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Abstract. In this report, we provide a theoretical discussion on temporal data cluster analysis: does the data
come from one source or two sources; isit better to cluster the data into two clusters or leave it as one cluster.
Here we analyse only the simplest case: when the data comes from two symmetric Gaussian probability-density-
functions (pdfs), i.e., with same variance and same absol ute value of the mean, with the same prior probability
per Gaussian. The data consists of segments with an a-priori known segment length. 1t will be shown that if the
data belongs to two different Gaussian models, the likelihood of two clustersis always higher or equal than the
one of a GMM with two Gaussians for any mean, variance, and segment length. If the data belongs to the
GMM, the likelihood of two clusters might be either higher or less than the GMM one.
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1. Introduction

In temporal data clustering problems such as clustering of speakers, protein chains, music,
etc, the real number of clustersis not always known. In the case where the number of clusters
Is unknown the data is frequently clustered first according to a relatively high number of
clusters [1], [2]. Each cluster C is defined by a parametric pdf with estimated vector of

parameters ©,. When the clusters are created the next step is to decide whether there are

clusters to be merged. One way of doing so is to create a new cluster using the union of the
data of both clusters. The log-likelihood of the new cluster can then be compared with the
accumulated log-likelihood of the two clusters. According to Bayesian model selection [3]
the comparison can be done only if the number of parameters in both cases are the same
(similar conclusions about model comparison can be achieve, under some assumptions,

according to information theory on two-part message length [4], [5]). Let |6 be the size of
parameters vector © of the new cluster. If |6]%(6,|+|®,| (6, and &, are the estimated

parameter vectors of the original clusters) a difference in the complexity should be taken into
account, eg., AIC, BIC, MDL or MML [3]-[6]. Otherwise, the decision can be taken
according to the comparison of the likelihoods of the two systems. The case where

6l =|&,] +/&| holds show very good results for speaker clustering and speaker change

detection problems [2], [7]. In these problems the estimated parameters often come from
GMMs with different number of Gaussian mixture components. Selecting the segment length
is another important problem. This length should ensure a minimum duration to obtain
sufficient statistics for cluster estimation. Another issue is the fact that segment lengths can
vary from segment to segment, e.g., the duration of each speaker turn usually vary, although
in several applications the length is known and constant [8]. Exactly the same logic can be
used to ask if a given data should be split into two clusters or should remain as a single
cluster. It seems very difficult to analyze the behavior of the general case, i.e., unknown
density functions and segment length that is not constant or unknown parameter. An accurate
analysis of the simplest case might give a significant insight on the behavior of such
applications.

The question of how to define a source is an additional problem that is usually task
dependent. Different sources can be defined as different phonemes or different speakers.
Minimum segment duration can be a helpful parameter for source definition. We will assume
that two discrete stochastic process Strict-Sense Stationary (SSS) have the same source if
they have the same n-th order pdfs for any sample of the process and for any nON..

In this work, we will assume that the data consist of segments with constant and a-priori
known length. These segments are streams of data and each stream comes from a single
source. The question is then: “are al the streams coming from the same source or from two
different sources?” The sources can be speakers, images etc. This is actualy a hypothesis
test: H, — al the segments come from the same source, H, — the segments come from two

sources. The complete data pdf f,(a) should be approximated from a known parametric pdf
model class .47 ={f, (al©)} . The goal is to estimate the parameters © , in order to maximize
the likelihood. We would like to know whether the data comes from two different sources or
from one single source. In this case the data is first clustered into two clusters C, and C,,
with two pdfs, g,(a|®,)0.47 and g,(a]6,)0.47 . Then the likelihood using the estimated
pdfs of the two clusters is compared with the likelihood using the estimated pdf of one large
cluster, f,(4|@)0.47, with [6]=|8 +|@|.



IDIAP Research Report 02-56 3

In this report we analyze the case where the data comes from two symmetrica one-
dimensional Gaussians sources, i.e., the absolute value of their mean is the same, they have
the same variance and the same prior probability for each Gaussian. This knowledge, of
course, is not taken into consideration during the clustering process and parameter estimation.
Additionally, we will assume that the segments (each source produces many streams, or
segments, with fixed length) are statistically independent and the samples in each segment are
independently and identically distributed (i.i.d.). The i.i.d. assumption is usually wrong but
simplifies the problem to the estimation of one-dimensional pdf rather than a pdf of the
dimension of the segment. It will be shown that in this ssmple case, it is dways better to
produce two clusters of one Gaussian each rather than one GMM with two Gaussian mixture
components, in the case where the data comes from two different sources (Gaussians). It will
be shown that the results are valid for any fixed a-priori known segment length. On the other
hand, if the data comes from the same source modeling by a GMM with two Gaussian
mixture components, the decision depends on the Gaussian parameters and the segments
length.

Another important assumption in all the following discussion is that the number of data
samples, N, tends toward infinity. Let N, be the segment length. In several cases N, will

aso tend towards infinity. It is always assumed that N,/N - 0, i.e., the number of data

samples tends toward infinity, infinitely faster than the segment length (the number of
segmentsin the dataisinfinite).

In real life applications, due to the fact that our assumptions of independence, knowledge
about segment boundaries, and the assumption about the model are not always valid, and
most importantly, the choice of the complete data pdf model is usually not exact, the problem
Is of course much more difficult.

