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ABSTRACT

In previous work, we presented a case study using an estimate
pitch value as the conditioning variable in conditional €sans
that showed the utility of hiding the pitch values in certsitua-
tions or in modeling it independently of the hidden statethmees.
Since only single conditional Gaussians were used in thak,wo
we extend that work here to using conditional Gaussian mestu

in the emission distributions to make this work more comblara

to state-of-the-art automatic speech recognition. Weiatsaduce

a rate-of-speech (ROS) variable within the conditional €3&an
mixtures. We find that, under the current methods, usingrobde
pitch or ROS in the recognition phase does not provide ingrov
ment. However, systems trained on pitch or ROS may provide
improvement in the recognition phase over the baseline wimen
pitch or ROS is marginalized out.

1. INTRODUCTION

Hidden Markov models (HMMs) calculate at each timthe like-
lihood of the acoustic observatiar, being produced, given that
the hidden state variablg, has the discrete value &f (with K
possible discrete values):

p(@nlgn =k). 1)

This is typically computed using an ANN or a Gaussian mixture
distribution, with mean,,, covariancety, ,,,, and mixturesn =
1,...,M:

M
p(l’n|qn=k) NZP(m|qn=k) 'N(/Jzk,m, z]k',m)~

m=1
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There may be information not directly available in the acous
tic observationz,, that may be of use in enhancing the models.
Such auxiliary informatiornz,,, which can be continuous or dis-
crete, may be derived from the acoustic signal or may be wddai
from a secondary source,, anda,, can then jointly condition the
emission likelihoods, replacing (1) with:

®)

For the case of discrete,, a, = 1,...,L, Gaussian mixture
models are also used to estimate the emission likelihoods:

p(xn|Qn =k'a Qn =Z)

M
p(Tnlgn =k, an=I) ~ZP(m|qn=k) N (ke tm > Zetym),

m=1
(4)

resulting inL times as many Gaussians over that of (2). For the
case of continuous,, it is more difficult to model the emission
distributions of (3). We have chosen the frameworkafiditional
Gaussians, as also done in [1], though this is not the defniti
way. In conditional Gaussians the means of the emissionaprob
bilities for the Gaussian distributions (2) can then betehifising
the regression weight8;, upon the value ofi,, :

M
P(@nltn =k, an=2) ~y_P(mlgn=Fk) - N (tkm,Skm),

m=1

(5)
T
Uk,m = ke,m + B 2

So, instead of havind. Gaussians for a given mixture of a state,
one conditional Gaussian is defined whose mean changes dynam
ically according taz,,. The variance within the conditional Gaus-
sian, however, does not itself depend upen doing this is itself

a topic of future research.

We proceed as follows: we begin in Section 2 by specifying,
in the framework of (conditional) Gaussian mixtures, howibau
iary information can be incorporated into the acoustic nlinde
This is then transfered to the dynamic Bayesian network (PBN
framework in Section 3. These DBNSs are then used in experimen
tal testing in Section 4, followed by discussion in Section 5

2. INTRODUCING AUXILIARY INFORMATION WITH

MIXTURES

ASR with auxiliary information involves modeling(X, A, Q),
the evolution of the observed spa®g’ = {1, zs,... ,zn} and
the observed or hidden auxiliary spad¢ = {ai,a»,... ,an}
and the hidden state spaqd’ = {q1,qo,... ,qn} for timen =

1,...,Nas
N
p(XT, AT, Q)= [[ (w0, anlgn)- P(anlgn-1) (6)
N M "
~ 1 S p(@n, an.man)- P(anlan—1) (7)

n=1lm=1

Q
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p(Tnlan, m,qn) -planlgn) - P(m|gn): P(gn|gn—1),8)

N
where we assume time-independencergfand a,, and a first-
order Markov assumption (that ig, Ll Q72| g,—1).% Further-
more, (8) assumes that, is not modeled by mixtures (that is, it
has a single Gaussian).

1Assume throughout this paper thatq1|qo) = P(q1)-
2 6 e ; -2 »
read, ‘g, is conditionally independent @, ~ giveng,—1.



We are then interested in whether different assumptions re-
lated toa,, can be incorporated into (8). One is whethgreven
needs to be treated as a conditioning variabletethat is, having
the assumptiorz,, L a, |gn, @as in (9). A separate assumption
involves whether the modeling of the auxiliary variablgcan be
done independently of the staigs(that is,a, 1L ¢,)° as in (10).

11D _p(znlm, gs) - planlgn) - P(mlgn) - P(gnlga-1)  (9)

n=l m=1

11> _p(@nlan,m,qn) - p(an) - P(mlgn) - P(galga-1) (10)

n=l m=1

Standard HMM ASR estimateg X, Q) using (8) with refer-
ences tad) marginalized out:

N M
p(X1, Q) = [[ D p(@alm, an) - P(mln) - P(gnlan-1),
n=l m=1

()

In summary, (11),(8),(9),(10) are used in our experimeseat
tion to test, respectively, a baseline system, an auxili@seline
system, an auxiliary system with, L a, | ¢», and an auxiliary
system witha,, 1L ¢,. The systems using (11) are equivalent to
standard multi-Gaussian HMM-based ASR. The systems u8jng (
are equivalent to standard multi-Gaussian HMM-based ASR wi
a, appended to the standard feature vector (thowglitself is
modeled by a single Gaussian).

