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Abstract. In this paper we discuss a neural networks-based face analysis approach that is able
to cope with faces subject to pose and lighting variations. Especially head pose variations are
difficult to tackle and many face analysis methods require the use of sophisticated normalization
procedures. Data-driven shape and motion-based face analysis approaches are introduced that are
not only capable of extracting features relevant to a given face analysis task at hand, but are also
robust with regard to translation and scale variations. This is achieved by deploying convolutional
and time-delayed neural networks, which are either trained for face shape deformation or facial
motion analysis.
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1 Introduction

Many face analysis approaches require manual intervention during training, such as the construction
of face models or during deployment, due to necessary initialization, such as the precise localization
of facial features. Several data-driven face analysis methods have been described in the literature and
comprise among others neural network and PCA-based approaches. However, numerous data-driven
face analysis approaches need accurate face normalization preprocessing stages. In this paper, we
propose a convolutional neural network (CNN)[3] based approach that improves a specific face analysis
task by combining the output of differently trained convolutional neural networks in a fusion-MLP
(multi-layer perceptron). CNNs, as well as the similar neocognitrons [1], are bio-inspired hierarchical
multi-layered neural network approaches that model to some degree characteristics of the human
visual cortex and encompass scale and translation invariant feature detection layers. Convolutional
neural networks have been successfully applied for character recognition [4], object detection [4] and
more specifically, for the task of face recognition [2]. As facial expressions can be characterized not
only by shape information (facial deformation), we investigated two-dimensional time-delay neural
networks (TDNN) for the extraction of facial motion as well. TDNN have been successfully employed
to recognize e.g. pedestrians [6].

2 Face Analysis Systems

2.1 Convolutional Neural Network

Figure 1 shows the architecture of the convolutional neural networks we trained for the task of facial
shape deformation recognition. Its layers alternate between convolution layers with feature maps Cj

Cii=9(Ii; ® Wiy + Biy) (1)
and non-overlapping sub-sampling layers with feature maps S,’;J

Sli,l =g(I ii,l Wk, + Eby,) (2)

where g(x) = tanh(z) is a sigmoidal activation function, B, respectively b the biases, W and w the
weights, If ; the ith input and T |} ; the down-sampled i’th input of the neuron group k of layer [. E is
a matrix whose elements are all one and ® denotes a 2-dimensional convolution. Note that upper case
letters represent matrices, while lower case letters denominate scalars. We obtained good results by
choosing receptive fields sizes of 11 x 11 pixels for the groups of neurons in the first feature extraction
layer and 8 x 8 pixels in the third feature extraction layer, respectively 2 x 2 pixels for the receptive
fields of the sub-sampling layers. The learned weights of the convolutional layers allow for problem-
at-hand dependent feature extraction, whereas the sub-sampling layers increase the invariance of the
object of interest’s location dependence. Weight sharing allows to significantly reduce the number
of free parameters, which in turn improves the generalization ability [3]. This can also be seen in
Figure 2, where the number of neuron-interconnections in the CNN is much greater than the number
of weights to be learned.

Face images I;, at the input of the CNNs were not pose-normalized, but only global lighting
changes were addressed by removing the mean value I;,. In order to increase the learning speed,
we norm also the variances of the input variables by dividing them by their standard deviation o,:
Loorm = I"Jﬂ No attempts were taken to reduce image dimensionality by using e.g. holistic
PCA as demonstrated in [2]. Instead, we relied on the kernels of the feature extraction layers to
perform decorrelation of the input data. Holistically applied PCA without using sophisticated pose
normalization procedures would attempt to represent pose information, which is not desired, as there
are too many pose variations present in natural face images (due to translation, rotation and scale
changes).
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Figure 1: Depicted is the architecture of a 5-layer convolutional neural network (with 2 feature
extraction, 2 sub-sampling and one fully connected MLP layer), which we applied for facial shape
analysis. Note that the larger dots represent groups of identical neurons. The shown architecture
does not feature full connectivity in the feature extraction layer 3, see also Figure 2.
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# Identical neurons

CNN + MLP Characteristics

Nb. of neurons CNN: 47787
Nb. of connections CNN: 3367308
Nb. of weights in CNN: 1902

Nb. of neurons MLP: 6
Nb. of connections MLP; 59826
Nb. of weights in MLP: 59826

Figure 2: Depicted on the left hand side is the interconnection matrix of the third layer of the CNN
we trained for shape as well as motion recognition in the setups 3 and 6 listed in Table 1. This
interconnection matrix leads to 59 feature maps (number of ones). On the right hand side are given
the corresponding number of weights, neurons and neuron inter-connections for the feature extraction

(CNN) and feature combination part (MLP).
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Figure 3: Sample Architecture of a 2-layer convolutional time delay neural network (TDNN), featuring
a temporal horizon of 2 (two inputs: at time t-1 and t). Notice that the first layer is of spatio-temporal
nature, while the second layer operates only in the spatial domain.

