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Summary 
 

This paper addresses the impact of telephone transmission channels on automatic speech 

recognition (ASR) performance. A real-time simulation model is described and implemented, 

which allows impairments that are encountered in traditional as well as modern (mobile, IP-

based) networks to be flexibly and efficiently generated. The model is based on input 

parameters which are known to telephone network planners; thus, it can be applied without 

measuring specific network characteristics. It can be used for an analytic assessment of the 

impact of channel impairments on ASR performance, for producing training material with 

defined transmission characteristics, or for testing spoken dialogue systems in realistic 

network environments. In the present paper, we present an investigation of the first point. 

Two speech recognizers which are integrated into a spoken dialogue system for information 

retrieval are assessed in relation to controlled amounts of transmission degradations. The 

measured ASR performance degradation is compared to speech quality degradation in human-
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human communication. It turns out that ASR shows a different behavior then expected human 

quality judgments for some impairments. This fact has to be taken into account in both 

telephone network planning as well as in speech and language technology development. 

Zusammenfassung 

Dieser Beitrag untersucht den Einfluss des Telefon-Übertragungskanals auf die Leistung von 

Spracherkennern. Zu diesem Zweck wird ein Simulationsmodell entwickelt, mit dessen Hilfe 

die Störungen von traditionellen und modernen (z.B. mobilen oder IP-basierten) 

Übertragungsstrecken gezielt generiert werden können. Das Modell verwendet 

Eingangsparameter, wie sie in der Netzwerkplanung üblich sind; es ist daher nicht notwendig, 

spezielle Messungen in realen Netzen durchzuführen. Drei Anwendungen des Modells bieten 

sich an: zum Einen die diagnostische Untersuchung des Einflusses verschiedener Störungen 

auf die Erkennungsleistung (Ziel dieser Untersuchung); des weiteren die Herstellung von 

Trainingsmaterial mit definierten Übertragungscharakteristika; oder die Beurteilung von 

Dialogsystemen in realistischen akustischen Situationen. Wir untersuchten die Leistungen von 

zwei Spracherkennern eines telefonbasierten Auskunftssystems in Abhängigkeit von den 

Übertragungseigenschaften. Es zeigte sich, dass sich die vom Telefonkanal hervorgerufenen 

Verschlechterungen teilweise anders auswirken, als dies für die Qualität direkter Mensch-zu-

Mensch-Kommunikation zu erwarten ist. Im Beitrag werden die Auswirkungen sowohl für 

die Planung von Telefonnetzen als auch für die Entwicklung von Sprachtechnologie 

diskutiert. 

 

Résumé 

Dans ce papier, nous évaluons en détail l’influence du canal de transmission téléphonique sur 

les performances de systèmes de reconnaissance automatique de la parole (RAP). Un 

simulateur temps-réel est décrit et mis en œuvre, permettant une génération flexible et 

contrôlée des différentes perturbations habituellement rencontrées dans les réseaux 

téléphoniques, aussi bien traditionnels (fixes) que mobiles et IP. Le modèle utilisé est basé sur 

un ensemble de paramètres d’entrée qui sont connus des concepteurs de réseaux ; il est donc 

applicable sans devoir mesurer explicitement les caractéristiques du réseau. Ce modèle peut 

donc être utilisé pour mesurer analytiquement l’impact des perturbations du réseau sur les 

performances de la RAP, pour produire des données d’entraînement correspondant à des 

caractéristiques de transmission déterminées, ou encore pour tester des systèmes vocaux 

interactifs dans des conditions de réseau réalistes et multiples. Dans ce papier, nous nous 
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focalisons avant tout sur le premier point. La robustesse de deux systèmes de RAP, intégrés 

dans une application de recherche d’informations basée sur un  dialogue vocal,  est évaluée en 

fonction de la dégradation (contrôlée) du canal de transmission. Les dégradations résultantes 

du système de RAP sont ensuite comparées à celles observées dans le cas de la 

communication homme-homme. Il est alors intéressant de noter que les conclusions 

dépendent fortement du type de perturbations (résultant souvent en différents 

comportements). Ces conclusions sont pertinentes aussi bien dans le cadre de la conception 

des réseaux que lors du développement de technologies vocales. 
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1. Introduction 
 
It is a well-known fact that the overall quality of spoken dialogue systems operated over 

telephone networks is largely affected by the quality of the transmission channel. On the one 

hand, the channel limits the performance of state-of-the-art speech recognition and speaker 

identification systems. This has an influence on the subsequent language processing stages, 

such as speech understanding and dialogue management. On the other hand, speech output – 

be it synthetically or naturally produced – is degraded on its way back to the human user. The 

quality degradation caused by the channel has to be taken into account both in the design of 

speech technology systems and components, as well as in the design of high-quality 

telecommunication networks. Speech technology providers try to produce systems which are 

robust or adaptive to noise and distortion, and telephone planning experts configure their 

networks according to transmission quality considerations. 

The impairments which can be found in modern telecommunication networks are very diverse 

in nature. Due to the diversification of transmission techniques and user interfaces, and the 

liberalization of the telecommunication market, interconnected networks (wireline, mobile, 

IP-based, etc.) are common even for short-distance calls. Traditional – analogue as well as 

digital – wireline networks introduce loss, linear frequency distortion and noise, as well as 

quantizing distortion resulting from PCM-like waveform coding techniques. In modern 

networks, the channel is further degraded by the effects of non-linear codecs and time-variant 

transmission characteristics (transmission errors, voice-activity detection, clipping, fading, 

comfort noise). The transmission channel is often terminated by user interfaces with limited 

or poor acoustic properties, like short mobile handsets or hands-free terminals. Such user 

interfaces can easily pick up background noise, which is a serious problem in mobile 

communication scenarios. 

