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Abstract. This paper describes an application of a transductive method for risk mapping which
allows one to compute confidence intervals for estimates, without any assumption on data distribu-
tion, except that inputs should be independently and identically distributed (iid). The method’s
confidence interval reliability is compared to conditionnal Sequential Gaussian Simulation. The
robustness of this reliability against poor underlying regression models is also studied. The data
set used is a digital elevation model of a part of the South-West part of Switzerland (“Valais”).
Experiments to evaluate the robustness of RRCM against the iid assumption are conducted using
the data set of cadmium concentration in Leman Lake sediments in 1983 (“Cd83”).
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1 Introduction

Maps drawn from a regression estimate of unknown data are often insufficiant for making important
decisions. Knowing also the confidence one has in the estimate is crucial. Many methods exist in
statistics and machine learning for solving such problems ([4][6][5], etc ... ), but most of them need
strong a priori knowlege of the nature of the distribution of data. For example, conditionnal Sequential
Gaussian Simulations (SGS) [1] assume that data outputs are normally distributed. If it is not the
case, normal-score transformation and back-transformation [2] are necessary, which can create some
artifacts in the final results.

The Ridge Regression Confidence Machine (RRCM) [7] appears to be a good alternative to these
methods when studying data far from “normality”, as the only assumption made by RRCM is that
data should be independently and identically distributed (iid).

In this paper, we first give a short theoretical description of the RRCM method, as well as of SGS.
Then, we describe experiments conducted, among others, on the digital elevation model of Switzerland
(Swiss DEM).

2 Theory

More detailed theoretical descriptions of the methods presented here can be found in the references,
especially the mathematical demonstrations.

2.1 Ridge Regression Confidence Machine

This transductive method was introduced in [3]. Its goal is to produce a machine learning algorithm
which is able to estimate simultaneously a prediction and the confidence one has in it, either for
classification [9] or regression [7].

2.1.1 General theory

Suppose that one has a set of labeled data (z1,...,2;) € Z = ((x1,y1),..., (X, y1)) € X x Y, where
x € X is a vector of coordinates and y € ) is a scalar, corresponding to the output of these coordinates.
Given a new vector of coordinates x;41, the goal is to find the output y;+1 and the confidence region
of the estimation.

To solve this task, the idea consists in scanning all the possible sequences ((x1,¥1), .-, (X1, %), (Xi+1,7)),
and evaluating how typical this sequence is. This is possible using a typicalness function ¢ : Z+! —
[0, 1] which satisfy the condition

P((z1,-.- s 2141) 1 t(21, . zi41) <) <7 (1)

where 0 < r < 1. This means that the probability (under i.i.d assumption) to find a sequence
(21,... ,2z141) such that t(z1,...,2z141) < 1% will never exceed 1%.
This property is fulfiled by the following form of the typicalness function:

#li=1,...,l+1:0; > 1}
I+1 '

(2)

Hoyoe o) =

In this function, «; represents the strangeness of the element z;. The condition 1 is verified if these
parameters are defined by a function of the form

Oéi:F({Zl,...,Zl+1},Zi),’L.:1,...,l+1 (3)
When working in a regression framework, one can use the function a; = |y; — f(x;),i = 1,... ,I+1,
residuals of f : X — R, which is an underlying regression model approximating the data z1,... ,2z;41.

Then, given a significance level r (such as 5%), the predictive region R(x1,y1,.-. , X, Y1, X;+1) is the
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set of all § € Y for which t(z1,...,2141) > r. It has been shown in [7] that this predictive region is at
least a 100(1 — r)% probability tolerance region.

Dealing with the calculation of all possible § can become almost impossible. The Ridge Regression
Confidence Machine algorithm allows one to speed-up such task.

