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Abstract. This paper presents a cursive character recognizer, a crucial module in any Cursive
Script Recognition system based on a segmentation and recognition approach.

The character classification is achieved by combining the use of Neural Gas (NG) and Learning
Vector Quantization (LVQ). NG is used to verify whether lower and upper case version of a certain
letter can be joined in a single class or not. Once this is done for every letter, it is possible to find
an optimal number of classes maximizing the accuracy of the LVQ classifier.

A database of 58000 characters was used to train and test the models. The performance obtained
is among the highest presented in the literature for the recognition of cursive characters.
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1 Introduction

Off-line Cursive Script Recognition (CSR) has several industrial applications such as the reading of
postal addresses and the automatic processing of forms, checks and faxes (Steinherz et al., 1999;
Plamondon and Srihari, 2000). Among other CSR approaches (Senior and Robinson, 1998; Kim
and Govindaraju, 1997) one attempts to segment words into letters (Bozinovic and Srihari, 1989;
Edelman et al., 1990). Since no method is available to achieve a perfect segmentation, a word is
first oversegmented, i.e. fragmented into primitives that are characters or parts of them (a perfect
segmentation into letters is extremely difficult), then neighboring primitives are joined together in all
possible combinations (a limit on the number of consecutive fragments that can form a character is
usually experimentally determined).

Given a combination where n aggregations of primitives appear, a matching score with all the n-
letter long words in the lexicon is calculated. A common way to calculate it is to average over the
scores of classifying each aggregation of primitives as the corresponding letter of the lexicon entry
under examination (see fig. 1). The word with the optimal score is found by applying Dynamic
Programming techniques (Bellman and Dreyfus, 1962).

The role of the cursive character recognizer in the above described architecture is crucial. It has to
cope with the high variability of the cursive letters and their intrinsic ambiguity (letters like e and
I or 4 and n can have the same shape). In this paper we present a cursive character recognizer
combining the use of Neural Gas (NG) and Learning Vector Quantization (LVQ). The NG is used to
verify when the upper and lower case versions of a letter can form a common class. This happens
when the two characters (e.g. o and O) are similar in shape and their vectors in the feature space
occupy neighboring or even overlapping regions. By grouping the characters in this way, the number
of classes is reduced and a more suitable representation of the data is obtained. The classifier, based
on LVQ, provides for the aggregation of primitives not only a simple attribution to a given class C' but
also a score that is the euclidean distance between the feature vector extracted from the aggregation
and the closest C' codevector.

This paper is organized as follows: in Section 2 the method for extracting features for character
representation is presented; a review of LVQ and NG is provided in Section 3 and 4 respectively; in
Section 5 reports some experimental results; in Section 6 some conclusions are drawn.

2 Feature Extraction

Most character recognizers do not work on the raw image, but on a suitable compact representation
of the image by means of a vector of features. Since cursive characters present high variability in
shapes, a feature extractor should have negligible sensitivity to local shifts and distortions. There-
fore feature extractors that perform local averaging are more appropriate than others that yield an
exact reconstruction of the pattern (e.g. Zernike polynomials, moments) as shown in (Camastra and
Vinciarelli, 2001). The feature extractor, fed with the binary image of an isolated cursive character,
generates local and global features. The local features are extracted from subimages (cells) arranged
in a regular grid ' covering the whole image. A fixed set of operators is applied to each cell. The
first operator is a counter that computes the percentage of foreground pixels in the cell (gray feature)
with respect to the total number of foreground pixels in the character image. If n; is the number of
foreground pixels in cell i and M is the total number of foreground pixels in the pattern, then the
gray feature related to cell i is 3;.

The other operators try to estimate to which extent the black pixels in the cell are aligned along some
directions. For each direction of interest, a set of N, equally spaced, straight lines are defined, that
span the whole cell and that are parallel to the chosen direction. Along each line j € [1, N] the number

n; of black pixels is computed and the sum va n? is then obtained for each direction. The difference

ISmall translations of the input patterns can significantly change the distribution of the pixels across the cells. In
order to smooth this effect, the cells are partially overlapped.
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between the sums related to orthogonal directions is used as feature. In our case the directions of
interest were 0° and 90°.