Some of the impairments mentioned above have been investigated in detail with respect to 

their impact on speech recognizer performance, see e.g. the work performed by Euler and 

Zinke (1994), Lilly and Paliwal (1996), or Tucker et al. (1999). The investigations aim to 

develop recognition systems which are robust towards the specific impairment, e.g. by using 

preprocessing and adaptation techniques (Mokbel et al., 1993; Mokbel et al., 1997), or by 

training acoustic models with impaired speech data (e.g. Puel and André-Obrecht, 1997). 

Robust HMM architectures have also been proposed, e.g. for impairments which are to be 

encountered in GSM cellular networks (interruptions and impulsive noise) by Karray et al. 

(1998). Making use of these approaches, the recognition performance can be improved for the 
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addressed type of degradation, namely the one which was taken into account in the 

development of the system. 

Flexible systems, however, should be able to cope with a variety of transmission channels. 

Unfortunately, it cannot be guaranteed that the recognizer will perform similarly well for new 

types of degradations, or for combinations of them. Wyard (1993) argues that the joint effects 

of different impairments have to be taken into account if systems are to developed 

successfully. Using databases recorded in real networks, corpus-based approaches include 

combined degradations in the training material. However, they do not provide any control 

over the type and amount of impairments, and they require large databases to be recorded in 

different networks and under different environmental (ambient noise) conditions. These 

databases are expensive and time-consuming to set up (e.g. Chang, 2000; Das et al., 1999; 

Höge et al., 1997, for the SpeechDat project; Hennebert et al., 2000, for speaker recognition). 

Our ultimate aim is to investigate the overall performance of speech technology devices (here 

mainly speech recognition, but later also speaker recognition, dialogue management, and 

synthetic speech output) in relation to the transmission impairments. In order to be as flexible 

and economical as possible, the approach starts at an early stage of the system development. 

We develop a simulation model which generates all the relevant transmission channel 

degradations in a controlled way. The modeled degradations are those which are encountered 

in traditional and modern telecommunication networks. Several degradations can be 

implemented simultaneously; thus, it becomes possible to address the combined effects of 

different types of impairments (e.g. codecs operating on noisy speech) in a realistic way. Due 

to its real-time capability, the simulation model can be operated just as well in a one-way 

(transmission) or in a bi-directional (conversation) mode. 

In contrast to proposals made by Tarcisio et al. (1999) or Guiliani et al. (1999), we do not 

apply a detailed filtering technique which necessitates the measurement of impulse responses 

in real-life networks. Input parameters to our simulation model are planning values, which are 

commonly used in the planning process of telecommunication networks. Such values are 

generally available to the planners of telecommunication networks, without the need for 

specific measurements. Based on these planning values, the ASR impact can easily be 

investigated before the respective network has been set up. In this way, it is not only possible 

to adapt the ASR system to a class of transmission channels. In addition, telecommunication 

network planners obtain diagnostic information on the impact of specific characteristics of 

their networks and may use this opportunity to select suitable components. 



 -7- 

Speech communication quality between humans can ultimately only be assessed in realistic 

conversation scenarios, by performing auditory tests with human subjects. This is an 

expensive and time-consuming procedure, and therefore network planning experts make use 

of quality prediction models. Such models estimate speech communication quality on the 

basis of the above mentioned planning values. The best-known and most complete network 

planning model is the so-called E-model (Johannesson, 1997), now recommended by the ITU-

T in Rec. G.107 (2000). It predicts speech quality between humans in terms of a one-

dimensional quality index. In the future, however, telecommunication networks have to 

provide adequate quality in both human-to-human and human-machine communication. Thus, 

it is interesting to compare the quality index provided by the E-model (for human-to-human 

communication) with recognition performance (as one aspect of human-machine 

communication). This possibility is provided by using the simulation model, because identical 

transmission conditions can be guaranteed. The investigations will be presented in the second 

half of this paper. They will form a basis for quality network planning for ASR, and show 

limitations and future extension possibilities of network planning models like the E-model 

with respect to human-machine-communication. 

The architecture and implementation of the simulation system are described in Section 2. In 

the first study that we present here, this system has been applied to the assessment of the 

impact of modern telephone channels without time-variant distortions on ASR performance. 

Two prototype ASR systems, which are part of a telephone-based information server, have 

been used for this purpose (Section 3). The results are given in Section 4, and they are 

compared to the quality degradation which can be expected for human-to-human 

communication, using the E-model. A discussion and an outlook on potential extensions of 

the simulation model, as well as on transmission quality aspects for human-to-human as well 

as human-machine communication, conclude the paper (Section 5). 

Further applications of the simulation technique are planned: One consists of a controlled 

degradation of large databases of clean speech, which can be used for model training and 

adaptation. In this way, it is possible to multiply the amount of available data with respect to 

network characteristics which are expected to be representative for the later application 

situation. On the other hand, the availability of an on-line simulation tool makes it possible to 

assess spoken dialogue systems in realistic conversation scenarios, taking the transmission 

aspect into account. E.g., the influence of the ASR performance degradation on subsequent 

stages of speech understanding and dialogue management can be investigated, and 

appropriate adaptation techniques can be developed.  
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2. Telephone Transmission Simulation 
 
The use of simulation techniques, in general terms, is not new in the development of ASR 

systems. E.g., Tarcisio et al. (1999) simulate the transmission channel by filtering with a 

measured impulse response and adding recorded background noise. A similar technique has 

been proposed by Guiliani et al. (1999) for modeling hands-free terminals. When artificially 

degraded data was included in the training material, the ASR performance improved 

significantly. The simulation of time-variant channel behavior (mobile GSM channels, ATM 

channels, voice over IP) has also been proposed, and partly been used for assessing ASR 

performance (e.g. in the ETSI STQ AURORA DSR working group). 

