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Abstract

In standard automatic speech recognition (ASR), hidden
Markov models (HMMs) calculate their emission probabil-
ities by an artificial neural network (ANN) or a Gaussian
distribution conditioned only upon the hidden state vari-
able. Recent work [12] showed the benefit of condition-
ing the emission distributions also upon a discrete auxil-
iary variable, which is observed in training and hidden in
recognition. Related work [3] has shown the utility of con-
ditioning the emission distributions on a continuous auxil-
iary variable. We apply mixed Bayesian networks (BNs) to
extend these works by introducing a continuous auxiliary
variable that is observed in training but is hidden in recog-
nition. We find that an auxiliary pitch variable conditioned
itself upon the hidden state can degrade performance un-
less the auxiliary variable is also hidden. The performance,
furthermore, can be improved by making the auxiliary pitch
variable independent of the hidden state.

1. Introduction

Hidden Markov models [8] calculate at each timen the
likelihood of the acoustic observationxn being produced,
given that the hidden state variableqn has the discrete value
of k; 1 � k � K: p(xnjqn = k): (1)

This is typically computed using an ANN or a Gaussian dis-
tribution, with mean�k and covariance�k:p(xnjqn = k) � N (�k ;�k): (2)

There may be information not directly available in the
acoustic observationxn that may be of use in enhancing the
models. Such auxiliary informationan, which can be con-
tinuous or discrete, may be derived from the acoustic signal

or may be obtained from a secondary source [11].qn andan can then jointly condition the emission likelihoods, re-
placing (1) with: p(xnjqn = k; an = z): (3)

In [12], an was defined as a discrete variable. It took a
codebook of four values, each representing a pitch range.
For this case, the performance was better when the pitch
was hidden in recognition than when it was observed. How-
ever, some auxiliary information is more naturally used as
continuous information than in reducing it to discrete val-
ues, as done above. In [3], an increase in recognition perfor-
mance was observed when a continuousan was introduced.
For this case, the means of the Gaussian distributions (2)
can then be shifted using the regression weightsBk and the
value ofan, producingconditionalGaussians:p(xnjqn = k; an = z) � N (�k +BTk z;�k); (4)

In this work we continue with these findings by using
continuousan in the framework of mixed BNs (BNs that
have amixtureof continuous and discrete variables). The
BN formalism has previously been presented as a statistical
pattern recognition framework that is more generic than that
of HMMs [10]. That is, while they are in the same family
of models [9], BNs are more general in that they provide
moreflexibility in changing the topology of the model and,
hence, the structure of the component distributions. With
this flexibility, we address two questions:

1. Should the distribution foran itself be conditioned
upon qn: p(anjqn), or be left independent:p(an)?
That is, isan??qn (read, “an is independent ofqn”)?

2. Should the distribution ofxn be conditioned uponqn
andan, as in (3), or only uponqn, as in (1)? That is, isxn ?? an j qn (read, “xn is conditionally independent
of an, givenqn”)?

The contributions of this work, hence, are threefold.
First, we introduce mixed BNs to ASR. To our knowledge,



this has never been done before–at least not in the more
complicated case where continuous variables can be hid-
den. Second, we look at an additional way to model the
auxiliary informationan itself–that is, conditioning it upon
the state variableqn. Third, taking advantage of this general
framework provided by mixed BNs, we show the effects of
hiding the auxiliary informationan.

We begin in Section 2 by introducing the emission prob-
abilities ofxn andan that we will be modeling. Section 3
introduces mixed BNs as well as distributions conditioned
upon both continuous and discrete variables. Section 4 then
presents the incorporation of auxiliary information graphi-
cally in a BN. Section 5 then presents the experimental re-
sults followed by the conclusion in Section 6.

2. Introducing Auxiliary Information

Standard HMM-based pattern recognition mod-
els p(X;Q), the evolution of the observed spaceX = fx1; x2; : : : ; xNg and the hidden state spaceQ = fq1; q2; : : : ; qNg for timen = 1; : : : ; N as:p(X;Q) � NYn=1 p(xnjqn) � P (qnjqn�1); (5)

assuming time-independence forxn and a first-order
Markov assumption forqn (specifically, thatqn is indepen-
dent of all previous variables givenqn�1).