The report is structured as follows: in section Il the relations between Maximum-
Likelihood (ML) and Minimum-Entropy (ME) will be presented. Section Ill describes the
calculation of the likelihood of multiple cluster case. In section IV an example of the segment
length importance for clustering performance is analyzed. Section V presents the simplest
case when the length of the segments is equal to one and the mean of the Gaussians is equal
to zero or tends toward infinity. Section VI extends the problem in section V to any segment
length when the data comes from two Gaussian sources. Section VII extends section VI for
any value of the Gaussian mean. Section VIII presents partial results for the case where all
the segments come from the same source. Section IX presents simulation results with
artificial and speech data, and section X concludes the report.

2. The Relations Between Maximum Likelihood and Minimum
Entropy

In many applications, given a dataset, we need to estimate the probabilistic model from which

the data was derived. The actual pdf of the data f,(a) is usualy unknown and a parametric

model is assumed as a pdf f,(a|@) from a parametric model class .47 (assuming that

f.(a)UA7 are aset of regular functions). The most common approach is maximizing the

likelihood (or log-likelihood) [9]: given a dataset with N i.i.d. examples and a model class
A, we would like to estimate the parameters © that maximize the likelihood of the given
data:

ézargmax{l(x|@)} =a2%n114ax§|j p(xn|®E. (1)

o0ts
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We can maximize the log-likelihood instead of the likelihood function and get:

é)zargmax{L(X|G))} =aL%T4axD’i Iog(p(x,J@)E. 2)

onts

As the dataset consists of i.i.d. examples then the dataset Y ={y, = f (x,;®)}" is dso
i.i.d. (f(x;®) isaparametric function of x, with parameter vector ®). As Y isi.i.d. then
according to the law of large numbers: ﬁzllyn — E{W} if Var{Y} <o, and this is the
typica case, otherwise it is true in probability only. Let us define
Yo = f(%,; ) =Iog(p(xn|é)). Let us define the normaize log-likelihood as
NL(X16) =1 L(x|®). Thenfor N - » weimmediately get the next expression:

NL(X‘ )—Ml—l_(x‘ ) E{Iog(p(x‘é))} =ifx(a) [Ebg(fx(a‘é))da. 3)

We will define;
1. H(f(a)) —theentropy of the random variable x according to pdf f, (a).

2. Cross-entropy — H (fx(a); f (a|é)) = —E{ f, (a|é)} , expectation of the function f, (4(6)
according to the pdf f,(a).

From (3) it can be seen that the estimation of the log-likelihood is equivalent to the
estimation of the cross-entropy, i.e., maximizing the log-likelihood is the same as minimizing
the cross-entropy between the real source pdf and the estimated source pdf

(NL(X|é)=—H(fx(a);fx(a|@)))). From the properties of the entropy we know that
H(f(a))<H(f(a);0,(@)) Ofl@¥ g.a) (the Kullback-Leibler Divergence is aways

greater than or equal to zero), so minimizing the cross-entropy will maximize the log-
likelihood.
Let us examine a simple example. Let us assume that a~U(01) and that

(a|® U, a}) mexp{—z;z(x—y)z}, i.e., in order to estimate the fx(a‘é) function it is

sufficient to estimate the mean, i, and the variance, &7, that will maximize the log-

likelihood. The common way is to calculate the mean and the variance from the input data.
To find the parameters wusing entropy minimization, we should solve

ZH(f,(a):f,(al0))=

1

EPT#H(fX( (ale))= J’f )Eslo —u)dr =0

0

O @ f(a)dr E(o)

] I @

D%H(fx( (ale)) = If % -u)’ —%Eda
O

(D
Ero 0 62 [(e A, (a)dr Var(a)
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It is clear that in both cases we estimate the mean and the variance of the real distribution,
f.(a), and apply them to the assumed model.

3. Likelihood of K clusters
Assume that the data X consists of M statistically independent segments X ={ X} "', of

m=1"

length N,,. These segments are clustered into K clusters {C} :1 As aresult of the clustering

process we obtain: the estimated parameters of each cluster, {6, } ", and the estimated labels

k=11
of each segment, {L,} " . Using the estimated parameters we want to estimate the likelihood
of the data X . We must first define the pdf of one segment, X, using estimated parameters

{C:)k}:=1 and L, =a{91max{ p(Xm Ox,, (am|é)k))} =a[91max{ p(Xm|ék)} :

,,,,, K - K

0, (1)= 3 8L =) g, (0. [2) ©)

where 5(Lm = k) isan indicator function, i.e., equalsoneif L, =k, zero otherwise.

As the segments are statistically independent, the pdf of the entire dataset will be a multiplication of
the segment pdf functions. If the vectors in each segment are i.i.d., then each segment pdf is a
multiplication as well:

M M K ~ D
0 ()= [ 0x. (0) = ﬂia(gﬂ =K) gy (am\ek)H
i m:A . " ) (6)
=[].J] 9 loal®) =[] 1] [ 9 amal &)
As a consequence, the likelihood of the data X will be asfollows:
K R K N, ~
(=] 11 p(X,|®) 11111 p(%n| &) @

If the segments are all of the same size, , the number of segments in a cluster is M, and the dataset
size tends toward infinity (Ck: M, o ), then the estimation of the normalized log-likelihood can be
written as follows:

KM

NL(X)=—;VKH(fx(a|Ck);gx(a‘é)k)) ;M =2Mk (8

where f, (a|Ck) is the true pdf of the cluster C, . For simplicity we will use the following notation:

P, H (fx (a|Ck);gx(a|ék)) =H (Pk 7, (a|Ck);gX(a|ék)) » =M This term represents the
negative of the contribution of the k -th cluster to the normalized |og-likelihood.