One main point of criticism against such techniques is that simulation systems first have to be 

validated for a given purpose, before they can be profitably used for describing and enhancing 

speech technology devices (Wyard, 1993). Because the number of potential impairment 

scenarios in real-life networks is almost infinite, such a verification can never be performed in 

an exhaustive way. In evolving networks, the actual connection characteristics will differ 

from connection to connection. As a consequence, a verification attempt is always limited to a 

few specific scenarios which have been measured by chance. Our simulation model has been 

verified with an intrusive network measurement system, showing that the characteristics of 

the generated transmission paths correspond to the measured ones (Raake and Möller, 1999), 

as well as during the assessment of the transmission impact in auditory experiments (Möller, 

2000). By implementing a large number of perceptually diverse impairments (which are 

perhaps not diverse for a recognizer), we hope to overcome some of the limitations of simple 

filtering techniques and to reduce the concerns mentioned above. However, we admit that a 

more thorough validation of our modeling approach with respect to ASR in real-life network 

scenarios is necessary, e.g. by comparing the ASR performance in real-life networks to the 

results obtained with the transmission simulation. This is not an easy task, because of the lack 

of control over transmission characteristics in real-life networks. 

In principle, telephone network characteristics can be measured either off-line with specific 

test signals (so-called intrusive measurements, because specific test calls are set up), or on-

line, during normal system operation (so-called non-intrusive measurements). Depending on 

the type of measurement, different characteristics of the network can be quantified. The 

necessary measurement set-ups and algorithms are described by the International 

Telecommunication Union (ITU-T) in their P-Series Recommendations. All the 

measurements, however, require the presence of an operating network or its components. This 
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is often not the case in the system development phase. At that stage, however, planning values 

do exist which reflect the instrumentally measurable characteristics of the transmission and 

terminal equipment. We will take these planning values as input parameters for our 

transmission simulation model. 

[Figure 1] 

The ITU-T recommends a simplified network configuration together with its computational 

model for network planners, in ITU-T Rec. G.107 (2000). This configuration is reproduced in 

Figure 1. It considers most of the impairments resulting from terminal, switching and 

connection elements which can be found in modern – analogue as well as digital – telephone 

networks. Specific time-variant impairments of mobile and IP-based networks have not yet 

been taken into account. This is a limitation of the configuration depicted in Figure 1. Our 

simulation model is currently being extended in this respect, namely for packet loss in IP-

based networks, as well as for fading radio channels. 

Input parameters in this configuration are scalar planning values, which can be obtained by 

measuring frequency responses of the transmission paths, or noise power spectra, and by 

using defined frequency-weighting algorithms. The characteristics of the transmission paths 

(main speech transmission path, echo path, sidetone path) are expressed in terms of so-called 

loudness ratings, which reflect the perceived loudness of the path (for a definition of loudness 

ratings see ITU-T Rec. P.79, 1999), and the corresponding mean delays. Noises are described 

by their psophometrically weighted power levels (for circuit noise and noise floor) or by 

standard A-weighted power levels (for ambient noise). Waveform codecs and effects of A/D-

D/A conversion are expressed in terms of a signal-to-quantizing-noise ratio. The effects of 

non-linear codecs operating at medium or low bit-rates cannot easily be described by an 

instrumentally measurable parameter. For the purpose of network planning, they are covered 

by another scalar value, the so-called equipment impairment factor Ie. It describes the 

additional amount of degradation which is introduced by the coder-decoder pair, in 

comparison to other impairments. The exact description of all the planning values can be 

found in ITU-T Rec. G.107 (2000) and the corresponding ITU-T P-series Recommendations. 

For setting up a bi-directional communication situation, the network configuration depicted in 

Figure 1 must now be implemented in a simulation system, which is able to generate all the 

impairments that potentially lead to a degradation in transmission performance. Inputs to the 

simulation model are all planning parameters given in Figure 1. They have to be adjustable in 

a controlled way, and within reasonable limits that are expected to occur in real-life networks. 
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In order to be usable in a bi-directional conversation mode, both transmission paths have to be 

implemented with minimal computational overall delay. 

[Figure 2] 

According to these requirements, the structure which is given in Figure 2 has been 

implemented on DSP hardware. We chose a signal processing hardware which can be wired 

and programmed via software. Software manipulation makes the system more flexible (e.g. 

for quickly changing parameter settings), while the hardware allows the simulation to run in 

real or close-to-real time. The triangles represent programmable filters (which can be used as 

attenuators as well), the rectangles delay lines (for T, Ta and Tr), external codecs, or the 

channel bandpass filter. Low bit-rate codecs have been implemented on another DSP 

hardware, and they can be cascaded up to three times. Different types of user interfaces can be 

connected to the simulation system in a four-wire mode (in contrast to Figure 1, which 

assumes two-wire/four-wire transitions at both user interfaces). We used standard wireline 

telephone handsets, short mobile handsets, as well as hands-free terminals and headsets. The 

electro-acoustic sensitivities of the user interfaces (SLRset and RLRset) were measured using 

an artificial head and subsequently adjusted via SLR’ and RLR’ to a desired frequency shape 

which is defined by the ITU-T (a so-called intermediate reference system, see ITU-T Rec. 

P.48, 1989).  

The following degradations can be generated by the simulation model in a controlled way, 

using the corresponding planning values as input parameters (exact descriptions of all 

parameters are given e.g. in Möller, 2000; indices 1 and 2 in Figure 2 indicate the direction of 

the transmission): 

• Attenuation and frequency distortion of the main transmission path (expressed in terms of 

loudness ratings, namely the send loudness rating, SLR, and receive loudness rating, RLR) 

• Continuous white circuit noise, representing all the potentially distributed noise sources, 

both on the channel (Nc, narrow-band because it is filtered with the BP filter) and at the 

receive side (Nfor, wide-band restricted by the electro-acoustic coupling in the receiver 

handset) 

• Transmission channel bandwidth impact: BP with 300-3400 Hz according to ITU-T Rec. 

