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Abstract. Multi-band speech recognition is powerful in band-limited noise, when the recognizer of
the noisy band, which is less reliable, can be given less weight in the recombination process. An ac-
curate decision on which bands can be considered as reliable and which bands are less reliable due
to corruption by noise is usually hard to take. In this article, we investigate a maximum-likelihood
(ML) approach to adapting the combination weights of a multi-band system. The Gaussian Mix-
ture Model parameters are kept constant, while the combination weights are iteratively updated
to maximize the data likelihood. Unsupervised offline and online weights adaptation are compared
to use of equal weights, and ‘cheating’ weights where the noisy band is known, as well as to the
fullband system. Initial tests show that both ML-weighting strategies show a robustness gain on
band-limited noise.
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Science (OFES) in the framework of both the EC/OFES SPHEAR (SPeech, HEAring and Recogni-
tion) project and the EC/OFES RESPITE project (REcognition of Speech by Partial Information
TEchniques).
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1 INTRODUCTION

In multi-band (MB) processing, the speech signal in the spectral domain is split into several (non-
overlapping) frequency subbands. These frequency subbands are processed separately for feature
extraction, orthogonalization (e.g. DCT) and, in our case, frame level phoneme probabilities estima-
tion. The estimated probabilities from each subband recognizer are then recombined by a combination
rule, such as the weighted sum or product.

The strength of MB systems lies in the fact that possibly occurring noise from one subband does
not mix with neighbouring subbands, as is usually the case. In fullband processing, feature extraction
and orthogonalization are both carried out only once for the whole frequency domain which results in
a feature vector in which noise in any one subband is spread over all features.

Experiments in recognition with missing data [2] have shown that it is possible to significantly
improve the recognition task when noisy feature coefficients are ignored. A similar finding, but this
time based on human auditory processing, was obtained by Fletcher in 1953 [4]. He showed that
humans are often able to extract sufficient residual information from clean frequency subbands when
a considerable part of the frequency domain is corrupted by noise. MB processing permits us to process
each frequency subband separately, and thus to discard noisy subbands — if they can be detected.

The extent to which a subband should be included in the recognition task is controlled by the
weighting factors used in the recombination process. Each subband is normally given a certain weight
according to its estimated reliability. These weights can be calculated in advance (i.e. in an offline
manner) and/or during recognition (i.e. online).

Different weighting schemes, such as mean square error, mutual information [3] or signal-to-noise
ratio (SNR) based weights [7] can already be found in the literature. In this article, we present a new
maximum-likelihood (ML) based weighting strategy for MB processing, which can be used for unsu-
pervised online adaptation. For this, in the framework of Gaussian Mixture Expert/HMM systems [5],
the parameters of the Gaussian Mixture Model (GMM) experts from each subband combination are
fixed. Only the combination weights for each subband model and recognition unit, i.e. in our case
phonemes, are iteratively updated.

In Section 2, the (online and offline) ML-weights adaptation for a GMM-based MB system is
presented. Experiments employing this new weighting function in clean and noise-corrupted data are
discussed in Section 3.

2 UNSUPERVISED ML ADAPTATION

Given an acoustic vector 2! at time ¢ and the whole set of model parameters 0, b; tells us the expert
j for which z; is clean'. We now decompose the state probability p(z!|gx, ©) into a weighted sum of
subband GMM distributions, summing over all b;,7 = 1..J, with J = 2% where d is the number of
subbands:

p(z'|ak,©) =Y p(«’|b), ar, ©) P(b;lg, ©) (1)

j=1

The parameters in (1) are the parameters @9 of the GMMs (means, variances and mixture weights)
and the combination weights for each subband model and each state, denoted by wj; = P(bj|qx, ©).
The whole set of parameters is thus @ = {09, w}.

In the following, we will consider the possibility of fast adaptation of weights w, while keeping all
other parameters ©9 fixed. The idea behind this is that all the subband classifiers have been optimized
on clean speech. Thus, when narrow band noise is present the classifiers of the noise-contaminated
bands should be downweighted to achieve optimal performance. The limited number of parameters

ITime index t is dropped for x§ =; for sake of clarity.
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to be adapted here theoretically allows for fast adaptation. The number of parameters to be adapted
correspond roughly to 1% of the total number of fixed model parameters.

A separate GMM expert is trained on clean data for every combination z;, j = 1..J, of data
subbands. The probabilities from these experts are combined in the same way that each Gaussian
component is usually combined into a GMM.

p(zlqr, ©) = Zp(ﬂflmj,qk,G)P(mjlqk) (2)

The adaptive expert weights are formed by combining local weights estimated online during recog-
nition with global weights estimated offline during training (or equal weights).