We enriched the local feature set with two global features giving information about the overall shape
of the cursive character and about its position with respect to the baseline of the cursive word. As
shown in figure 2, the baseline is the line on which a writer implicitly aligns the word in the absence of
rulers. The first global feature measures the fraction of the character below the baseline and detects
eventual descenders. The second feature is the width/height ratio.

The number of local features can be arbitrarily determined by changing the number of cells or direc-
tions examined in each cell. Since classifier reliability can be hard when the number of features is high
(curse of dimensionality, (Bellman, 1961)), we use simple techniques for feature selection in order to
keep the feature number as low as possible. Directional features corresponding to different directions
were applied and the one having the maximal variance was retained. Therefore the feature set was
tested changing the number of cells and the grid giving the best results (4 x 4) was selected.

In the reported experiments we used a feature vector of 34 elements. Two features are global (baseline
and width/height ratio) while the remaining 32 are generated from 16 cells, placed on a regular 4 x 4
grid; from each cell, the gray feature and one directional feature are extracted.

3 Learning Vector Quantization

Learning Vector Quantization (LV(Q) is a supervised version of vector quantization and generates
codevectors to produce "near-optimal decision boundaries” (Kohonen, 1997).

LVQ consists of the application of three consecutive different learning techniques, i.e. LVQ1, LVQ2,
LVQ3 %2 . LVQI uses for classification the nearest-neighbour decision rule; it chooses the class of the
nearest codebook vector.

LVQ1 learning is performed in the following way: if m{ 2 is the nearest codevector to the input vector
T, then

m§, = mf{ + ai[x —mg§] if Z is classified correctly
Mgy =m{ — [T —mf] if Z is classified incorrectly (1)
Mip1 =My iFc

where oy is the learning rate at time t.

Since LVQ1 tends to push codevectors away from the decision surfaces of the Bayes rule, it is necessary
to apply to the codebook generated a successive learning technique called LVQ2.

LVQ2 tries harder to approximate the Bayes rule by pairwise adjustments of codevectors belonging
to adjacent classes. If m® and mP are nearest neighbours of different classes and the input vector Z,
belonging to the m?* class, is closer to mP and falls into a zone of values called window * , the following
rule is applied:

mi = m§ + ou[T — mi]

B S R S (2)
My = my — a2 — my]

Since the application of LVQ2 tends to overcorrect the class boundaries, it is necessary to include

additional corrections that ensure that the codebook continues approximating the class distributions.

In order to assure that, it is necessary to apply a further algorithm (LVQ3).

If m* and m? are the two closest codevectors to input # and Z falls in the window, the following rule

21VQ2 and 1VQ3 were proposed, on empirical basis, in order to improve LVQ1 algorithm.
3ﬁz§ stands for the value of m¢ at time ¢.
4The window is defined around the midplane of m*® and mP.
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LVQ3 is self-stabilizing, i.e. the optimal placement of the codebook does not change while continuing

learning.

4 Neural Gas

Neural Gas is an unsupervised version of vector quantization. In neural gas model, in contrast to
SOM, no topology of a fixed dimensionality is imposed on the network . Neural Gas consists of a
set of M units : A = (¢1,¢a,...,¢n). Each unit ¢; has an associated reference vector we, (w., € R"™)
indicating its position or receptive field center in input space. The learning algorithm of the neural
gas is the following:

1.

5.

6.

Initialize the set A to contain units ¢;, with w., € R"™, chosen randomly according to input
distribution p(§). Besides, initialize the time parameter ¢, to 0.

. Generate at random an input & according to p(§).

. Order all elements of A according to the distance of their reference vectors to £ e.g., find the

sequence of indices S = (ig,%1,...,9m—1) such that w;, is the reference vector closest to &, w;,
is the second vector closest to & etc. Let k;(€, A) the rank associated with w; 6.

. Adapt the reference vectors according to :

Aw; = e(t)ha(ki (€, A)) (€ — wi)

where :

ha(ki(E, A)) = emp(—%>
My

At) = Ai N

e(t) = es(L)7s

€
Increase the time parameter ¢t : t =¢+ 1

If ¢t < t; continue with step 2.

For the time dependent parameters suitable initial values A;, €; and final values Ay, € have to be chosen.
For the above-mentioned parameter in our work, we adopted the values suggested in (Martinetz et al.,

1993, 1994; Fritzke, 1997).