3. AUXILIARY INFORMATION WITH DYNAMIC
BAYESIAN NETWORKS

Dynamic Bayesian networks (DBNs), which are an extension of
Bayesian networks (BN$]2], have been proposed as an alterna-
tive to HMMs that allows more flexibility in modeling the topo
ogy of the probability distributions within ASR [3]. For exa
ple, consider the four distributions that we proposed intiSe@:
(112),(8),(9),(10). While they can be modeled with an HMMfiex
work, a different version of the HMM programs used may need to
be developed to handle each assumption. The DBN framework
however, is flexible enough to handle a wide range of assomgti
while using the same programs.

A BN, from which a DBN is built, is defined by three sets:

1. variables/ (discrete or continuous)
2. directed acyclic graph (DAG), consisting of a node forreac

variable as well as directed arcs between nodes. These arc

indicate probabilistic dependencies between the unateylyi
variables.

. local probability distributions for each variable € V,
whose topology ig(v|parent$v)). parentév) are the vari-
ables whose nodes have an arc going’smode.

For continuous parent variables instantiated’as= C’ and
for discrete parent variables instantiated/as= D’, the local
probability distributions are defined as:

o v discrete:
— P(v|D = D’): atable of probabilities.

Sread, ‘., is conditionally independent af, .”
“4also known as directed graphical models

- P(v|C =C")or P(v|C = C'",D = D'): undefined
in this framework.
e v continuous:
— p(v): GaussianA (1, 02)
- p(v|D = D'): Gaussians{N (1, pr, 00 i)} o
- p(v|C = C'): conditional GaussianA/(u,,o?),
whereu, = p, + BI'C’
andB, are regression weights @i .
- p(v|C =C', D = D'): conditional Gaussians—
{N(uv,D’aag,D’)}D"
Figures 1,2,3,4 present how the DAG of a DBN looks for iso-

lated word recognition [3, 4] according to (11),(8),(9D)lrespec-
tively. The variables are defined as follows:

e Deterministic variables

— Index (discrete): the index of the phoneme state (sub-
model) within the word model.

— gn (discrete): the phoneme state mapped to each in-
dex.

e Random variables

— Trans (discrete): the exit transition from a sub-model.
— x, (continuous): the acoustics.

— m (discrete): the (conditional) Gaussian mixture of
Tn.

— an (continuous): the auxiliary information, in this
case, pitch or ROS.

We use the BN inference algorithm in [5] to compiitév|O),
the posterior marginal distribution ef given all of the observa-
tions O, as well asP(O|V), the likelihood of the observations.
Any variable can be observed, hidden, or partially observed
gardless of whether it is continuous or discrete valued. cdme-
puted posterior marginal distributions can be used for ¥peeted
counts in expectation-maximization (EM) training [6] fealning
the discrete probabilitieB(-), the meang, the regression weights

' B, and the covariances.

4. EXPERIMENTAL TESTING

4.1. General Setup

Using the PhoneBook speech corpus [7] with the small trginin
et defined in [8], we train four mixed BN systems to do speaker
independent, task-independent, isolated-word recagmitirhere
are 41 context-independent, three-state phones in thetensy,
as well as initial silence and end silence models.

Training was done using the EM algorithm, using a conver-
gence criterion of stopping one iteration after the loglitkood of
the training data increased by less tiah%. Each system with
auxiliary information was tested two times on the test attees
defined in [8], using lexicons of 75 words:

1. with bothX and A observed.

2. with X observed andd hidden; this marginalizes out
and, hence, converts an auxiliary DBN to a baseline DBN
(Figure 1), though with different parameter values than the
regular baseline DBN.



Fig. 1. Baseline Dynamic Bayesian network for isolated word
recognition, corresponding to (11)

Fig. 2. Auxiliary Baseline Dynamic Bayesian network for isolated
word recognition, corresponding to (8)

Fig. 3. Auxiliary Dynamic Bayesian network for isolated word
recognition withz,, 1L ay, | ¢,, corresponding to (9)

Fig. 4. Auxiliary Dynamic Bayesian network for isolated word
recognition witha,, 1L g,,, corresponding to (10)

As the DBNSs with auxiliary information have different num-
bers of free parameters depending both upon the assumpseds
in Section 2 and upon whethekis observed or hidden, two base-
line acoustics-only DBNs, each with a different number @fefr
parameters, are presented with the DBNs with auxiliaryrmén
tion.

Similarly to [3], mel-frequency cepstral coefficients (MEE)
are extracted from the speech signal, sampled at 8 kHz, asing
window of 25 ms with a shift of 8.3 ms for each successive frame
Ten MFCCs with mean subtraction as well as the deltas (first-
derivatives) of those ten coefficients and@f are computed for
each frame.

4.2. Auxiliary Features

Two different sets of experiments were performed: one witithp
and another with ROS.