2.2 Time Delay Neural Network

Figure 3 shows a sample architecture of a convolutional two-dimensional time delay neural network
that we have employed for the analysis of facial motion.

As can be seen, the network features two inputs at time ¢-1 and ¢ (temporal horizon of two).
Hereby, the first network layer operates in the spatio-temporal domain, while the second layer (and
all further layers) is purely spatial. The only difference to a convolutional neural network is thus the
summation of of the inputs into a single feature map C/i@

G
Cir =90 (Ii; ® Wiy + Bry)) (3)

i=1

where G is the temporal horizon, being equal to 2 throughout this paper. This means that we
chose a neutral face at time t-1 and a face showing facial expressions at time t (with only one facial
expression intensity level). Note that this is of course a simplification of a real-world situation, where
we would have both increasing and decreasing facial expressions intensities.
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Figure 4: Combined motion and shape analysis for enhanced facial expression recognition: shown are
three sub-networks, namely a shape extraction CNN, a motion extraction TDNN and an MLP for
combined classification. This network architecture was trained as a whole or separately, according to
the different sub-networks involved.

2.3 Network Combination

CNNs and TDNNs cannot only be used to analyze shape and motion independently, but they may be
combined in order to improve facial expression recognition results by focusing on different features,
respectively producing different error patterns, see Figure 4.

Network combinations can be achieved in two different ways:

e A CNN shape recognition and a TDNN motion recognition sub-network are trained indepen-
dently from each other. In a second step, a MLP sub-network is trained on the output of the
former two networks and thus allows to fuse the information stemming from the shape and the
motion sub-networks, see network setup 7 in Table 1.

e The CNN, TDNN and the fusion MLP are trained at once, compare network setup 8 in Table 1.

Note that both setups lead to a difference in how motion features are extracted in the TDNN sub-
network as the resulting target vector during training is not the same. In the first case we chose
as target vectors 0 — 0 and 0 — z for the TDNN sub-network, where 0 is a neutral face at time
t-1 and z is a face showing facial expressions at time ¢. The CNN sub-networks on the other hand
were attributed target vectors of 0 for neutral faces and z for a faces showing facial expressions.
Note that the CNN sub-networks operate in the present (at time ¢). The same labeling as for the
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previously mentioned sub-networks was chosen for the independent CNNs and TDNNs in the setups 1-
3, respectively, setups 4-6 as well as in setup 7 listed in Table 1. In total we chose 6 + 1 = 7 target
classes (6 different facial expressions and 1 neutral face per subject).

2.4 Network Training

Training of our CNNs and TDNNs was achieved in a supervised manner by using the standard back-
propagation algorithm, adapted for convolutional neural networks. The weight and bias deltas for the
feature extraction kernels in the convolutional layers (C) are

F
AW, =g Y _(IF @ D) + mpaAW S (4)
=1
F
ABf, =1r Y DI + mpAB{ |, (5)
=1

while the weight and bias deltas for the sub-sampling layers (S) are obtained as follows:

F M; N;

Awy =1r > Y I (T L] xDff) + mpAwy, (6)

i=1 m=1n=1

F M; N;

AbYy =1rY > Y DI + mpAby |, (7)

i=1 m=1n=1

IF is the input image i, I |F a down-sampled version of the input image i of the lower layer L, D
is the error delta coming from the higher layer H. ® denotes a 2-dimensional convolution and x a
component-vise matrix multiplication. F'is the number of connected input feature maps of the current
neuron group k, M; and N; the number or rows, respectively columns of the feature map i. Iy is the

learning rate and mpg the moment rate.

3 Experiments and Results

We tested our neural network setups on the JAFFE facial expression database [5], which contains posed
emotional facial expression images of 10 Japanese female subjects (6 different emotion displays), see
Figure 5.

The grayscale images originally of size 256 x 256 pixels were reduced in scale to 64 x 64 pixels (in
order to lower the information content that has to be learned by the networks and make training of
the CNN networks faster). We used 140 images to train our neural networks and 70 images for testing.
Furthermore, we created a second test set by using the afore mentioned test images and shifting them
3 pixels upwards, downwards, to the left and to the right, resulting in 280 additional images (thus 350
in total). The employed database was too small in order to allow for a validation set. Cross-validation
was neither performed, as the training of the convolutional neural networks is time consuming (due
to the important number of convolutions and sub-sampling operations taking place in the CNNs).
Instead, we trained our convolutional neural networks until a small error was obtained on the training
images (which occurred after about 250 epochs). This is of course not optimal, but our results should
be more of a qualitative than quantitative nature.