G.712, 1996 (so-called “normal” telephone bandwidth), or a wide-band characteristic 50-

7000 Hz according to ITU-T Rec. G.722 (1988) 

• Impact of different speech codecs: Several low bit-rate codecs standardized by the ITU-T, 

as well as a North American cellular codec and proprietary codecs are implemented. They 
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include logarithmic PCM (ITU-T Rec. G.711), ADPCM (G.726), a low-delay CELP coder 

(G.728), a conjugate-structure algebraic CELP coder (G.729), and a vector sum excited 

linear predictive coder (IS-54). In the E-model, codecs are described by the corresponding 

equipment impairment factor, Ie, as given in ITU-T Rec. G.113 (1996). Alternatively, a 

generator for quantizing noise resulting from waveform codecs (log. PCM) or D/A-A/D 

conversions was implemented. The corresponding degradation is expressed in terms of the 

signal-to-quantizing-noise ratio Q, or in quantizing distortion units (qdu) (a fixed relation 

is given in ITU-T Rec. G.107 (2000): Q = 37 - 15·log10(qdu)) 

• Ambient room noise of A-weighted power level Ps at the send side, and Pr at the receive 

side (Pr = Ps2 in Figure 2) 

• Pure overall delay (Ta) in ms 

• Talker echo with one-way delay T (in ms) and attenuation Le (the corresponding loudness 

rating TELR can be calculated by: TELR = SLR + RLR + Le) 

• Listener echo with round-trip delay Tr (in ms) and an attenuation with respect to the direct 

speech (corresponding loudness rating WEPL of the closed echo loop) 

• Sidetone with attenuation Lst (loudness rating for direct speech: STMR = SLRset + RLRset 

+ Lst – 1; loudness rating for ambient noise: LSTR = STMR + Ds) 

Comparing Figures 1 and 2, it can be seen that all the relevant transmission paths and all the 

impairments in the planning structure are covered by the simulation model. There is a small 

difference to real-life networks in the simulation of the echo path: Whereas the talker echo 

normally originates from a reflection at the far end and passes through two codecs, the 

simulation only takes one codec into account. This allowance was made to avoid instability, 

which otherwise can result from a closed loop formed by the two echo paths. The simulation 

is integrated in a test environment which consists of two test cabinets (e.g. for recording or 

carrying out conversational tests) and a control room. Background noise can be inserted in 

both test cabinets, so that realistic ambient noise scenarios can be set up. This means that the 

speaking style variation due to ambient noise (Lombard reflex) as well as due to bad 

transmission channels is guaranteed to be realistic. 

In the following study, the simulation has been used in a one-way transmission mode, 

replacing the second handset interface with a speech recognizer. For the pure transmission, it 

is not necessary to set up the whole system, and to make it run in real time. In that case it will 

be sufficient to implement only one transmission path (following the dashed line in Figure 2 

and omitting the overall delay Ta1), and to use a pure software solution. Depending on the 
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task, simplified solutions can easily be deduced from the full structure of Figure 2, and they 

can be implemented either using standard filter structures (as we did in our experiments) or 

specifically measured ones. When recording speech samples at the left bin of Figure 2, it is 

important to implement the sidetone path (Lst1) and in case of noticeable echo also the talker 

echo path (Le1), because the feedback they provide (of speech and background noise at the 

send side) might influence the speaking style – an effect which cannot be neglected in ASR. 

The real-time capability, on the other hand, is necessary for assessing conversational impacts 

in realistic dialogue situations, e.g. for a conversation with an adaptive spoken dialogue 

system. 

 
3. Recognizer and Test Set-Up 

The simulation model is now being used to assess the impact of several types of telephone 

degradation on the performance of speech recognizers (see very first results presented by 

Möller and Bourlard, 2000). Two recognizers are used for this purpose. Both are part of a 

spoken dialogue system which provides information on restaurants in the city of Martigny, 

Switzerland (Swiss-French version) or Bochum, Germany (German version). The spoken 

dialogue system is integrated into a larger server which enables voice and internet access, and 

which has been implemented under the Swiss CTI-funded project InfoVOX. 

It has to be noted that neither of the recognizers are ‘standardized’ systems. They reflect 

typical solutions used in spoken dialogue systems. This means that the outcome of our 

experiments may be representative for similar application scenarios. Whereas we can obtain a 

reasonable estimation of the relative performance in relation to the amount of transmission 

channel degradation, the absolute performance of both recognizers is not yet competitive. 

This is due to the fact that the whole system is still in the prototype stage and has not been 

optimized for the specific application scenario. In the future, we hope to be able to repeat the 

experiments with both an optimized recognizer and some kind of ‘standardized’ recognizer 

set-up. The AURORA framework, established by the European Telecommunications 

Standards Institute (ETSI), provides useful definitions in this respect. 

The Swiss-French recognizer (S) is a large-vocabulary continuous system for the Swiss-

French language. It makes use of a hybrid HMM/ANN architecture. ANN weights as well as 

HMM phone models and phone prior probabilities have been trained on the Swiss-French 

PolyPhone database (Chollet et al., 1996), using 4,293 prompted information service calls 

(2,407 female, 1,886 male speakers) collected over the Swiss telephone network. The 

recognizer’s dictionary was built from 255 initial Wizard-of-Oz (WoZ) dialogue 
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transcriptions on the restaurant information task. These dialogues have been carried out at 

IDIAP, Martigny, and EPFL, Lausanne, in the frame of the InfoVOX project. The same 

transcriptions were used to set up 2-gram and 3-gram language models. Log-RASTA feature 

coefficients (Hermansky, 1994) were used for the acoustic model, consisting of 12 MFCC 

coefficients, 12 derivatives, and the energy and energy derivatives. A 10th order LPC analysis 

and 17 critical band filters were used for the MFCC calculation. 