4. Simpletheoretical example

In order to show when temporal data clustering is superior to static clustering a simple
theoretical example is presented. Assume that the data comes with equal probability from two
Gaussian sources, S ~N(u,0?) and S, ~N(-y,0?), and al data points are statistically

independent. The data should be clustered into two clusters, C, and C,. Each cluster will be
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modeled by only one Gaussian. We will consider two cases. first, assuming no knowledge
about any dependency between the data points, and second, assuming that each pair of data
points comes from the same source (O Z x), (8 &,.., S, i0{12}).

For the first case, because of the symmetry of the problem and without loss of generality the
clusters will be: C, O{x|x>0} and C, O{x|x<0} (x=0 can be attributed to any cluster). So

the pdf given C, will be f,(alC)= m%xp{ 3 }+exp{ L(a +,u)}EU_1(a)

(U_,(x) isastep function), and because of the symmetry f, (a|C2) =f,(-0]C.).
In the second case the decision will be taken according to two points, so without loss of
genera“ty Cl |:I{XQm’ X2m+1 ¥ X2m+? 0} and CZ |:|{X2m1x2m+l T X2m+1< O} (X2m + X2m+1 = 0 can

be attributed to any cluster). The decision is taken according to two data points where each
pair isi.i.d. In the two dimensional space the data will consist of two Gaussians with means at

[u,4]" and [-u,-4]" and variances [0?,07] . The clusters boundary will be on the line
% +X, =0. In order to find the pdf of C; we need to calculate the margina distribution of x

given C,. The pdf of C, will be computed according to (9) and f,(a|C,) = f,(-a|C,). Given
the prior knowledge that both samples come from the same source (S or S,) only two terms
of integration are present in (9). Without this knowledge two more terms of integration would
be present for the cases where thet first input comes from S and the second comes from S,
and the case where the first input comes from S, and the second comes from S. ®(¢) isa
distribution function (integral of the pdf function from zero to ¢) of a normally distributed
variable z, z~N(0,1).

Figure la shows the pdfs of two sources, with means p,, =+1 and variance equals to
one; the pdfs of the clustersin the first case are shown in 1b, and the pdfs of the second case
are shown in 1c. It can be clearly seen that the additional information about the duration
dependency of the data significantly improves the clustering performance even in the
simplest case where segment length equals two and each source consists of i.i.d samples. In

more difficult cases, more sophisticated models and longer segment length information
should be applied to reach significant improvement.

£, (@lC)= [ .., (a]G)dp

:J%mex'o%zf (@ =n) él,J%ran@ 576 ﬁ W

+\/%Taexp%2i2 (a +u) éj;\/%aexp% —2;2 (B +/,1§ dgp 9
\/%Taexpé—ziz (a _ﬂ)éﬁ_%—agﬁ% zaneXD _2;2 (@ w% %_ ﬂ;ﬂ%

T2l 2 A B Sl wh e
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Fig. 1: Clustering of two Gaussian sources with means, y,, = +1 and variances, o7, =1 (red

line corresponds to 1 and blue line to 2). a) pdfs of the sources, b) pdfs of the clusters without
duration constrain, c) pdfs of the clusters with segment length equal 2.

Additional important characteristics of temporal data clustering can be observed from
comparison between Figs. 1b and 1c. It is seen from the figures and it is easy to show that the
variance of the data attributed to clusters of the first case is smaller than the variance in the
second case. In the next section we will prove that the mean always become smaller and the
variance larger as a function of the segment length. Moreover, in the limit the mean and the
variance tend towards the values of the source mean and variance.

5. Segment length equalsone

In this section, as segment length equals one, we will not assume that the data comes from
two sources, each being a Gaussian, with same variances, and with prior probability of 0.5,
or from one GMM of two Gaussian mixture components. When segment length is equal to
one, both cases are exactly the same. The data samples are assumed to be statistically
independent. The question is, again, whether it is better to consider the data belonging to one
source or two sources containing one Gaussian each. An additional assumption is that the
data size is infinite. Intuitively it seems that when the means are close relatively to the
standard deviation they should be considered as one model while when they are far they
would be considered as two models. Consider, without loss of generality, that the data is
distributed as follows:

X

X~ f,(a) =%N(u,az)+%N(—,u,az) =% fi(a) +=f2(a) (10)
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where f/(a) is a Gaussian distribution with mean u, and f?(a) is a Gaussian distribution
with mean - . The clusters with distribution f; (a) will be called G,. Each cluster contains
al the data that was generated by f, (a).

The objective is to cluster the data into two clusters {C} ° such that x, ~ N(j,42) and
X, ={x;[x,0C} (X isthe dataattributed to cluster C). It isimportant to notice that C, isan
estimated cluster while G, is the theoretical, true, cluster. Because of the symmetry it is
obvious, without loss of generdity that the stable clustering will be:
X1={><1j|x1j >O} X, :{x2,.|x2j <O} (x=0 can be attributed to any cluster), and /1, =-7,,
G,=0,. As each Gaussian is estimated from its cluster C, we will end up with the true
cluster pdfs:

f(alc)=1, (a)a(—l)‘*1 >o) =21, (@)U (4)7) ; uLe) %(1) azs (11)
It is difficult to analyze the general case for any p, hence we will first analyze the
extreme caseswhen p - o and px=0.
5.1 Notations

For ssimplicity we will use the following notations:
1. f (a) —thetrue pdf of the i -th cluster C,.

2. g, (a) —estimated pdf of the i -th cluster, g, (a]6,).