2.1.2 The Ridge Regression approach

In order to speedup the calculation of the typicalness function, one solution is to use the Kernel Ridge
Regression [8] as underlying regression model.
The Ridge Regression algorithm consists in calculating the value w that minimises the function

I+1

allwli* + 3 (0 = wxi)? (@

where a is a user-defined positive constant. The Ridge Regression approximation is then f(x) = w-x.

An interesting aspect of this method is that one can calculate directly the vector of the strangeness
parameters «;, and moreover, its expression varies piecewise linearly with § and can be written as
A + By, where

A=y, oy, 00 = (XX +al)1XX) (5)
and
B=(0,...,0,1)(I — (XX'+al)"'XX") (6)

with X = (x1,... ,x541)".
Using the “kernel trick”, one can then replace the dot product matrix X X' in equations (5) and

Il =1

(6) by a kernel' matriz K; j = ea:p( — - ), with operner @ user defined positive constant, which

20kernel
allows to solve non-linear problems in a “linear” way [10], and thus improve the prediction abilities of
the algorithm.

As the a; vary with ¢, so does the typicalness function ¢. But it can change only for § where
a; = aqyq for some ¢ = 1,... 1. It is thus possible to calculate the typicalness for ¢ intervals rather

than for unique gy values, as follows:

1. for each example in (z1,...,z41), define S; = {§ : @; > a;41} as being the set of all possible §
for which z;’s residuals is greater than z;41’s.

2. for each interval of the space of § defined by a; = a1, count how many S; include it. To get
the typicalness, one has to divide this number by the total number of examples, i.e. [ + 1.

Finally, the confidence region one is looking for is the union of all the intervals of the space of ¢
for which the typicalness is greater than the significance level 7.

2.1.3 Procedure of RRCM experiments

To calculate the 95% confidence intervals of a test data set (known inputs, but unknown outputs),
given a train data set (known inputs and outputs), the algorithm goes as follows:

1. If necessary, rescale the inputs of the train and test sets, as well as the outputs of the train set.
This rescaling can be done in order to improve numerical stability of the program and thus to
expect better results. A typical rescaling for data is to evaluate mean p; and standard deviation
o; of each variable z; of the training set, and transform it like this: normX; = % The new
variable will have a 0 mean and a 1 standard deviation.

Lin this case, the gaussian radial basis function kernel
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2. Build a regression model using the train set.
This consists mainly in defining the optimal values of the hyper-parameters of the kernel ridge
regression algorithm. The most classical way of doing it is to use a cross-validation procedure
on the train set, trying different values of these hyper-parameters (a and ogerner)-

3. For each point of the test set, calculate the confidence region of the output.
One Uses the hyper-parameters calculated by cross-validation, and process as described in section
2.1.2, the studied sequence being the full train set plus the test point.

4. Back transform the data.
If data have been rescaled at step 1., it should then be transformed back to its original domain,
as well as the confidence region’s bounds calculated for each test point.

2.2 Sequential Gaussian Simulations

Widely used in geostatistics, this family of algorithms [1] has proven its efficiency despite its strong a
priori assumptions about the data’s distribution. It was thus logical to use it as a reference to test
the efficiency of the RRCM on spatially distributed data, but also to show that sometimes, the results
obtained are to be considered with care.

2.2.1 General description

The main goal of simulations in geostatistics is to produce “realistic” maps of a phenomenon rather
than minimising the prediction error, which usually leads to smooth maps, not really representative
of the real world.

To solve this task when data are normally distributed, one estimates the parameters of the local
probability density function at each location of the test set, and randomly generates a value from this
distribution.

The first part of a sequential gaussian simulation is to check if the known data are normaly
distributed, and if not, to apply normal-score transformation on them [1]. Then, one calculates the
variogram of the transformed data

LY
~v(h) = N @) ;(y(xz') — y(x; +h))? (7)

where h is a directional vector, and N (h) is the number of pair of points separated by h. One then
modelises v(h) with the continuous function §(h). The next part is the simulation process itself.

