source case. As was shown in section VII, when 
the mean equals zero the results of two clusters are always better. The same is true for 
clustering without constraint (one segment length constraint), see section V. When the mean 
equals 0.4  segments having long duration 32sN ≥  are the only ones to have a lower log-
likelihood than the GMM. When the mean becomes equal or higher to 2.4 , the GMM always 
give a higher log-likelihood than two clusters with duration constraint 2sN ≥ . It means that 
when the distance between the Gaussians is higher than one standard deviation it is very easy 
to decide whether the data comes from one source or two. 

 
Fig. 2: Clustering data comes from two sources. 
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Looking at the curve for 1024sN =  it can be seen that it follows exactly the result of (45) 
for infinite segment length, starting with 1.42−  for 0µ =  and finishing at 2.84−  for 4µ = . 

 
Fig. 3: Clustering data coming from one source. 

9.2 Speaker clustering application 

Two Australian English speakers were recorded, 110sec  each speaker. The data was sampled 
at 48KHz and down sampled to 16KHz . 12th order LPCC features were extracted from 
20msec  windows at 10msec  frame rate. Three datasets were used. First, the data of the two 
speakers was combined such that speaker turns occur each two seconds. The second dataset 
was the data from the first speaker only and the third dataset was from the second speaker 
only. For each dataset a comparison between two clusters with one Gaussian each and a 
GMM of two Gaussian mixture components were performed. Segment lengths were 
{ }1,2,5,10,20,50,100,200 . As the goal is to compare the best results and since the EM 

algorithm is sensitive to initial conditions, each test was conducted 20 times and the system 
with the highest likelihood was chosen. The results are shown in Fig. 4. They show the 
normalized log-likelihood of two-cluster system minus the normalized log-likelihood of the 
GMM. The values above zero indicate that two clusters are better, otherwise one GMM is 
better. It can be seen that for all three datasets the behavior is similar. The likelihood always 
decreases as the segment length increase. The decision changes at the segment lengths 
between 20  and 50 . While in the theoretical case two clusters were always better in real 
applications it is not always the case. 
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Fig. 4: Clustering with on Gaussian per cluster versus one GMM of two Gaussian mixture 

components for speaker clustering. 

As the true clustering of the first database is known, Fig. 5 shows the clustering 
performances in terms of percentage of correct classification as a function of the segment 
length for the first dataset. In this experiment was assumed that we know that there are two 
speakers. The clustering performance becomes better as the segment length is bigger, i.e., the 
clustering becomes meaningful. For segments shorter than 50  vectors the clustering is about 
50% correctness, which mean random data assignment between two clusters whit respect to 
two speaker sources. The clusters may have some meaning in some phonetic level sense but 
not according to speakers. For segments of 200  vectors ( 2sec  in duration) the results were 
over 87% correctness. Although in real applications the precise segment boundaries are 
unknown this simulation show the importance of the knowledge about the maximum 
available segment length for meaningful clustering performance. If we would not use the 
knowledge of two speakers, according to the results shown in Fig. 4 one GMM would be 
chosen. Usually the models that are used for speaker clustering have much more Gaussians 
for each cluster so more accurate clustering can be performed [2], [10]. When the cluster 
models are more accurate, it was shown experimentally that two clusters may have higher 
likelihood than one GMM with the same number of parameters [2]. 
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Fig. 5: Clustering results as a function of the segment length. 

10. Conclusions 
In this work we presented a theoretical analysis of temporal data clustering. Only a very 
simple case, two Gaussians with symmetrical mean, equal prior per Gaussian and with 
constant segment length that is known, was presented. It was shown that if the data comes 
from two different sources, and the length of each data stream is known and constant, two 
clusters will always be better than one GMM of two Gaussian mixture components. Although 
the decision is correct the clusters become close to the real sources only for large streams 
(large segments). For short streams the clusters are not very accurate. When either the data 
comes from the same Gaussian source with zero mean or segment length equals one the 
decision is always false, i.e., the result was that, two clusters should be better than one GMM. 
When the mean is not equal to zero the result depends on the segments length. It was not 
shown theoretically what should be the precise length of the segment but from simulation 
results it seems that for mean greater than twice the standard deviation, a short segment, even 
with length only of two, is already enough to obtain the right decision. 

For real life applications such as speaker clustering it was shown that the likelihood 
decreases as a function of the segment length. As the source pdfs are not known the Gaussian 
approximation per cluster does not lead always to a higher likelihood. As it was shown, 
segment length has a very high importance for meaningful clustering. The more data we have 
for each segment the more meaningful clustering can be performed even when the cluster 
model is not accurate (usually speakers are modeled using several tenths or hundreds of 
Gaussians). 
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