5.2 u tendstoward infinity

Without loss of generality, we will only analyze the case where a >0. As ¢ - « and o is

finite the estimated parameters of the mean and the standard deviation will not be affected by
the Gaussian with the mean of —u as for this Gaussian the probability of a >0 is equal to

zero. From that it followsthat: g=x and 6 =0 .
5.3 u equalszero

In this case the GMM of two Gaussian mixture components with prior probability of 0.5 per
Gaussian becomes a normal distribution with zero mean, and the pdf when a >0 is

f,, (@) =22 exp{--1-a’}u , (@) (11). The estimation of the mean is:

Jero
ﬂzzjjafx(a)da =% (12)

and the estimated varianceis:
& =E{a} -p =0* -1 =—(”_§) 7 (13)

5.4 Thenormalized log-likelihood of the two cases of u

As it was shown in section |, the normalized log-likelihood is equal to the negated cross-
entropy. In this sub-section we will show that the cross-entropy of two clusters always lower
than the entropy of the data. First let us find the real pdf of the data attributed to each C, :
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f(an(a ()" >0)) 1,(a(-1)">0)

fo(a)= 1ol (-2) " >0) =

pla(-">0) P(a(—l)‘” >0) a4)
= U (a1 el ) e

Remind that g,,(a) is the estimated pdf of f,,(a) with the assumption of Gaussian pdf.

When 4 tends toward infinity, ﬁmexp{ (a—,u)z} tends to zero Oo< 0, and

= exp{ Lr(a+u) } tendsto zero D> 0, hence (14) can be rewritten as:

fo(@) = el e () w) 5. (15)

InV-A, u - o, we showed that g, (a)=f (a). As each cluster has only half of the data,
the normalized log-likelihood should be divided by two. The normalized log-likelihood of
both clusters together is —%Z;H (9..(a)) where g,(a)=f,(a). Because of the

symmetry, they are the same, i.e., the total normalized log-likelihood can be written as the
entropy of f,,(a), -H(f,.(a)). On the other hand the normalized log-likelihood of f, (a)

Is:
H(1,(a) = [ . a)1og( 1, (o)) er = [5E.0) + 1., o0 b ) + ..o
:J’Efxz(af)logEéf2X Hda+J' flx Ioga Lx ﬁd}’ (16)
=23 1. (@)oo} 1, (o) = (1, o)) ol

As log(1/2) <0 the normalized log-likelihood of two clusters is higher than the one of a

GMM of two Gaussian mixture components.
We will use the following notation to cal culate the normalized log-likelihood:
1. -H(Rf,(a):9,(a)) —normalized log-likelihood of g, (a).

2. -H(f,(a)]g. (@) ==Y _H(Rf.(@):9,(@)).

Remind that f,, (a)=2f,(a)U_(a(-1)**), thenin the case where 11=0:

“H(f,(a

(a)) = If )log(g,, (@ ))dr +J’f @ )log(g,, b ))ar

= + — 1 +AE
_IOQB\/ZT&H Lmaexpg—zazazgg%—zﬁz(a ,u)djda ) 17)
1 0O

° 1 o1 Jom 1 ~\2] 0] 1
+ eXp—sa —(a - da =lo =
L/Zna PH 207 zg]ip—252( 'U)Ep ° 2(71—2)0% 2
On the other hand the normalized log-likelihood of the read pdf is

~H(f,(a )—Iogﬁ\/%a—— If we subtract it from equation (17) the result will be:
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-H(f,(a)

As the result is greater than zero it means that two clusters have a dlightly higher normalized
log-likelihood than a GMM of two identical Gaussian mixture components.

To conclude this section it could be said that for the two extremes of the mean vaue
(zero and + ), two clusters are better than one GMM if segment length is set to one, N, =1.
In the next section we will see that the same happens for N, =1, and in section VII we will

show that it isvalid for al u.

gx(a))+H( )——IogBﬂ—E=05062 >0. (18)

6. General caseat the extremeswhen N, =1, ¢/{0p }

This section deals with the general case from the point of view of segment length only. We
will still assume the extreme values of the mean, =0 and y - « . The data is assumed to

come from two Gaussian sources, i.e., not from one GMM of two Gaussian mixture
components. First, the pdf of each cluster will be found, for any x>0, under the segment

length restriction. Then the normalized log-likelihood will be found for ¢ — « and it will be
shown that it isthe same asfor N, =1. At the last part of this section, a more difficult case of
4 =0 will be analyzed.

6.1 Notations

The following notations will be used:
1. f,, (a) —thetrue pdf of the i -th cluster C/, given segment length N;.

2. g, (a) —estimated pdf of the i -th cluster, g, (a|®,), given segment length N,

6.2 Cluster pdfs

In this section it is assumed that the data consists of segments with length N_, i.e., data
_ N (k+1)
samples Xy _{Xi} j=Nek+L

Gaussian mixture components, the clustered data will be divided into two symmetrical
clusters: C, isthe union of all the segments such that ZN(“ x>0 , kOZ (19), and C, isthe

, k07, are generated from the same Gaussian. For the GMM of two

union of all the segments such that ZN(“’ x <0 , kOZ (Z Wy =0, kKOZ can be

Ngk+1 =Nck+1" ]

attributed to any cluster). Let us define a new random variable vy, = ZN D) o As al the

Ngk+1 J
variables in the k -th segment are i.i.d. It means that vy, ~ N(N_,N_o?). From the point of
view of vy, the clustering is identical to the analysis in section V. From now on, without loss

of generality, the set of random variables belonging to a segment will always be {xj}?;,
instead of {x }

s(k+1)
=Ngk+1

, kOZ. To find the pdf of a random variable x; that belongsto C, we
need to find the marginal pdf of all the segments given ' " x,>0:
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Ns Ds

2]

e (19)

NS

o = O
Zan >00= [+ [ fung, FrT2r T,
n= U " %A

NS

. 0 0N
=(f.--[f d
_[[_m | xl,xz,.A.,xNS%A ;anggzj a,

First let us find the conditional probability of all segments (20). The last form of (20) is
correct only because of the assumption that all the samples of one segment belongs to the
same Gaussian and they are al i.i.d.