For incorporating the auxiliary informationA =fa1; a2; : : : ; aNg to the hidden or observed space, the mod-
eling ofp(X;A;Q) factors as:p(X;A;Q) � NYt=1 p(xnjan; qn) � p(anjqn) � P (qnjqn�1);

(6)
assuming time-independence forxn andan and the first-
order Markov assumption forqn.

In our experiments, we present two separate ways to fur-
ther relax the distribution in (6):

1. an independent ofqn (an?? qn): p(anjqn) ! p(an).
Similar to that done in [3], this assumes that the current
hidden stateqn does not influence the value ofan. The
only thing in common betweenqn andan is that they
jointly emit the acousticsxn:NYt=1 p(xnjan; qn) � p(an) � P (qnjqn�1) (7)

2. xn independent ofan (xn??an j qn): p(xnjan; qn)!p(xnjqn). This assumes thatxn andan are two inde-
pendent processes that are jointly emitted byqn. This
is equivalent to using a standard HMM with a single

v1 v2 v3P (v1) P (v2) P (v3jv1; v2)
Figure 1. Bayesian network modelingP (v1; v2; v3) = P (v1) � P (v2) � P (v3jv1; v2).
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Figure 2. BN for ASR (probabilities omitted)
with auxiliary information [13], with N = 3.
In System 3, qn and an are not connected; in
System 4, an and xn are not connected. an
was not included in System 1.

feature vector comprised of the concatenation ofxn
andan (assuming a diagonal covariance matrix).NYt=1 p(xnjqn) � p(anjqn) � P (qnjqn�1) (8)

3. Mixed Bayesian Networks

A BN [1], or directed graphical model–see Figure 1, is a
probabilistic model composed of three items:

1. a set of variablesV = fv1; : : : ; vw; : : : ; vW g
2. a directed acyclic graph (DAG), with a one-to-one

mapping between each of its vertices and eachvw 2 V
3. for eachvw 2 V , a local probability distribution which

is conditioned upon the values of its parents in the
DAG: P (vwjparents(vw)).

The joint distribution ofV is then defined as the product of
all the local probability distributions:P (V ) = WYw=1P (vwjparents(vw)) (9)

The following are the forms that each local probabilities
in (9) can take, depending on whethervw is continuous or
discrete and on whether its parents are continuous, discrete,
or mixed:



� Continuousvw
– Continuous parentsZ - conditional Gaussian:p(vwjZ = z) � N (�w +BTw z;�w) (10)

– Discrete parentsJ - Set of Gaussians:fp(vwjJ = j) � N (�wj ;�wj)gJ (11)

– Mixed parents - Set of conditional Gaussians:fp(vwjJ=j; Z=z)�N (�wj +BTwj z;�wj)gJ
(12)� Discretevw

– Continuous or mixed parents - Not defined in [5]

– Discrete parents - table of probabilities

Thus, the distribution for a discrete variable is only defined
if all of its parents are discrete. A continuous variable can
have continuous, discrete, or mixed parents.

We use the BN inference algorithm in [5] to computeP (vwjO), the posterior marginal distribution ofvw given
all of the observationsO, as well asP (OjV ), the likelihood
of the observations. Any variable can be observed, hidden,
or partially observed, regardless of whether it is continuous
or discrete valued. The computed posterior marginal distri-
butions can be used for the expected counts in expectation-
maximization (EM) training [4] for learning the discrete
probabilitiesP (�), the means�, the regression weightsB,
and the covariances�.

4. Topologies

Figure 2 presents the BN, based on [13], for an isolated
word recognition task. It contains the following variables:� Deterministic variables

– Posn - The position (sub-model index) in the
word model.

– qn - The hidden phoneme state mapped to the
given position.� Random variables

– Transn - The presence of a change of sub-
models (transition) between two time frames.