Table 1 shows the facial expression recognition results obtained on the afore mentioned database.
The neural network setups 1-3 use a single CNN as shown in Figure 1, while setup 4-6 are based on
TDNNs. Finally, setup 7 and 8 correspond to the combined shape and motion recognition network
architectures depicted in Figure 4. Note that setup 2 and 5 use different receptive field sizes within
the same network layer. This allows for a multi-scale feature analysis within a given object of interest
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Figure 5: Sample images of the employed JAFFE facial expression database [5]. Note slight variations
with regard to head positions, scale and rotation.

Network Setup Network Architecture Task Corr. Rec.
(1) CNN A-6x11-B-mlpl Shape 90% (52%)
(2) CNN A-6x5-6x7-6x11-B-mlp2 Shape 92% (50%)
(3) CNN A-6x11-B-A-59x8-B-mlp1 Shape 91% (54%)
(4) TDNN A-6x11-B-mlpl Motion 84% (47%)
(5) TDNN A-6x5-6x7-6x11-B-mlp2 Motion 84% (48%)
(6) TDNN A-6x11-B-A-59x8-B-mlp1l Motion 83% (50%)
(7) CNN+TDNN 2 x (A-6x11-B-mlpl) + mlpl Sh.+Mot.  93% (52%)
(8) CNN-TDNN  A-12x1-B-mlpl Sh.+Mot.  92% (53%)
(10) MLP mlp2-100 Shape 89% (40%)
(11) MLP mlp2-100 Motion 73% (39%)

Table 1: This table shows facial expression recognition results based on shape, motion or a combined
shape and motion analysis. Note that in the network column A stands for convolutional layer, B for
a sub-sampling layer and a in axb for the number of square receptive fields, respectively their size b.
MLP stands for multi-layer perceptron, e.g., MLP1 for a 1-layer MLP and mlp2-100 for a 2-layer MLP
with 100 hidden neurons. Recognition results are depicted for test set 1 (70 images) and in brackets
for the shifted test images of test set 2 (350 images).
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Figure 6: Data-driven feature extraction: Shown are the feature extraction layers of a 2-layer CNN
on the left-hand side and a 2-layer TDNN on the right-hand side with task specific feature extraction
kernels (of size 11 x 11) for shape-based and motion-based facial expression analysis. Note that we
have enhanced the contrast of both the convoluted images and the weight kernels in order to improve
readability.

(taken for granted that the receptive fields are smaller than the object of interest itself). The latter
setups achieved slightly better recognition results than setups using a unique receptive field size
per layer. However, the employed database is too small in order to obtain significant differences in
recognition rates. The results suggest that facial shape deformations are more reliable than facial
motion for identifying facial expressions. Clearly, both CNNs and TDNNs lead to better results than
the MLPs employed in setup 10 and 11 and this especially for the second test set, which contains
shifted images (recognition results for the second test set are given in brackets). Also note that the
number of weights to be learned is considerably smaller in the CNNs than in comparable MLPs (e.g.
61728 weights for setup 3 versus 410200 weights for the MLP in setup 10). Unfortunately, we cannot
compare our facial expression recognition results with the ones Lyons and Akamatsu [5] obtained on
the same database, as they computed facial expression similarities using semantic values stemming
from human ratings, resulting in a mixture of facial expressions per analyzed face, while we used one
category per facial expression. Figure 6 illustrates different feature extraction kernels obtained for
the tasks of face shape and motion analysis as well as their application onto two sample input face
images.
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4 Conclusion

In this paper we have shown that convolutional neural networks can be applied both in space and
time for the analysis of facial expressions without relying on a complex and error-prone face pose
normalization stage. Face deformation as well as facial motion are important indicators for facial
expression and by combing a shape and motion extraction convolutional neural network, we were able
to extract more information from a sequence of images. As we have seen, convolutional weight kernels
are learned with regard to the task at hand and a combination of shape and motion extraction leads to
slightly better facial expression recognition results, especially in the context of image transformations
(here shown for shifted images) and when compared to e.g. MLPs. Shape information allowed for
better recognition results when compared to motion extraction only. Using varying receptive fields
sizes within the same layer also increased recognition results. The employed database is fairly small
and therefore, further experiments have to be carried out in order to determine if our approach scales
up reasonably well with regard to the number of different subjects involved as well as the number of
employed facial expression classes by allowing also for facial expression intensity changes.
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