To simplify equations the following notation will be used: |'|NS da, £da; and

n=1, n#j

o ()= .13

Z Mg 2 Z, . Using this notation and the conditional pdf properties, (19) can be rewritten

n=l,nzj N

NS
in a simpler way as in (21), where |, (a;) is the multiple integral of [ f, (a,), and

¥ assumes that m# j . The second part in the third equality is correct only because each
segment can belong either to f! or to f?. The case where the segment belongs to one GMM
will be discussed in section VIII.

Ns Ns
fX(A)PDSZan>O|AE f (AU O a,> ¢
= | [l

f . a a ﬁa o _ £ .
g dg 717200 N nH~ N B N,
ﬁj & E P%ZGROE P% an>(%
= 0 0% 3
Equals%
Ng |:|
=2, (ANADG)P(G} fA AD GZ)P(q;;)Du_lD_0/n>oH (20)

& U
o fxl,xz,.u,xNS (al’a2""’aNs)U—l @)‘Z\an >O|:|

b,

0
a,>0g
0

fon (@) = P%ﬁ

NS

o o Ng

=2J’J'...U LS (AT A '3 :J’J’_;. U fxl(an)+|n_:l 2@, )de, = (21)
=t} (@) +1 ()

As {x} jN; are a sequence of Gaussian i.i.d. random variables, if we define z= Z:jlmxn >

will have a Gaussian distribution with x4, =(N, -1)z and o2 =(N, -1)c”. It is easy to show
that h; (a;) can bewrittenintermsof f,(y) as:



12 IDIAP Research Report 02-56

hi(a)=\/%wexp§r - DJ’\/—H J 307 Fmdy
(- f(a)qﬁm( ﬁf’ﬁ )
and in the same way:
and the final expression for (19) is:
Cor + (N, 1),uD (N, 1)/,1[ (24)

fun (0)= R(@) @5 = TR “ﬁ ﬁ

The same technique could be used for the second cluster and the final result is:
(N, -1) ,uD -a +(N, -1) ,u[

)= LR R O R )

To give afeeling of the correctness of the final results, assume N, =1 and zero mean. Then
the ®(.) acts exactly as astep function (for negative a;, the argument of ®(.) tendstoward

-0 and the result is zero, for positive a;, the argument of ®(.) tends toward +« and the

result is one) and f'(g)=f’(a), i.e, the pdf of C, is identica to the one found in sub-
section V-C, f,, (a)=2f,(a)U.,(a).

6.3 W tendstoward infinity

If we push p towards infinity in (24) the ®(.) in the first term tends toward one and to zero
in the second term, for any value of a,,i.e, f,(a) - f!(a).Inthiscase likewhen N, =1,
ﬂﬁm

the estimation of the mean and the variance will be: 7, =y and 62 =0c. Similarly, for
f,«(a) the estimation of the mean and the variance will be: i, =-x and 6% =0
Asinthecase N, =1, the normalized log-likelihood will be higher by log(2) .

6.4 u equalszero
For =0 theequality holdsfor f (g)=f'(a)="f’(g) andthepdf of C, is:

0
fl,x,NS( ) (D D\/i D (26)
Firss lee us remind the following properties: fo(a)="f(a) and

® 1—@% < - These will help us understand the properties of the mean
T ; e

and variance of C,.
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N O a 0O
NNS :Jo;aflxN ( da J-a' 2f )qjmgd]
p 0. 0 a 0 - 00
=2faf, (a da . (27)
[P E e G s
. o a 0.0
=2(af, (a)RP —-1-da >0
fo P g
E az0® «(2) 05 E

Greater or equal to0 O 0

For N,=1, ®(.) becomes a step function and we get exactly (12). For N, - «, the
value of ®(.) iszero for any a and the integral is zero, i.e., 1, =0. Now let us show that
ﬂNs iIs a monotonically decreasing function of N,, bounded by 4, and . . As

WD qgm for Oe> 0. It leadsto:

/:1N5+1:2}af %@E’LE JDda <2Iaf )DZ Bﬁﬁé Edy =a, . (28)

O

Now we can show that the variance is a monotonically increasing function of N, (29). As o?
is the variance of the zero mean Gaussian data, it is constant. In (28) we showed that /1, is

monotonically decreasing. From these two facts we obtain that &y is a monotonically

2
increasing function of N_. 67 isbounded by &7 _(m-2)0" according to (13), and 42 =o”.
: T
P O a O .
a)da -/ a®2f (o) og—rr 43
lxN Ng X Ng
_J; D/Ns—lmm

O a (29

D O 2 _p2
+1- da =0° -
L e e T e e

Equas1

i
-2t

We obtain the same result for the mean and variance of C, with the exception that the mean
will have a minus sign (but the absolute value of the mean is still adecreasing function of N,
and 63 anincreasing function of N,).