– an - The auxiliary information.

– xn - The acoustics.

The upper three variables in Figure 2,Posn, Transn, andqn, are referred to as the control layer as they “control” the
permitted sequences of sub-models.

5. Experiments

5.1. Systems

Using the PhoneBook speech corpus [7] with the small
training set defined in [2], we train four mixed BN systems
to do speaker-independent, task-independent, isolated-word
recognition.

System 1xn only, based on (5), as in a standard HMM

System 2xn & an, based on (6)

System 3xn & an, based on (7), withan??qn
System 4xn & an, based on (8), withxn??an j qn, equiv-

alent to a standard HMM with independent featuresxn
andan

There are 41 context-independent phones in these sys-
tems, each modeled by three hidden phoneme states; with
the initial silence model and end silence model, there are41�3+2 = 125 hidden state values forqn. Bothxn andan
are modeled using single (conditional) Gaussians for these
initial tests; future extensions of the models would use mul-
tiple (conditional) Gaussians.

5.2. Features

Similarly to [13],xn is the mel-frequency cepstral coef-
ficients (MFCCs), which are extracted from the speech sig-
nal, sampled at 8 kHz, using a window of 25 ms with a shift
of 8.3 ms for each successive time frame. Cepstral mean
subtraction and energy normalization are performed. Ten
MFCCs plus C0 (the energy coefficient) as well as the deltas
(first-derivatives) of those eleven coefficients are computed
for each time frame.an is defined only as pitch in this work and is estimated
using the simple inverse filter tracking (SIFT) algorithm [6],
which is based on an inverse filter formulation. This method
retains the advantages of the autocorrelation and cepstral
analysis techniques. The speech signal is prefiltered by a
low pass filter with a cut-off frequency of 800 Hz, and the
output of the filter is sampled at 2 kHz before computing
the inverse filter coefficients using the Durbin algorithm.

5.3. Results

Training was done using expectation-maximization
(EM) training, using a convergence criterion of stopping
one iteration after the log-likelihood of the training datain-
creased by less than0:1%. As shown in Table 1, each sys-
tem with auxiliary information was tested two times using
the test set defined in [2]: (1) with bothX andA observed
and (2) withX observed andA hidden.



ObservedA HiddenA
System 1 19.0%
System 2 49.0% 21.0%
System 3 17.5% 17.6%
System 4 54.2% 19.1%

Table 1. Word error rate (WER) for small vo-
cabulary (75 words) isolated word recogni-
tion using the systems in Section 5.1. Those
trained with A were tested twice: with ob-
served and hidden A.

6. Conclusion

First,an, such as the pitch used here, can be hurtful to the
model when introduced with a dependency uponqn. This is
illustrated in Systems 2 & 4, which have very poor perfor-
mance with observedA. However, these same systems per-
form almost the same as the baseline System 1 (statistically
equivalent, in the case of System 4) when theA are hid-
den and, therefore, marginalized out. This can potentially
be extended to the actual elements withinxn. That is, if
particular elements withinxn are actually hampering recog-
nition, perhaps they should be marginalized out as well in
recognition.

Second,an, such as the pitch used here, can be benefi-
cial to the model when introduced independent ofqn. This
is illustrated in System 3, which performs significantly bet-
ter than all of the other systems. Furthermore, in contrast
to Systems 2 & 4, the performance of System 3 does not
degrade with observedA. So, likewise, if an element ofxn
is found to be hurting recognition, perhaps the recognition
would be better if the element were put into the conditional
part of the emission distribution and made independent of
the state.

Finally, modeling the distributions with single (condi-
tional) Gaussians provides insights into the strengths and
weaknesses of different ways to model auxiliary informa-
tion. However, multiple (conditional) Gaussians will need
to be incorporated into future models to make them more
comparable to state-of-the-art ASR systems. Furthermore,
although the performance improvement here is not dra-
matic, more significant improvement should be expected for
the case of spontaneous speech and for other auxiliary vari-
ables.
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