5C(g) stands for the class of §.
6

w; stands for we,; . This convention is also adopted in the following formulae.
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5 Experiments and Results

The combined use of NG and LVQ is shown to improve the performance of a cursive character classifier.
The letters are present in the database in both upper and lower case version. In some cases, the two
versions are different and must be considered as separate classes. In some other cases, the two versions
are similar and can be joined in a single class.

The NG is used to measure the overlapping in the feature space of the vectors corresponding to the
two versions of each character. When the overlapping is high enough, upper and lower case versions
of the letter are joined in a single class. This improves the performance of the LVQ over such classes
and results in a better accuracy of the overall character classifier.

Subsection 5.1 describes the database used in the experiments, subsections 5.2 and 5.3 show how the
optimal class representation was found and the recognition experiments respectively.

5.1 The character database

The cursive characters used to train and test the recognizer were extracted from the handwritten
words belonging to two different data sets. The first one is the CEDAR’ database (Hull, 1994). The
second one is a database of handwritten samples collected by the United States Postal Service. In
both cases the data were collected in a postal plant by digitizing handwritten addresses.

The characters are extracted from the words through a segmentation process performed by the system
in which the recognizer is embedded. Before being segmented, the words are desloped and deslanted
following the scheme described in (Nicchiotti and Scagliola, 1999). The resulting character database
contains 58000 elements. The letter distribution (shown in figure 3) reflects the prior distribution of
the postal plants where the handwritten words were collected. For this reason, some letters are very
frequent while others are almost absent.

The database is split with a random process into training, validation and test set containing respec-
tively x, y and z characters.

5.2 Optimal number of classes finding

Clustering allows to verify whether vectors corresponding to the upper and lower case versions of
the same letter are distributed in neighboring regions of the feature space or not. The more the two
versions of the letter are similar in shape the more their vectors are overlapping (e.g. like 0o and O)
and can be joined in a single class. On the other hand, when the two versions of a character are very
different (e.g. g and G), it is better to consider them as separate classes.

Clustering was performed by means of Neural Gas (NG) and Self Organizing Map (SOM). In Table 1
the performances of different SOM and NG maps, measured in terms of quantization error ® on the
whole character database, are reported. Given a number of neurons, the NG performs always better
than the SOM and is, for this reason, selected.

The quantization error can be reduced by increasing the number of nodes, but this leads to overfitting
the map onto the training set, i.e. to decreasing its generalization properties. The map with 1300
neurons represents the best trade off between quantization and generalization error and is for this
reason retained as optimal.

The neurons were labelled with a kNN technique® and divided into 26 subsets collecting all the nodes
showing at least one version of each letter &« among the k classes in the label. For each subset, the
percentage 7, of nodes having upper and lower case versions of the letter a in the label was calculated.
The results are reported (for every subset) in figure 4. The percentage is an index of the overlapping
of the classes of the uppercase and lowercase versions of the letter. This information can be used to

"Center of Excellence in Document Analysis and Recognition, State University of New York at Buffalo (USA). All
the words belonging to directories train/cities and train/states were used.

8Using the notation adopted in section 4, the quantization error Qg is defined as follows: Qg = EJN Zf\/f & — w;|?.
9Each node is labelled with the classes of the k closest feature vectors.
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represent the data with a number of different classes ranging from 26 (uppercase and lowercase always
joined in a single class) to 52 (uppercase and lowercase always in separate classes). For example a class
number equal to 46 means that, for the six letters showing the highest values of n (i.e. ¢,z,0,w,y,2)
uppercase and lowercase versions are joined in a single class.

5.3 Recognition experiments

The percentage n was used to look for the optimal number of classes. The letters showing the highest
values of 17 were represented by a single class containing both upper and lower case versions. We
trained LVQ nets with different number of classes. In each trial, the number of codevectors and
the learning rate were selected by means of cross-validation (Stone, 1974) and the learning sequence
LVQ1+LVQ2+LVQ3 was adopted. The number of LVQ codevectors, assigned to each class, was pro-
portional to the a-priori class probability.

In table 3, for different class numbers, the performances on the test set, measured in terms of recog-
nition rate in absence of rejection, are reported.

The performance is shown to be improved by decreasing the number of classes when this is higher
than an optimal value (in this case 39). A further reduction of the number of classes results in a lower
accuracy. The n parameter is then reliable in estimating the optimal number of classes.