The German recognizer (G) is a partly commercially available small-vocabulary HMM 

recognizer for command and control applications. It can recognize connected words in a 

keyword-spotting mode. Acoustic models have been trained on speech recorded in a low-

noise office environment and band-limited to 4 kHz. The dictionary has been adapted from 

the respective Swiss-French version, and contains 395 German words of the restaurant 

domain, including proper place names (which have been transcribed manually). Due to 

commercial reasons, no detailed information on the architecture and on the acoustic features 

and models of the recognizer is available to the authors. As we do not want to investigate the 

features of the specific recognizer, this fact is tolerable for the given purpose. 

Because both systems are still in the prototype stage, test data is relatively restricted. We think 

that this is not a severe limitation, as we are only interested in the relative performance 

degradation, and not in absolute numbers. The Swiss-French system (S) was tested with 150 

test utterances which were collected from 10 speakers (6m, 4f) in a quiet library environment 

(Ps ~ 35 dB(A)). 15 utterances that were comparable in dialogue structure (though not 

identical) to the WoZ transcriptions were solicited from each subject. Each contained at least 

two keyword specifiers, which are used in the speech understanding module of the dialogue 

system. Speakers were asked to read the utterances aloud in a natural way. The German 

system (G) was tested using recordings of 10 speakers (5m, 5f) which were made in a low-

noise test cabinet (Ps ~ 35 dB(A)). Each speaker was asked to read the 395 German keywords 

of the recognizer’s vocabulary in a natural way. All of them were part of the restaurant task 

context and were being used in the speech understanding module. In both cases recordings 

were made via a traditionally shaped wireline telephone handset. 

[Table 1; Table 2] 

The test utterances were digitally recorded and then transmitted through the simulation model 

(cf. the dashed line in Figure 2). At the output of the simulator the degraded utterances were 

collected and then processed to the recognizer. All in all, 40 different settings of the 

simulation model were tested. The exact parameter settings are given in Table 1, which 
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indicates only the parameters differing from the default setting. The connections include 

different levels of narrow-band or wide-band circuit noise (No. 2-19), several codecs 

operating at bit-rates between 32 and 8 kbit/s (No. 20-26), signal-correlated quantizing noise 

modeled by means of a modulated noise reference unit at the position of the codec (MNRU, 

see ITU-T Rec. P.810, 1996, for details; No. 27-32), as well as combinations of non-linear 

codec distortions and circuit noise (No. 33-40). The other parameters of the simulation model, 

which are not addressed in the specific configuration, were set to their default values defined 

in ITU-T Rec. G.107 (2000), see Table 2. It has to be mentioned that the tested impairments 

solely reflect the listening-only situation, and for the sake of comparison, they did not include 

background noise. In realistic dialogue scenarios, however, conversational impairments can 

be tested as well. 

 
4. Recognition Results and Discussion 

In this chapter, we will take the viewpoint of a transmission network planner, who has to 

guarantee that the transmission system performs well for both human-to-human and human-

machine communication. A prerequisite for the former is an adequate speech quality, for the 

latter a good ASR performance. Thus, we will investigate the degradation in recognition 

performance due to the transmission channel, and compare it to the quality degradation which 

can be expected in human-to-human communication. This is a comparison between two 

unequal partners, which nevertheless have some similar underlying principles. 

Speech quality has been defined as the result of a perception and assessment process, in which 

the assessing subject establishes a relation between the perceived characteristics of the speech 

signal on the one hand, and the desired or expected characteristics on the other (see Jekosch, 

2000). Thus, speech quality is a subjective entity, and it is not completely determined by the 

acoustic signal reaching the listener’s ear. Intelligibility, i.e. the ability to recognize what is 

said, forms just one dimension of speech quality. It also has to be measured subjectively,  

using auditory experiments. The performance of a speech recognizer, in contrast, is not a 

subjective entity, but it can be measured instrumentally. As for speech quality, it also depends 

on the ‘background knowledge’, which is mainly included in the acoustic and language 

models of the recognizer. 

From a transmission point of view, comparing the unequal partners seems to be justified. Both 

are prerequisites for reasonable communication quality. Whereas speech quality is a direct, 

subjective quality measure, recognizer performance is only one quality element which 

contributes to the overall quality of the human-machine communication. Unfortunately, there 
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is no fixed relationship between recognition performance on the one hand, and human-

machine communication quality on the other. Approaches to set up such a relation have been 

proposed by Walker et al. (1997) with the PARADISE framework, but they are not universal 

and have to be determined for each application anew. For the planner of transmission systems, 

it is important that good speech quality as well as good recognition performance are provided 

by the system, because speech transmission channels are increasingly being used with both, 

human and ASR back-ends. If, however, the aim is to have a close look at the underlying 

recognition mechanisms, it would be better to compare speech intelligibility to ASR 

performance, see e.g. Lippmann (1997). Intelligibility, however, is no longer a planning 

aspect of modern telecommunication networks. 

In the following, recognition results are presented in relation to the amount of transmission 

channel degradation, e.g. the noise level, type of codec, etc. Recognizer performance is first 

calculated in terms of the percentage of correctly identified words (%corr), and the 

corresponding error rates (substitutions, insertions and deletions; %corr = 100% - %sub - 

%del), which are not reproduced here. Because we are only interested in the relative 

recognizer performance with respect to the performance without transmission degradation 

(topline), an adjustment to a normalized performance range [perfmin;perfmax] has subsequently 

been performed. We used a linear transformation for this purpose: 

( ) minminmax
%

% perfperfperf
topline

corr
corrn +−⋅=  (1) 

For the Swiss-French continuous recognizer (S), the calculation is carried out twice, both for 

all the vocabulary, as well as for just the keywords which are used in the speech 

understanding module. The alignment was performed according to the NIST evaluation 

scheme, using the SCLITE software (see NIST, 2001). The German recognizer (G) carries out 

a keyword-spotting, so the evaluation was performed uniquely on keywords. 