We showed that the mean is a monotonically decreasing function of N, the varianceis a
monotonically increasing function of N, and we gave the normalized log-likelihood for
N,=1 and N, - . We now need to show that the normalized log-likelihood is a
monotonically decreasing function of N,. Let us first define g,,, () as a Gaussian pdf for
cluster C, with mean 4, and variance &y ; in the sameway g,,, ( ) isaGaussian pdf for
cluster C,. Aseach cluster has only half of the data the normalized log-likelihood is:

J-flxN IOg@lxN ( )ch"- _I f2xN )|09§9sz @ﬁd?‘

= (o ()]G (@)

(30)
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Given the symmetry, in order to show that NL, () isamonotonically decreasing function of
N, the  sufficient  condition  for  any N, Is to prove tha

S

ANS =-H (1/2 fl,x,NS (al)igl,x,NS (a)) +H (]/2 f2,x,Ns+1 (a)lgz,x,Nsﬂ (a )) >0 isaccording to (31)

Until now we have shown that the normalized log-likelihood of two clusters is higher
than the one of a GMM of two Gaussian mixture components for any segment length when
u=0or u - «.Inthenext section we shall extend this result for any value of the mean.

7. General case— N, =21and O< (/<o

Asinsection V, it is obvious that when N, tends toward infinity, the means and the variances
will be identical to the true Gaussian mean and variances, i.e. i, =u and 62 =o*. We will
show that f, >u and 67 <o?. We will then show that the mean is a decreasing function of
N, and the variance is an increasing function of N,. These facts will help us to show that the
normalized log-likelihood is an increasing function of N_, while the normalized log-
likelihood for N, =1 is greater than the GMM normalized log-likelihood. This will conclude

the proof that for any mean and any segment length, two single Gaussian clusters are better
than one GMM of two Gaussian mixture components, if the data really comes from two

Gaussian sources.
First let us show that [, > . The value of the real mean can be written as a difference of

two integrals asin (32).
ANzifx(a) Dﬁ Dog@m da - If mg—mﬁloggglxwagm
. a 1 ERY:
N | Oda
B

D a . 1( _ﬁNu)zEda

wf a
I DFB’DQ [[\/7 N+1E||:| 21 ) g

P 0 a D 0y, O 0 a OO 10
[ A e e 0 10
= ED\/S 8. B 5o 0N @@ overey
Odd function Constant
1 0 a 0., - 0O a 0. =
2o M@)o B g o A [ ol o A 0o
%, by definition R by definition
P dog a
= f (a)c® Iog da >0
I ( )D 0 me E %
H >ODN (31)
,uz_]’a\/%aexpﬁ—ziz —uEda
. (32)
_ 1 O 1 B B 0o 1 _
__O]’a\/ﬁaex 5 ,u)%da J’a ﬁaexp% 57 a w@ ar I>0 1;3

while the estimated one is a sum of the same integrals:
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:iafx(a)u_l(a)da,- :ia flr)dr

® 1 O 1 ® 1 O 1
=(a ex a- da +(a exp] — a+;§ da . 33
-([ V2o pE—ZGZ( /J)% -O[ 2o B 202( (33

=+ > =1, =

Now we can find the sign of the value &, -/, .,. To find this we first need to find the next
values:

Do -Ny _a-Ng _a-(N-Hud  Da- (N~ JulH - A
PR e e T AT e

Co+ N Dﬂ+(N -)ub a+Nu a’+(NS Yul —
S e B e et L

then AHNS =,[1NS _lLAIN5+l:

0

1 O Co+ (N,-1)u O [n+Ns,u[hJ
A = - (a- mD—
o _La\/znaex'o[ 207 “)}S’ﬁ N, 10 | GWN

S

<0

1,>0

° 1 1 % -(N-)u0 - Nsudﬂ
oS
+Ia\/2ﬂaexp{ 207 (a+p }ED N, 1[17% Dﬂ/

© 1 01 2DD Da+(Ns YuO Da+Nsth3
+(a (a o da 35
-!\/27'[0' pHZ 'U%EFDE N, 1EUE D«’ (35
© 1 01 zDD Oor— (N,-2)p 0 0 NS,uEﬂ
+(a ex (a
-O[ N2rro pE'_ o’ ,u EEFDE N,-1lb DJ

=1+, +1, +1, >0
=0
and thismeansthat f, isdecreasing and bounded between i, > u and 2, = u.
Then the variance can be found as:

. E— 1 a ) ZD Eu (N, - 1’UDda
Iw 770 [ E 1/ -1l E
© 0 (N,-1)u0O

ex da — 36
I o ﬁimﬁ (36)
} L eof L (0-p)Hda -2 =0 +12 -2 <o
7 oo O 207 0 N N

o2+



16 IDIAP Research Report 02-56

As the mean is a decreasing function, the variance is an increasing function of N, and
bounded between 62 =o¢? and 67 <o”°.

To show that the normalize log-likelihood of two clusters with N_ =1 is higher than the
one of a GMM of two Gaussian mixture components, let us first choose a sub-optimal
estimator of f,,,(a). Assume that the values of the estimator are j1, = and 67 = o*. Asthis

IS not the best estimator, if the normalized log-likelihood with this parameters is higher than
the log-likelihood of a GMM of two Gaussian mixture components, then the normalized log-
likelihood using ML estimator will be higher for sure. Since Oaz 0:

_ED 1 El-l( —y)%+ 1 exﬂ% 1(a_lu§D
f ZBJi 0 20° 0 J2mo 0O 20° H (37)
1 D 1
<
2710 D 20° (a ,u)
and the same can be said with the second cluster for Oa <0, then:
“ 1 O 1 0
f [ f da f I - d 38
[rehen(t o) <[Vl e e
0 1 O 1 20
:[,fx a)log( f,( )da<J’f IogD\/Z_mexpEy—zaz(a + 1) Egda (38h)

|
For the case where N, - o, the estimated pdf of the cluster g,, ., (o) isequal to the real
pdf of the cluster f,, ., (o), and we can write:

H(1,(@)) =H S e (0) 5 o (0)]
- H ﬁ% t..(a)f, (a)ﬁ— Hﬁ% f,.(@):f, (@ E

: (39
<__B_|( 1x00( ) lxw(a))+H(f2,x,w(a);f2,x,°°(a))H
=2 (1 (@) #H (oo (@)
The normalized log-likelihood for any value of N, isthen:
“1 a1 o 1 ~ \od
=f I —\a - da
:[,2 1x,Nq (0’) Ogmapg 25—1%15 (O’ :uNs) EE @)

+I - Iogﬁ\/TNsexpD—2 . (a +;2N5)2§§da =—%Iog(2n) —Iog(&Ns) -1

Since &y is an increasing function, the normalized log-likelihood is a decreasing

function of N,. Asfor N, - o, the normalized log-likelihood of two clusters is higher than
the one of a GMM of two Gaussian mixture components, consequently it holds for any N..
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8. Single Source Data

When the data comes from a single source, (20) cannot be applied. Now there are much more
options than the data only belongsto G, or G, . In this case it is possibly that one part of the

variables in the segments comes from G, and the other part from G, . It makes the problem
combinatorial:

0 N
fxl,xz,.“,xNS %rl’aw' b 1aN

=zz(ﬁs)fx(Am{aj‘ajDGp (a7 G| r})P(Gl)”P(GZ)NS_"U_lgNZGH o@. (41)

N 0 Ng-1 _ n
:ZfXNS (aNS)%S Y %Zan >0E bE (Nsn 1) D fxt (ak krnlrlf

In the same way as was done in (21)-(25) the probabilities of the two clusters will be:

M o2+ (N-1-2n)u
) =2@G 3 (M er RS (422
o, (@) Bﬁ lNZ_:(N 1) E’LMJ(Li 2njul (42b)

From (42a) and (42b) it can be seen that for ¢ =0 we will get the same result as in the
two-source case. In this case ®(.) gets out from the sum and zN 1(Nn 1) 2% and the

result is as in (24) and (25) for x=0. When N, =1 the results are the same. This is aso

intuitively expected. In both cases it will be estimated that two clusters are better.
Intuitively we can say that if x>0 and the segments are sufficiently long then one GMM

will be better. It is very difficult to find this sufficient length but the case of N, - « can be
analyzed. The analysis will be only for C,, but the same analysisis valid for C, aswell. Two
cases can be observed and in both ®(«) =const .

e a0 2 Lm.oa ~ (-1 2n)gDooé ) O (43a)
N, 2 ﬁ N1 o

e a0 D1 Lo EoMNmiT200 oy (430)
N2 ﬁ N1 5

The probability of each caseis half, so equation (42a) becomes:
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(44)
00 Ga+(N,-1-2n)u 0O

= f,..(a)=2 I|m P = ED:fX (@)
=T

The Gaussian estimation of such pdf gives 4, =0 and &2 =¢®+4*. In this case the
normalized log-likelihood will be the negative cross-entropy between the GMM and one
Gaussian, -H (f,(a); 9y (@) <-H(f,(a)) . T O.

-H(f . = 0o 1 D_l_ [ 1 0 _1 45
(e ) e S ey

In this section we have shown that in the one-source case the decision about one or two
clustersis not clearly defined like in the two-source case. While we are sure that for N, =1,

two clusters are better than one and for N, — « one cluster is better, for any other value of
N, it will dependon p and o .

The following experiments also support the fact that a sufficient segment length is
required to reach the decision that one GMM is better than two clusters.

9. Experiments

Simulations were performed with artificial data to demonstrate the correctness of the
theoretical analysis. Then rea speech data from two speakers was used for a speaker
clustering application.

9.1 Artificial data

In the simulations the data was derived from two one-dimensional Gaussians with unit
variance and with equal prior probability for each Gaussian. The mean varied from zero to
four by steps of 0.4 (taking 11 different values). For each value, 11 datasets where created.
Each dataset has a constrain about the length of a segment from the same Gaussian. It
simulates data coming from two sources. Segment length was N,=2‘|,_, ,,. For each

segment length N, two tests were performed: first, assuming data coming from two sources
and second assuming data coming from one source (a GMM of two Gaussian mixture
components).

Figure 2 shows the results from clustering the data with the segment length constraint.
As was proved it can be seen that two clusters are always better than one GMM. When the
mean becomes sufficiently large (about three times the variance) segment length does not
make any difference due to the fact that the probability of negative data attributed to the
Gaussian with positive mean, tends to zero and vice versa.

It can aso be seen that for =0 and N, =1 the normalized log-likelihood of two clusters

Is higher by about a half, as expected from (18). When p =4 the difference is about
log(2) =0.7. Thisis due to the fact that for o* =1, x =4 can be approximated by y — o« . In
this case the normalized log likelihood of the GMM can be approximated as:
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0 1 exp [+ = (a—,u)zg+ 1 exp] - ! (a +,u§ =
_wZH}Zna 0 20° 0 2mo O 20° H
TogF - — el (@ - u)H +———exp] ——(a +u§ da
DZEUZITU 0 20° 0 J2mo O 207 EH '
1 1 O 1 1], M 1 [l 1 O
= [S——epT——(a-u) T - - 46
:[,2 ZNUEXpEI—ZUZ(a ﬂ)%og%m;}(% 202(a N%% (46)
1

e S N N S K n R n R R
BVarod 2 Pl CHend 2

and the normalized log-likelihood of two clusters is according to (40). If we apply 6% =1 the
differenceis exactly log(2)=0.7.