1. Choose at random a point to estimate inside the unknown data set.

2. Apply the kriging procedure, using the known data set and the modelised variogram, to estimate
the mean gy, and variance o.;,> of this value. These two parameters are then considered
respectively as the mean and variance of the local Gaussian probability density function of the
point.

3. Randomly choose a value for the unknown point, following the law N (tkrig, Okrig)-

4. The simulated point is then considered as a known point and will be used “as is” to simulate
the next randomly chosen unknown point.

5. Repeat from step 1. until there are no more unknown points.

The result of one simulation is thus a “noisy” version of a kriging procedure, which reproduces the
statistical histogram and the variogram of the known data, giving a more realistic aspect to the output
but a lower prediction performance. However, when performing multiple sequences of simulation, one
is able to draw reliable probability maps.
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2.2.2 Confidence interval calculation

Two procedures can be used to generate confidence intervals using Sequential Gaussian Simulations
results: an non-parametric and a parametric.

The non-parametric one processes as follows: for a given simulated point, one can basically order
the simulated values from the smallest to the highest. Then, if necessary, do the N-Score back-
transformation on them. And finally, one finds the two values corresponding more or less to the 2.5
and 97.5 percentils of the all set of simulated values.

The parametric method uses the fact that before N-Score back-transformation the simulated data are
normally distributed. It is thus possible to calculate the 2.5 and 97.5 percentils from the gaussian
cumulative density function defined by N (psim,0sim). The mean pgs;, and standard deviation o,
of the distribution of each point are calculated from the set of simulated values. When these bounds
have been calculated, one is applying the N-Score back-transformation on them in order to get back
to the real output space.

At the limit (i.e. for thousands of simulations), and for normally distributed data, both methods
are similar. But the non-parametric procedure might be more robust against non-normally distributed
data as the bounds are calculated in the “real” space, whereas the parametric one calculates the bounds
in the transformed space. However, the main drawback of the non-parametric procedure is that it
should use a large number of values to give reliable bounds, while the parametric one is less concerned
by this aspect, thanks to the use of a theoretical cumulative density function.

2.2.3 Procedure of SGS experiments

As for RRCM, one has to simulate a test set using the information given by a train set. The SGS
95% confidence interval calculation has been done like this:

1. Normal score transformation of the train outputs if necessary.
2. Variogram modelisation using the transformed outputs of the train set.
3. 100 or more sequential Gaussian simulation procedures of the test set.

4. Evaluation of the confidence intervals as described in the section 2.2.2.

3 Experiments on digital elevation model of Valais

W of Vs
4 ARt e (' I g3t e

(a) data set (b) histograms

Figure 1: Valais data set and statistical histograms. Repartition between train and test sets

The digital elevation model of Valais used for these experiments is part of a larger digital elevation
model of the whole Swiss region. It contains 4955 data points lying on a regular grid of cells of 1
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kilometer aside. It covers high mountains and narrow valleys. The statisticals properties of the data
set are the following:

mean 2307 m
standard deviation 668 m
minimum 466 m
median 2333 m
maximum 4469 m

In order not to spend weeks in experiments, the original data set has been splited into two data
sets. The first one is a random extraction of 500 points from the full Valais set, and will be used as
the train set, i.e. the known data. The second one is the rest, that is 4455 points, which constitute
the test set, i.e. the data to predict.

3.1 Experimental protocols
3.1.1 SGS

As it is visible in figure 1b, the distribution of altitudes of the Valais data set is almost Gaussian.
However, in order to respect SGS theory, data have been transformed using a Normal Score procedure.

The variogram model chosen is an exponential one, with no anisotropy and a range of 16.73 km.
100 simulations were performed using a maximum neighbourhood of 200 points. Sequential Gaussian
Simulations were performed with GSLib [2].

3.1.2 RRCM

The first models developped using Kernel Ridge Regression on raw data gave similar results in term
of mean absolute error compared to Ordinary Kriging. Thus it was not necessary to rescale data.