In order to estimate speech communication quality between humans, network planning 

experts use quality prediction models like the E-model (see Section 1). The E-model predicts 

speech quality in terms of a transmission rating factor R [0;100], which can be transformed 

via a non-linear S-shaped relationship into estimations of mean users’ quality judgments on a 

5-point ACR quality scale, the so-called mean opinion scores MOS [1;4.5]: 
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Based on the R values, classes of speech transmission quality are defined in ITU-T Rec. 

G.109 (1999), see Table 3. They indicate how the calculated R values have to be interpreted. 

[Table 3] 

E-model predictions are made for the network configuration which is depicted in Figure 1. 

Thus, it is possible to obtain speech communication quality estimates for all the tested 

transmission channels, based on the settings of the planning values which are used as an input 

to our simulation model. However, it has to be noted that both R and MOS values are only 

predictions, which do not necessarily correspond to user judgments in real conversation 

scenarios. Nevertheless, the validity of E-model predictions has been tested extensively (e.g. 

Möller, 2000; Möller and Raake, 2001), and it was found to be in relatively good agreement 

with auditory test data for most of the tested impairments. 

In Figures 3-8, the E-model speech quality predictions in terms of R and MOS are compared 

to the normalized recognition performance of both the Swiss-French and the German 

recognizer. Because the transformation law between R and MOS is non-linear (see Formula 

2), it is worth investigating both prediction outputs of the E-model. For R, the recognition rate 

has to be adjusted to a range of between perfmin = 0 and perfmax = 100, for MOS to a range of 

between perfmin = 1 and perfmax = 4.5. The topline parameter is defined as the recognition rate 

for the input speech material without any telephone channel transmission, collected at the left 

bin in Figure 2 (G: topline = 68.1%; S: topline = 57.4% for all words and 69.5% for keywords 

only). Because the default channel performance may be significantly lower than the topline 

performance, the normalized recognition performance curves do not necessarily reach the 

highest possible level (100 or 4.5). This fact can be clearly observed for the Swiss-French 

recognizer, where recognition performance drops by about 10 % for the default channel. The 

strict bandwidth limitation applied in the current simulation model (G.712 filter) seems to be 

responsible for the decrease, because this recognizer has been trained on a telephone database 

with very diverse transmission channels and probably diverse bandwidth limitations. Because 

only prototype versions of both recognizers were available at the time the experiments were 

carried out, this mismatch was foreseen. It seems to be significantly lower in the case of the 

German keyword recognizer. 

The test results have been separated for the different types of transmission impairments and 

are depicted in Figures 3 to 8. In each Figure the left diagram shows a comparison between 

the transmission rating R and the normalized recognition performance [0;100], the right 

diagram between MOS and the corresponding normalized performance [1;4.5]. Higher values 
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indicate better performances for both R and MOS. The discussion here can only show general 

tendencies in terms of the shape of the corresponding performance curves; a deeper analysis 

requires to define “acceptable” limits for recognition performance (which will depend on the 

system the recognizer is used in) and for speech quality (e.g. on the basis of Table 3). 

[Figure 3] 

Figure 3 shows the degradations due to narrow-band (300-3400 Hz) circuit noise Nc. Because 

two different settings of the noise floor Nfor were used, German recognition results (o) have 

to be compared to the solid E-model prediction, and Swiss-French results (x and diamonds) to 

the dash-dotted E-model prediction line. A considerable decrease in recognition performance 

occurs for Nc ��-55...-50 dBm0p1. Assuming an active speech level of -19dBm on the line, 

this corresponds to an SNR of 31...36 dB. The performance deterioration of the Swiss-French 

system occurs at lower Nc levels than in the German system. In comparison to the E-model 

predictions, the recognition performance decrease is much steeper than the R and MOS 

decrease. The agreement, however, is slightly better for MOS than for R. For the Swiss-

French system, the performance curves for all the words and keywords only are mainly 

parallel, except for very high noise levels where they coincide. For both recognizers, the 

optimum performance is not reached at the lowest noise level, but for Nc ~ -70...-60 dBm0p. 

This is due to the training material, which was probably recorded at similar noise levels. 

[Figure 4] 

When wide-band noise (Nfor) is added instead of channel-filtered noise, the agreement 

between recognition performance degradation and predicted speech quality degradation is 

relatively good, see Figure 4. The decrease in performance occurs at nearly the same noise 

level as was predicted by the E-model, though it is much steeper for high noise levels. Once 

again, the MOS predictions are closer to the recognition performance degradation than the 

transmission rating R. 

[Figure 5] 

Figure 5 shows the effect of signal-correlated noise, which has been generated by a modulated 

noise reference unit (MNRU) at the position of the codec. The abscissa parameter is the 

signal-to-noise ratio Q. Compared to the Swiss-French recognizer, the German system is 

slightly more robust, in that the recognition performance decrease occurs at lower SNR 

                                                           
1 The unit dBm0p is commonly used in network planning. It describes the absolute power level (dBm) a signal 
has at a virtual 0 dB reference point in the network, behind the SLR’ filter in Figure 2. The index p defines that 
the power level has to be weighted psyphometrically, e.g. using a psophometer as defined in ITU-T Rec. O.41. 
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values. The shape of both recognition performance curves is close to the E-model prediction 

for MOS, but the decrease occurs at lower SNR values. Thus, human-to-human 

communication seems to be more critical to this type of degradation. As for Nc, the optimum 

recognizer performance is not reached for the highest SNR, but for Q ~ 30 dB. This can 

clearly be observed for the Swiss-French system. It can be assumed that the nature of the 

training database (telephone call data) showed approximately the same level of signal-

correlated noise. 