2.1 Offline ML Expert Weights Estimation

In the case of fixed mixture component parameters, the usual iterative EM estimation equations [1]

for mixture weights wJ(.ZlH) =P+ (b;|qx) at iteration (m+1) are as follows:

T
1 1
wipt! = 3 P (b, qulzt, 07, w™) (3)

t=1

P (2'bj, g, ©9) P (b, qi)
Zj’k’p(m)(xt |bj' ) 4k’ 799)'P(m)(b]"7 qk’)

The only difference here being that the mixture weights are now fixed, and b; in place of the usual
mixture index m; tells us the expert j for which z; is clean, and its complement Z; is noisy and should
be ignored. This means we can factorize the probability p(z|b;, gx) into reliable and unreliable parts
as follows

P by, i) = (4)

The unreliable factor p(Zj|z;, b;, qx) in (5) can be approximated [2] with minimum variance by its
expected value

Qjk = g[p(x_ﬂxj:bj)q]w@)] (6)

In the initial experiments reported here we have made two simplifying assumptions. One is that
aji is a constant independent of j and k, and therefore cancels out when (5) and (6) are substituted
into (4). Another is that in place of all 27 experts, we use just one expert per subband, plus one more
for the fullband data.

2.2 Online ML Expert Weights Adaptation

We now only consider one iteration per time step and thus drop the iteration index m, introducing a
time index n. In online adaptation, N < T frames are used to obtain a local estimate wj(\?) =pm) (bjlar)
for the weights, which is then combined with the previous estimate w(™™") = P(")(b;|q) from the
former time step (n—1) in a weighted sum as follows:

w®) = offline weights
w™ =1 —-a) w™ Y +a wg\?) (7)
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with w(” = % Pék) Eﬁf{lP(")(bi, qr|zn;) (cf. (3)).

The a-value determines how fast the weights change from one update to the next: = 0 actually
results in no adaptation as the new weights are not taken into consideration, while =1 is the other
extreme when only the new local weights are used in the next update.

3 EXPERIMENTS

Figure 1: lllustration of offline adapted weights for clean speech (MFCC features).

Experiments were carried out on a test set of 100 utterances from the Numbers95 database of
connected numbers recorded over the telephone line. For tests on noise-corrupted data, artificial band-
limited (stationary) noise at SNRs of 12 and 0 dB was added to each frequency subband at a time,
although due to filter characteristics there is a slight noise leakage between bands.

Our MB system comprises 4 subbands. Two sets of features were chosen: PLP (Perceptual Linear
Prediction) and MFCC features. GMM classifiers were (unsupervised) trained on each set of features
and for each frequency subband (as well as the fullband). The MB system (recombination by weighted
sum and product) is tested in the different noise conditions employing the offline (3) and (4), and
online (7) adaptive ML-weights. Results are compared to the same set-up using equal weights and
‘cheating’ weights, which were set to zero for the noisy subband and equal for the clean bands, as well
as to the fullband GMM classifiers, which were trained on the whole frequency domain. The offline
weights were calculated on a different set of 100 utterances, corrupted with the respective noise. Online
weights were updated every N = 100 frames (1250 ms).

3.1 Offline ML Expert Weights Adaptation

Figure 2: Illustration of offline adapted weights for noise in subband 1 (left) and subband 2 (right)
(MFCC features).

In a multi-stream system using 4 subbands as input, we would expect the new ML-weights to show
a clear advantage over equal weights when one of the bands is totally corrupted by noise. Therefore,
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Figure 3: Illustration of offline adapted weights for noise in subband 8 (left) and subband / (right)
(MFCC features).

noise fullband MB system w/ sum rule

SNR 12 dB WER weights | WER | cheat
equal 17.0

clean 13.5 offline 159 i
equal 42.0

band 1 644 offtine 42,5 34.9
equal 24.6

band 2 238 | offline 21.6 21.9
equal 25.1

band 3 2561 offline 24.8 23.8
equal 214

band 4 214 o ffine 23.8 22.4

Table 1: Word error rates (WER) on clean and band-limited noise at 12 dB SNR on MFCC features
for the fullband system and the MB system of 5 bands (i.e. the / subbands and the fullband) using
equal weights and offline ML-weights.
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initial experiments were carried out on band-limited noise (in one subband at a time). We calculated
the offline ML-weights for clean speech and each of the noises using MFCC and PLP features, the
first of which can be seen in Figures 1, 2 and 3. Clearly, for clean speech the weights depend on both
the subband and the respective phoneme and thus change from phoneme to phoneme (Fig. 1). For
noise-corrupted speech however, it can be seen how the noisy band gets consistently downweighted as
compared to the clean subbands (Fig. 2 and 3). Results for MFCC features are given in Tabs. 1, 2

noise fullband MB system w/ sum rule

SNR 0dB | WER || weights | WER | cheat
equal 17.2

clean 135 offline 15.2
equal 49.6

band 1 8.7 offiine 46.4 39.6
equal 324

band 2 0341 offtine 22.6 24.6
equal 30.7

band 3 SL6 1 ffine 20.5 26.0
equal 29.7

band 4 142 Sfine 29.2 25.6

Table 2: WER on clean and band-limited noises at 0 dB SNR on MFCC features for the fullband
system and the MB system of 5 bands (i.e. the J subbands and the fullband) using equal weights and
offline ML-weights in the sum rule.