Figure 3 shows the results for the one source case. As was shown in section VI, when
the mean equals zero the results of two clusters are aways better. The same is true for
clustering without constraint (one segment length constraint), see section V. When the mean
equals 0.4 segments having long duration N, >32 are the only ones to have a lower log-
likelihood than the GMM. When the mean becomes equal or higher to 2.4, the GMM aways
give a higher log-likelihood than two clusters with duration constraint N, = 2. It means that
when the distance between the Gaussians is higher than one standard deviation it is very easy
to decide whether the data comes from one source or two.

+—expg—i(a +,L1)2EIogDl 1 exn%— 1 (a+,u§ Eda
V2o O 207 0 %\/Zna 0 20° d
1

— Real
-0.8 T T T T — GMM
— C 0001
— € 0002
— C 0004
C 0008
— C 0016
— C 0032
—— C 0064
—— Co0128
—— C 0256
—— Co0512
C 1024

Normalized Log-Likelihood

Theoretical and GMM Log-Likelihoods

7

oL 7

| | | |
0.4 0.8 1.2 1.6 2 2.4 2.8 32 3.6 4

Absolut value of the means of the GMM

Fig. 2: Clustering data comes from two sources.
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Looking at the curve for N, =1024 it can be seen that it follows exactly the result of (45)
for infinite segment length, starting with —1.42 for =0 and finishing at —2.84 for u=4.

9
Q
£
E -1.5
-
o
= Real
— Rea ) -
E — GMM Theoretical and GMM Log-Likelihoods
= -2 { — C o001
E — C 0002
5 — C o004
=z C 0008
— C 0016
— C 0032
—— C 0084
-2571 - Colzs
~— C 0256
—— C0512
C 1024
-3 | | 1 1 | | 1 1 |
0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

Absolute value of the means of the GMM

Fig. 3: Clustering data coming from one source.
9.2 Speaker clustering application

Two Australian English speakers were recorded, 110sec each speaker. The data was sampled
a 48KHzand down sampled to 16KHz. 12" order LPCC features were extracted from
20msec windows at 10msec frame rate. Three datasets were used. First, the data of the two
speakers was combined such that speaker turns occur each two seconds. The second dataset
was the data from the first speaker only and the third dataset was from the second speaker
only. For each dataset a comparison between two clusters with one Gaussian each and a
GMM of two Gaussian mixture components were performed. Segment lengths were
{1,2,5,10,20,50,100,200} . As the goal is to compare the best results and since the EM

algorithm is sensitive to initial conditions, each test was conducted 20 times and the system
with the highest likelihood was chosen. The results are shown in Fig. 4. They show the
normalized log-likelihood of two-cluster system minus the normalized log-likelihood of the
GMM. The values above zero indicate that two clusters are better, otherwise one GMM s
better. It can be seen that for al three datasets the behavior is similar. The likelihood always
decreases as the segment length increase. The decision changes at the segment lengths
between 20 and 50. While in the theoretical case two clusters were always better in rea
applicationsit is not always the case.
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Fig. 4: Clustering with on Gaussian per cluster versus one GMM of two Gaussian mixture
components for speaker clustering.

As the true clustering of the first database is known, Fig. 5 shows the clustering
performances in terms of percentage of correct classification as a function of the segment
length for the first dataset. In this experiment was assumed that we know that there are two
speakers. The clustering performance becomes better as the segment length is bigger, i.e., the
clustering becomes meaningful. For segments shorter than 50 vectors the clustering is about
50% correctness, which mean random data assignment between two clusters whit respect to
two speaker sources. The clusters may have some meaning in some phonetic level sense but
not according to speakers. For segments of 200 vectors (2sec in duration) the results were
over 87% correctness. Although in real applications the precise segment boundaries are
unknown this simulation show the importance of the knowledge about the maximum
available segment length for meaningful clustering performance. If we would not use the
knowledge of two speakers, according to the results shown in Fig. 4 one GMM would be
chosen. Usually the models that are used for speaker clustering have much more Gaussians
for each cluster so more accurate clustering can be performed [2], [10]. When the cluster
models are more accurate, it was shown experimentally that two clusters may have higher
likelihood than one GMM with the same number of parameters[2].
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Fig. 5: Clustering results as a function of the segment length.

10.Conclusions

In this work we presented a theoretical analysis of tempora data clustering. Only a very
simple case, two Gaussians with symmetrical mean, equal prior per Gaussian and with
constant segment length that is known, was presented. It was shown that if the data comes
from two different sources, and the length of each data stream is known and constant, two
clusters will always be better than one GMM of two Gaussian mixture components. Although
the decision is correct the clusters become close to the real sources only for large streams
(large segments). For short streams the clusters are not very accurate. When either the data
comes from the same Gaussian source with zero mean or segment length equals one the
decision is dways falsg, i.e., the result was that, two clusters should be better than one GMM.
When the mean is not equal to zero the result depends on the segments length. It was not
shown theoretically what should be the precise length of the segment but from simulation
results it seems that for mean greater than twice the standard deviation, a short segment, even
with length only of two, is already enough to obtain the right decision.

For real life applications such as speaker clustering it was shown that the likelihood
decreases as a function of the segment length. As the source pdfs are not known the Gaussian
approximation per cluster does not lead aways to a higher likelihood. As it was shown,
segment length has a very high importance for meaningful clustering. The more data we have
for each segment the more meaningful clustering can be performed even when the cluster
model is not accurate (usually speakers are modeled using several tenths or hundreds of
Gaussians).
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