To speed up the choice of hyper-parameters, the training procedure was done on a series of five
training/validation random splitting for each set of parameters. The hyper-parameter set was then
chosen on the smallest mean absolute error on the five validation sets. For the Valais data set, the
optimal hyper-parameter set was a = 0.001 and ogerner = 201.0.

3.2 Results analysis
3.2.1 Confidence intervals reliability

RRCM SGS
Mean Absolute Error of Estimation 273 m | 275 m
Points Over 95% Confidence Interval 2.1% 6.3%
Points Under 95% Confidence Interval 2.8% 6.9%
Total Outside 95% Confidence Interval 49% | 13.2%

Minimum 95% Confidence Interval width 617 m 475 m
Median 95% Confidence Interval width 1260 m | 1044 m
Maximum 95% Confidence Interval width | 4188 m | 2100 m

Table 1: Numerical results from 95% confidence intervals estimation on Valais data set, using Ridge
Regression Confidence Machine (RRCM) and Sequential Gaussian Simulations (SGS). The “Mean
Absolute Error of Estimation” is calculated by comparing the real test outputs with Kernel Ridge
Regression estimations for RRCM, and with the mean of 100 simulations for SGS.
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The evaluation of the reliability of a confidence interval is obtain as follows: for all the test set,
one counts how many times the real value lies outside the 95% confidence interval. If this figure is
significantly greater than 5% of the total number of test points, this means that the method is over-
confident, giving too narrow confidence intervals. If it is significantly smaller than 5%, this means
that the method is under-confident, giving too large confidence intervals. Finally, if the number of test
points lying outside of the confidence interval is close to 5%, this means that the confidence interval
given by the method is reliable.

In the present case, if both methods give similar performances in term of estimation error, the
reliability of their 95% confidence intervals are very different. As shown in table 1, RRCM gives a
very reliable confidence interval, even if sometimes, the size of the interval is very large, showing a
high uncertainty in some regions. SGS’ confidence intervals are more narrow than RRCM’s. But the
method is significantly over-confident as it makes more than 13% of error where it has predicted to
do at most 5%.

(e) RRCM upper bound (f) SGS upper bound

Figure 2: Comparison between RRCM and SGS bounds and estimation for Valais test set
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Figures 2 and 3 give another representation of the phenomenon. Figures 2c and 2d are almost
identical, showing that both methods have the same regression prediction efficiency. But if the global
patterns are similar, lower bounds (figures 2a and 2b) and upper bounds (figures 2e and 2f) don’t
reach the same levels. RRCM’s bounds usually go lower and upper than SGS’, and this is even more
obvious in figures 3a and 3b. These pictures show also that RRCM’s intervals are getting strongly
wider near the borders of the data area, while SGS’ are less influenced by this “border effect”.

Figures 4a and 4b show the locations of the points lying outside of confidence intervals. One can
see that these locations are not exactly similar for both methods. RRCM seems to make most of its
errors on sharp altitude variation areas, while SGS has problems with extreme values.

(a) RRCM interval width (b) SGS interval width

Figure 3: Comparison between RRCM and SGS spatial distribution of interval width

AT it el T (i
1 Poiriy sutste of orfidence inteeval jmhil: under: blackc sbarre|

(a) RRCM errors (b) SGS errors

Figure 4: Comparison between RRCM and SGS spatial repartition of points lying outside 95% confi-
dence intervals

Given these results from the 95% confidence interval evaluation, RRCM seems to give very reliable
confidence intervals, even if it appeared to be subject to border effects. In figure 5, one can see that
the same performance are obtained for other confidence intervals.