[Figure 6] 

Non-linear codecs which are commonly used in modern telephone networks introduce 

different types of impairment, which are often neither comparable to correlated or 

uncorrelated noise nor to linear distortions. In Figure 6, recognition performance degradation 

and E-model predictions are compared for the following codecs: logarithmic PCM at 64 kbit/s 

(G.711), ADPCM at 32 kbit/s (G.726), low-delay CELP coding at 16 kbit/s (G.728), 

conjugate-structure algebraic CELP at 8 kbit/s (G.729), vector sum excited linear predictive 

coding at 7.95 kbit/s, as it is used in the first generation North-American TDMA cellular 

system (IS-54), as well as tandems of these codecs. It can be seen that there is no close 

agreement between estimated speech quality and recognition performance, neither for MOS 

nor for R predictions. The Swiss-French recognizer seems to be particularly sensitive to 

ADPCM (G.726) coding. This type of degradation is similar to the signal-correlated noise 

produced by the MNRU (Figure 5), where the same tendency has been observed. The German 

recognizer, on the other hand, is particularly insensitive to this codec, resulting in high 

recognition performances for the ADPCM codec in single as well as tandem operation. This 

recognizer also seems to be quite insensitive to codec tandeming in general, whereas the 

Swiss-French recognizer’s performance deteriorates. This deterioration is also predicted by 

the E-model, with respect to speech quality. Lilly and Paliwal (1996) found their systems to 

be insensitive to tandeming at high (32kbit/s) bitrates, but more sensitive to tandeming at low 

bitrates; this is just the opposite of what we observed for the Swiss-French system. Apart from 

the ADPCM codec, the rank order between codecs predicted by the E-model is generally 

maintained. The overall amount of degradation, on the other hand, is smaller than predicted 

for speech quality. This may be a consequence of using RASTA coefficients, which are 

expected to be relatively insensitive to a convolution-type degradation. 

[Figure 7; Figure 8] 
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In Figure 7 the effect of combined impairments is investigated for the German recognizer. In 

this study, channel-filtered noise (Nc) and the IS-54 cellular codec were used. A fundamental 

disagreement between E-model predictions (solid and dash-dotted lines) and recognition 

performance (dotted lines) can be observed: Whereas the E-model curves are nearly parallel 

(especially on the R-scale), there is an intersection for the recognition performance curves 

with and without codec. The same tendency is found for the Swiss-French recognizer, see 

Figure 8. For speech quality, the E-model assumes additivity of different types of impairments 

on the R-scale. Our result indicates that this additivity property might not be satisfied with 

respect to recognition performance. No explanation can be given for the surprisingly high 

German recognition rates at Nc = 50 dBm0p, when combined with the IS-54 codec. Neither 

the corresponding connection without codec nor the Swiss-French system show such high 

rates. 

 

5. Conclusions 

The comparison between recognition performance and E-model predictions for speech 

quality, which was made in Chapter 4, reveals similarities, but also differences between the 

two entities. On the one hand, the (normalized) amount of recognition performance 

degradation seems to be similar to what is predicted by the E-model, namely for uncorrelated 

white noise (narrow-band as well as wide-band) and for signal-correlated noise. The 

agreement is better for the MOS predictions than for the R predictions. However, for all these 

noises, the quality decrease is steeper than predicted by the E-model. This might be an 

indication of a threshold effect occurring in the recognizer: Recognition performance is 

acceptable up to a specific threshold of noise and drops quickly when the noise level exceeds 

this threshold. The exact level of the threshold has to be defined in terms of the recognition 

performance which is required for a specific application. Different values for such a minimum 

requirement have been mentioned by system developers. 

On the other hand, the correlation between predicted speech quality degradation and 

recognition performance degradation is less clear when low bit-rate codecs are considered. 

This may indicate that the E-model puts emphasis on quality dimensions like naturalness or 

sound quality, which are perhaps not so important for good recognition performance. More 

experimental data is needed to justify this hypothesis. Whereas the German recognizer seems 

to be relatively insensitive to codec-produced distortions, the Swiss-French system is 

particularly sensitive to ADPCM coding. The combination of IS-54 coding and circuit noise 

has been tested as an example for combined impairments. The resulting recognition 
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performance curves do not agree well with the E-model predictions. In particular, some 

“masking” between the two degradations seems to be present (the codec-originated 

degradation is masked by the noise degradation for higher noise levels), resulting in an 

intersection of the performance curves which cannot be observed for the E-model prediction 

curves. If this difference in behavior can be reproduced for other combinations of 

impairments, the whole principle underlying the E-model will be difficult to apply to 

predicting recognition performance. However, doubt has already been cast on this principle 

by auditory experiments combining background noise and codec distortions, see Möller 

(2000). 

So far, we have tested the influence of the transmission channel on two specific speech 

recognizers with different languages and test/training material. For noise (Nc, Nfor, and 

signal-correlated noise) both recognizers behave similarly. Nevertheless, the German 

recognizer seems to be more robust, in the sense that a deterioration in performance occurs at 

a higher noise level, or lower SNR. The behavior of the recognizers is different for low bit-

rate coded speech. It has to be emphasized that our experiments do not permit a quality 

comparison to be drawn between the two recognizers. Instead, our figures only have a relative 

significance with respect to the impairment-free case. Both recognizers have been assessed in 

an application-near scenario, but they cannot be considered to be optimized systems. In the 

future, we plan to repeat the experiments with some kind of “standardized” recognizer and 

training/test material. 