This is confirmed by looking at the performance of the recognizer over the single characters. Table 2
reports the change in recognition rate of each character when passing from 52 to 39 classes. The
characters are ordered following the value of n. The first 13 classes show in most cases a significant
accuracy improvement. The other classes show smaller changes in both positive and negative direc-
tions.

The effect on the overall performance of the recognizer is influenced by the letter distribution. In our
case, the letters showing the highest improvements are not enough represented to significantly affect
the overall accuracy, but in other cases, the distribution can be different and the improvement of the
recognition rate much higher.

Our best result in terms of recognition rate is 84.52%. The only result we know (Yamada and Nakano,
1996), obtained on a smaller test, is approximately 75%. In fig. 5 the confusion matrix is shown. The
cumulative probability function of the correct classification is reported in fig. 6. The probabilities of
classification of a character correctly top three and top twelve positions are respectively 95.76% and
99.50%. In our opinion, the fundamental sources of misclassification for our classifier are two. The
first one (for the most rare letters) is the low number of available samples. The second is the intrinsic
ambiguity in cursive characters. In fact, some couples of letters (e.g. e/l or a/o) are very difficult to
be distinguished. This is confirmed by the confusion matrix and by the high recognition rate in the
top three positions.

6 Conclusion

We have presented an isolated cursive character recognizer, a crucial module in Cursive Script Recog-
nition systems based on a segmentation and recognition approach.

An improvement of the correct classification rate is obtained by combining the use of NG and LVQ.
The NG allows to obtain a suitable representation of classes, LVQ performs the actual character
recognition. The optimal representation of classes is obtained by evaluating the overlapping in the
feature space of the vectors corresponding to upper and lower case versions of each letter. When the
degree of overlapping is high enough, the two versions can be joined in a single class resulting in an
improvement of the classifier performance.

The accuracy achieved is the highest presented, to our knowledge, in the literature.
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Figure 1: Score calculation. Different combinations of primitive aggregations. Each combination gives
a different score. In our case, the score is the distance between the pattern enclosed by two arrows
and the closest LVQ prototype labelled with the same characterer as the corresponding word letter.
It is possible to have several combinations for the same word and several transcriptions of the same
combination.
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Figure 2: Global features. The dashed line is the baseline, the fraction of h below is used as first
global feature. The second global feature is the ratio w/h.
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| neurons | SOM(g.error) | NG (q.error) |

1300 0.197290 0.162117
900 0.204126 0.167981
600 0.209687 0.175800
400 0.217515 0.182672
200 0.227662 0.195116
100 0.242464 0.208706

IDIAP-RR 01-18

Table 1: Quantization error of SOM and NG for different neuron numbers.
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Figure 3: Letter distribution in the test set.
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Figure 4: Value of n for each letter.
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| class | 52 classes | 39 classes |

c 88.99 88.47
x 84.40 88.23
o 90.19 91.76
W 71.39 77.60
y 87.04 88.23
z 65.90 85.71
m 72.54 81.84
k 59.86 62.25
] 70.73 75.70
u 90.55 90.55
n 88.13 87.53
f 80.50 80.71
v 73.81 76.82
a 83.62 84.01
e 82.30 84.36
t 87.04 90.55
s R1.87 83.34
I 83.25 82.22
b 88.15 87.89
T 85.80 83.34
d 80.94 80.47
g 80.58 80.00
h 83.11 82.56
i 75.98 75.46
P 91.38 88.61

Table 2: Change in the recognition rate when passing from 52 (lower and upper case versions of the
letter never joined in a single class) to 39 classes (lower and upper case versions of the letter joined in
a single class for the first 13 letters). The characters are ordered following the value of 7.

| class number | performance |

92 83.74
46 83.91
42 84.25
41 84.27
39 84.52
36 84.38
26 84.27

Table 3: Recognition rates on the Test Set, in absence of rejection, for several class numbers.
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Figure 5: Confusion Matrix of the LVQ classifier. The letters are mapped to the numbers from 1 to
26. The letter a is mapped to 1, b is mapped to 2, ..., z to 26.

cdf

0.82 I I I I I
5 10 15 20 25

Position

Figure 6: Cumulative probability function of the correct classification of LVQ classifier.