4.2.1. Pitch

Pitch is estimated using the simple inverse filter trackiBg-T)

algorithm [9], which is based on an inverse filter formulatid his
method retains the advantages of the autocorrelation gstreé
analysis techniques. The speech signal is prefiltered by péss
filter with a cut-off frequency of 800 Hz, and the output of fhier

is sampled at 2 kHz before computing the inverse filter caefiis
using the Durbin algorithm. Results are shown in Table 1.

4.2.2. Rate of Speech (ROS)

Different units for ROS include word rate, syllable ratepph rate,

and normalized phone rate. While a word ROS has been utilized
in ASR, work such as [10] has chosen a phone ROS as the phone’s
length is more stable than that of a word, which can rangedetw
containing a single phone or as many as a dozen or more phones.
As different phones have different average lengths, théatien

from the normalized length of a phone has been used in [11] as
part of the measure of ROS. A syllable ROS measure arosegdurin
the development of an estimator of ROS directly from the spee
signal [12].

Our work continues in the tradition of [12] of investigatitige
use of an ROS estimate computed by timefateprogram directly
from the signal and, hence using a syllable ROS measurate
works best if it has one to two seconds of speech, which tlipica
cover an entire word. Since we are dealing with isolated sjore
have computed one ROS values, per isolated word utterance.
Therefore,a, = ros,Vn. Future work would entail using other
ROS units. The literature on ROS in ASR looks at incorporatin
it into the state transition probabilities, the languagd pronun-
ciation models, and the acoustic models. It is the incorpmraf
ROS into the acoustic models that we investigate here. Restd
shown in Table 2.

We have used the silence markers provided with PhoneBook
so as to rurmrateonly upon the speech segment of the utterance
but with the ROS value being assigned to both the speech and no
speech portions of the utterance. We also used these sitearte
ers in the testing, which is unrealistic for real applicatio

5. DISCUSSION

With both pitch and ROS DBNSs, the performance with the auxil-
iary variables observed does not improve over that of thelires



Mix. Obs. Pitch|  Hid. Pitch
Baseline 4 5.9% (21Kk)
Baseline 6 4.3% (32k)
Pitch Baseline 4 48.9% (32k) | 6.2% (21k)
Pitch @@, 1L an |qn) | 4 | 60.5% (22K)| 19.2% (21K)
Pitch @, 1L qx) 4 5.3% (32k) | 6.0% (21k)

Table 1. Word error rate for the two Baseline (non-Pitch) DBNs
and the three Pitch DBNs. Results for the Pitch DBNs are given
with observed and hidden Pitch. For each result, the effeatim-

ber of parameters is given (i.e., parameters4@ubtracted if4 is
marginalized out). The number of mixtures is given as well.

Mix. | Obs. ROS| Hid. ROS
Baseline 4 5.9% (21Kk)
Baseline 6 4.3% (32k)
ROS Baseline 4 6.0% (32Kk) | 5.8% (21k)
ROS @, 1L an | gn) 4 6.0% (22Kk) | 5.9% (21Kk)
ROS @, L g») 4 5.8% (32Kk) | 5.7% (21k)

Table 2. Word error rate for the two Baseline (non-ROS) DBNs
and the three ROS DBNSs. Results are presented as in Table 1.

systems. The auxiliary DBNs perform approximately the same
whether they have their auxiliary variablelsobserved in recog-
nition or whether they are hidden and, thus, marginalizedirou
recognition; the notable exceptions are the two Pitch DBNese
performance rises dramatically once tAeare marginalized out.
However, when thel are marginalized out of the auxiliary DBN,
its number of parameters and complexity is reduced whilexmai
taining or improving over the performance achieved with the
observed. In most of these cases with a reduced number ohpara
eters, the performance of the auxiliary DBNs statisticaliyals
the baseline DBN of four mixtures, which has a similar number
of parameters. In past work [13], a Pitch DBN,(LL ¢,,) with

a single conditional Gaussian and Asnarginalized actually per-
formed better than a baseline DBN with a single Gaussian.

Regarding Pitch, the DBN with,, 1L a., | ¢ does very poorly.
As mentioned in Section 2, this DBN is nearly the same as stan-
dard HMM-based ASR witla,, appended to the standard feature
vector. This confirms past difficulty in ASR research in inumr
rating pitch into ASR. However, the Pitch DBN with, 1L ¢y, in
which a,, conditions the distribution af,,, shows a better way to
incorporate pitch into ASR, as also proposed by [1].

Regarding ROS, it may be an error to condition every ele-

ment in the acoustic vector upon the speaking rate as this may

have introduced too much noise. Assuming that MF@€Civa-
tivesare different in fast speech, we would like to make only the
MFCC derivatives be dependent upep. Furthermore, our sys-
tem assumes a linear relationship betwegnanda,, within the
conditional Gaussian. Perhaps this relationship is bettateled
non-linearly. If this is so and could be incorporated withiture
systems, this may help to improve the performance in fagtdpe
Finally, other units for ROS, specifically phone ROS, shadogd
looked at in this framework. These can be estimated usingcado
alignment of the data.
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