and 3, for the PLP features in Tab. 4. As compared to the baseline fullband systems (2"¢ columns),
the MB systems already show higher noise robustness when using equal weights (4! columns, upper
number), with the exception of one noise c. Only in the case of clean speech give the MB systems
weaker performance which is due to using 4 classifiers only (cf. PLP features). Including the fullband
classifier, as was done for the MFCC features, already improves performance. It can be expected that
more competitive performance of the MB system as compared to the fullband system in clean, would
easily be achieved by extending the MB system to consider all possible combinations of subbands [8].

noise fullband || MB system w/ product rule
SNR 0dB | WER | weights | WER | cheat
o | s || W]
band 2 634 (fg:llllji) ?g:sla 15.0
band 3 o160 cff({lillli 33:2 17.4

Table 3: WER on clean and band-limited noises at 0 dB SNR on MFCC features for the fullband
system and the MB system of 5 bands (i.e. the 4 subbands and the fullband) using equal weights and
offline ML-weights in the product rule.

Comparing the new ML-weights to equal weighting in noise-corrupted speech, shows that the MB
system using PLP features (Tab. 4), gains improved robustness for noise in subbands 1, 2 and 4
whereas results in band 3 worsened although control calculation of the data likelihood showed that
also for this subband the likelihood was increased. For the MFCC features (Tabs. 1, 2 and 3), using
the ML-weights almost always gave higher noise robustness (with the exception of noise at 12 dB in
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noise fullband || MB system w/ sum rule
SNR 0 dB | WER | weights |  WER
equal 21.1
clean 93 offline 22.9
equal 514
band 1 6441 offtine 447
equal 50.9
band 2 .1 offline 44.7
equal 65.8
band 3 89.2 offline 72.7
equal 57.2
band 4 90-T 1 offine 56.5

Table 4: WER on PLP features for the fullband system and the MB system of 4 subbands using equal
weights and offline ML-weights in the sum rule.

subband 4) than equal weights, in two cases outperforming the cheating experiment (’cheat’). (The
results from the ’'cheating’ experiments indicate to what extent the MB system could be improved
by an optimal weighting strategy). Also for clean speech the ML-weights increased performance on
the MFCC features when using the sum rule. (For sake of performance in clean speech, for this set of
features the MB system also included the fullband). Due to the fullband always being corrupted by
noise and although the ML-weights were estimated to downweight the fullband in noise, the overall
gain on each noise was less striking than for a pure MB system (cf. PLP features) consisting of the 4
subbands only (which though performs much worse in clean). Using the product rule, an improvement
with ML-weights in clean speech was not observed, but considerable noise robustness was achieved with
the ML-weights for all band-limited noise cases (cf. Table 3), also when the fullband was included.

noise offline online

a = 0 0.2 | 0.5 | 1
band 1 51.4 | 45.2 | 45.9 | 46.7
band 2 50.9 | 43.7 | 42.8 | 44.7
band 3 65.8 | 71.3 | 71.3 | T1.7
band 4 57.2 | 59.5 | 57.7 | 58.2

Table 5: WER on PLP features for the MB system using equal and online ML-weights on band-limited
noise (sum rule).

3.2 Online ML Expert Weights Adaptation

Next, we tested the online version of the ML-weights which were calculated as described in (7). = 01in
this case corresponds to initial (i.e. not updated) equal weights. a= 1 only takes the newly calculated
values from the last 100 frames into account and disregards former weight values.

It can be seen in Table 5 that for this kind of stationary noise, lower a-values (a = 0.2 or 0.5)
usually give better results as they rely more on global weight estimates. It is however expected that
this approach should give more benefit in case of non-stationary noise.
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4 CONCLUSION

As could be seen in the experiments, MB speech recognition is usually more robust to band-limited
noise than a fullband system. With an appropriate weighting strategy, such as the ML-weights intro-
duced in this article, the MB system could be rendered even more competitive. For more realistic noise
conditions and to further improve MB performance in clean speech, we have to either employ the so-
called “full combination” approach, in which all possible combinations of subbands are considered [8],
or change to the multi-stream domain [6].

For both alternatives, the ML-weights can be as easily used as in MB processing showed so far in
this article. We thus plan on employing this new ML-weighting also in the before mentioned frame-
works. Moreover, for more appropriately testing the online ML-weights adaptation we will extend
our experiments to include non-stationary band-limited noise and different lengths N for the update
window.

We usually work in the framework of HMM/MLP hybrid systems, which we found to be more
powerful than Gaussian Mixture Expert/HMM systems. As in HMM/MLP hybrid systems the likeli-
hoods which are needed for ML-weighting are not available, we need to consider how the ML-weights
adaptation could be derived directly for use in the posterior-based approach of HMM/MLP hybrid
systems.
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