In general, RRCM confidence interval reliability outperform the one of SGS. It is important to
notice that such a difference of performances between the two methods wasn’t expected. First, the
distribution of values and the spatial correlation seemed to be quite simple. But also, both methods
gave very similar results in term of regression estimation. However, one can suppose that the Gaussian
hypothesis of SGS wasn’t verified in this case. Thus, the normal-score transformation and back
transformation might have disturbed the real data distribution. The fact that most of the SGS
errors are extreme values is enforcing this idea: it means either that the simulation process failed
to generate enough extreme values, due to a bad representation of the data distribution, or that the
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5 Confidence Interval reliability for 565 and RRCM on valais

Figure 5: Comparison between RRCM and SGS spatial repartition of points lying outside 95% con-
fidence intervals. X is requested confidence value, Y is actual confidence value of the methods. The
plain line represents the optimal prediction result.

back-transformation destroyed the extreme values. In any case, the absence of asumption of RRCM
is a great advantage to study this data set.

3.2.2 Robustness of RRCM to poor regression model

As it was shown in section 2.1, RRCM has a strong relationship with the underlying Kernel Ridge
Regression model. This model is the “reference” that will be used to evaluate the confidence of a
prediction.

It is thus important to check the consequences of using a non-optimal model. This can happen, for
example, if the training procedure was not optimal. Please note that in the following experiments, the
training set is a fairly good representation of the whole data set. This means that the models studied
will have similar prediction performance on the training and the testing set. This is an important
point: these experiments try to describe the robustness of RRCM in case of a poor regression model,
not in case of a non-representative training set.

The robustness calculations were conducted using the same training set as for the other experi-
ments, but with a smaller testing set (only 200 points) in order to speed-up the computations. Two
confidence intervals were estimated: the 10% and the 90%. They were computed using various un-
derlying models, built by fixing one of the hyperparameters to it’s optimal value?, ogerner Or @, and
varying the other one.

Varying kernel ridge regression hyper-parameters can lead to very different performances, as shown
in figure 6. As a consequence, one can easily imagine an influence on reliability of RRCM’s confidence
intervals. Figures 7a and 7b Shows that this influence exist, but that it is quite small: the maximum
distance from a real confidence interval and the request is around 6.5%. This is less than the error
made by SGS on the 95% confidence interval.

This good performance is a direct consequence of the transductive approach of RRCM. In section
2.1, we have seen that the typicalness is a characteristic of a sequence and not of a single value.
Though, if the underlying model is bad, one can expect that it will be “as bad” for every points, and
then, even if their strangeness will be high, there will remain some structure inside the comparison of
the strangenesses. And this structure is measured by the typicalness.

These good results in term of reliability do not mean that the quality of the underlying model has
no importance for RRCM. Figures 8a and 8b demonstrate this: the size of the confidence intervals
(and thus their interpretability) is directly correlated to the regression performance of the underlying
model. Moreover, for bad models, all the intervals tend to have the same size, destroying the knowledge
about information density in the data set.

2«gptimal” with respect to the training procedure performed in section 3.1.2
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(a) KRR MAE for a fixed and various (b) KRR MAE for okerner fixed and
Okernel various a

Figure 6: Mean absolute error on test set for various kernel ridge regression models. Black crosses’
abscissa correspond to the decimal logarithm of the values of the non-fixed hyper-parameter

Tt of FRCH aganst FFet 7 Tt of FRCH aganst FFet
L] - - . . . . : .
* e sege”t A . . . 1
. 2 28 matrae, . 5 : . . 4 . ' .
. H
(a) Confidence intervals for various (b) Confidence intervals for various a
Okernel

Figure 7: RRCM’s 10% and 90% confidence intervals predictions for various underlying models. X is
the decimal logarithm of the varying hyper-parameter (a and ogerner), and Y is the confidence value
of the interval. Crosses are the expected confidence (0.1 and 0.9) for the given hyper-parameters.
Circles are the actual confidence of the estimated intervals.

S Tet of FRCM against KR v T of RRCM against Rt
§ E i
\
\._ o
y
il P
= e i
e - - -
(a) Confidence intervals width for (b) Confidence intervals width for
various Ogernel various a

Figure 8 Minimum, median and maximum widths of RRCM 90% confidence intervals for various
underlying models. Blue vertex-up triangles are the minimum widths, black squares are the median
widths, and red vertex-down triangles are the maximum widths

The robustness of RRCM confidence interval reliability against poor underlying model is thus a
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reality. The transductive approach is insuring it, with the price of a lower interpretability of the
intervals themselves.

This is at least true for the data studied, which is a pretty nice one with a lot of training points,
a short range correlation and good spatial distribution. Unfortunately, this is quite unusual for real
geostatistical applications.

3.2.3 Robustness of RRCM to non-iid data

The RRCM assumption that data are independently distributed is often wrong when dealing with
geostatistical data sets, either because sampling is made on a regular grid or because it is very dense
in some areas and very sparse in other. It is anyway a widely accepted fact that sometimes, a
methodology is based on hypothesis that are almost impossible to fullfil (from the mathematical point
of view), and however it works quite well anyway. The aim of the following experiments is to test the
efficiency of RRCM when it is used to study a non-iid data set.

The data set considered is part of a series of physico-chemical analysis of the Leman Lake sediments
conducted by the CIPEL? in 1983. In the present case, only the Cadmium concentration is taken into
account.

The data set (figure 9) contains 293 points and was separated into two subset: 150 points for the
training set and 143 for the test set.

Lo 11 CA eonceniniin B b -
it Covun bt g — s G

(a) Cd83 data set (b) Cd83 histogram

Figure 9: Cd83 data set. Crosses indicate train data. Triangles indicate test data.

The same experimental protocol as described in section 3 was used for this study, and like in
section 3.2.1, we have computed confidence intervals given by RRCM and SGS for various requests.
For some extreme confidence values (20%, 30% and 90%), results of RRCM (figure 10) are worse than
for the valais data set. However, they are still equal or better than SGS’ ones.

In this case, it is quite difficult to say wether the lower performances are the consequence of the
non-independence of input data or to the small and noisy data set. The second hypothesis might be
the right one because a large part of the requested confidences are perfectly reproduced, except for
some extreme values. One can suppose that if the problem was related to the spatial repartition of
data, there will be a similar lack of quality for any confidence request. On the other hand, if the noise
in the data has an influence on errors, it should be more obvious on the extreme requests, where there
are fewer points respectively inside or outside of the confidence intervals. More experiments would be
necessary to give a definitive answer to this question.

3Commission internationale pour le Protection des Eaux du Leman: http://www.cipel.org
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5 Confidence Interval reliability for 565 and RRCM on cdd3

Figure 10: Cd83 confidence intervals reliability of RRCM and SGS for various confidence requests.

4 Conclusion

Based only on the assumption that input data are independently and identically distributed, ridge
regression confidence machine proved to be a very efficient algorithm for confidence interval estimation.
The reliability of the confidence appeared to be very good and robust to poor underlying regression
models. And despite some border effects, with a good underlying model, the interval width gives a
interesting advice about information repartition of a data set.

RRCM even outperformed the well known Sequential Gaussian Simulations on the two data sets
studied in this paper. The most probable reason for the bad performances of SGS might be that the
Gaussian assumption on data distribution was wrong on the Valais and Cd83 data sets, problem that
does not affect RRCM.

However, RRCM has some drawbacks. First, it is a very new method. It thus needs a lot of
experiments to test its behaviour facing complex data sets that can be found in the geostatistical
field. The first test conducted on Cd83 data set was quite good, but the interpretation of the results
is not easy. But the biggest problem of this method is that it needs as many matrix inversions as
test data, the size of the matrix being the number of training points. As a consequence, it is limited
to a few hundreds of training points, and testing a large test set can be very time consuming. For
example, the computations for the 95% confidence intervals of the valais data set (500 training points
and 4455 testing points) took about 21 hours on a Sun Blade 100.

Anyway, the performances given by this method are really amazing, and I think it is worth being
used, especially as it is free from any distribution assumptions.
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