 

6. Outlook 

Our results have some implications, both for the development of speech technology devices 

(recognition, speech detection, speaker recognition, dialogue management), as well as for the 

planners of speech transmission networks. Speech recognizers may show weaknesses for 

certain types of transmission degradations, which are either typical for recognizers in general, 

or specific to a particular recognizer. The simulation model presented in Section 2 helps to 

identify these weaknesses and subsequently to enhance recognizer performance. E.g., specific 

training material can be produced for optimizing acoustic models. The recognition results for 

Nc and signal-correlated noise emphasize the need for training material which has 

characteristics similar to the later application scenario’s. Such training material can be 

produced very efficiently using the presented simulation model. 
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Speech technology aspects should also be considered by transmission planning experts. In 

particular, codec and combined degradations show that telephone networks, which are 

planned according to the needs of human-to-human communication, do not necessarily satisfy 

the requirements of modern speech technology devices. Thus, what is tolerable according to 

the E-model (which is the only planning tool for quality planning of telephone networks) is 

not always tolerated by speech recognizers. Fortunately, only in two of our experimental 

conditions (20 and 24) a remarkable decrease in performance was observed for the Swiss-

French recognizer where the corresponding E-model predictions were far less pessimistic. 

One could argue that this is only a problem for speech technology developers. However, 

telecommunication networks are not static, but evolve very quickly due to a changing 

technical and economic background. As a consequence, speech technology which has been 

adapted for specific, current transmission equipment is not necessarily robust towards new 

types of speech processing devices (e.g. new codecs). The current standardization processes 

for new codecs only includes auditory speech quality tests, but no tests with speech 

recognizers. 

Apart from assessing the transmission channel impact on speech recognition, other 

applications of the simulation system are expected. E.g., synthesized speech can be assessed 

under realistic transmission channel situations. Both speech recognizers as well as speech 

synthesis may be adapted to the current channel characteristics. The characteristics may be 

determined online, e.g. using in-service, non-intrusive measurement devices (specified in 

ITU-T Rec. P.561, 1996), and can then be mapped onto parameters which are identical to the 

ones used for the simulation model (for details on the mapping, see ITU-T Rec. P.562, 2000). 

By simply comparing the parameters describing the network characteristics, adequate acoustic 

models can be chosen for the speech recognizer, or Lombard speech can be generated by an 

adaptive speech synthesizer. The effect of the degraded recognition on dialogue flow can be 

assessed in realistic WoZ scenarios, by installing the simulation model between the speech 

recognizer and the test users’ interface. 

We are planning further extensions to the simulation model. One problem to face is wide-

band systems which will become more common for IP-based networks. Another problematic 

topic is time-variant channel characteristics, like random bit errors, bursty error patterns, or 

lost frames. This type of impairment is common in mobile as well as IP-based networks. Until 

now, no adequate method, apart from auditory tests, has been able to predict the 

corresponding effects on speech quality. Tests showed that the speech material and the time 

distribution of errors in the speech sample have an influence on the quality perceived by 
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humans – a fact which will similarly play a role in assessing speech recognizer performance. 

Another characteristic which has to be modeled more extensively is the user interface. With 

the exception of standard handset telephones, modern networks will be operated from hands-

free and headset terminals. Such terminals have a different sensitivity to the received speech 

material (e.g. because of room acoustic properties) as well as to ambient background noise, 

when compared to handsets. The effect of background noise is taken into account by our 

simulation model when databases are produced. Variations in speaking style (e.g. Lombard 

reflex) will be reflected in the speech material, as long as the recordings are made with 

realistic user interfaces. 
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Tables 

Table 1: Parameter settings used for the experiments. An ‘X’ in the last two columns indicates 

that the circuit condition has been included in the corresponding test. All the other 

parameters were adjusted to the values given in Table 2. 

Table 2: Default network planning parameter values for the simulation model. 

Table 3: Relationship between the transmission rating factor R and categories of speech 

transmission quality (see ITU-T Rec. G.109, 1999). 
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Table 1 

No. Nc Nfor Codec/MNRU E-model Note Test Condition 

 (dBm0p) (dBmp)  R MOS  Swiss German 

1 -100 -100 - 100 4.50 no noise/codec X X 
2 -100 -100 G.711 100 4.50 no noise X X 
3 -70 -100 G.711 100 4.50 low noise  X 
4 -60 -100 G.711 91.3 4.37 narrow-band noise  X 
5 -50 -100 G.711 76.7 3.89 narrow-band noise  X 
6 -40 -100 G.711 61.8 3.19 narrow-band noise  X 
7 -30 -100 G.711 46.9 2.41 narrow-band noise  X 
8 -70 -70 G.711 99.2 4.49 low noise  X 
9 -70 -64 G.711 93.2 4.41 default, see Table 2 X X 
10 -70 -60 G.711 88.1 4.29 wide-band noise  X 
11 -70 -50 G.711 73.7 3.77 wide-band noise  X 
12 -70 -40 G.711 58.8 3.04 wide-band noise  X 
13 -70 -30 G.711 43.9 2.26 wide-band noise  X 
14 -100 -64 G.711 94.1 4.43 low noise X  
15 -60 -64 G.711 88.3 4.29 narrow-band noise X  
16 -55 -64 G.711 82.9 4.13 narrow-band noise X  
17 -50 -64 G.711 76.3 3.88 narrow-band noise X  
18 -40 -64 G.711 61.8 3.19 narrow-band noise X  
19 -30 -64 G.711 46.8 2.41 narrow-band noise X  
20 -70 -64 G.726 86.2 4.23 ADPCM (32kbit/s) X X 
21 -70 -64 G.728 86.2 4.23 LD-CELP X X 
22 -70 -64 G.729 83.2 4.14 ACELP X X 
23 -70 -64 IS-54 73.2 3.74 NA mobile X X 
24 -70 -64 G.726*G.726 79.2 3.99 ADPCM tandem X X 
25 -70 -64 IS-54*IS-54 53.2 2.74 mobile tandem X X 
26 -70 -64 G.729*IS-54 63.2 3.26 mixed tandem X X 
27 -70 -64 MNRU, Q=30 dB 90.0 4.34 signal correlated noise X X 
28 -70 -64 MNRU, Q=20 dB 67.0 3.45 signal correlated noise X X 
29 -70 -64 MNRU, Q=15 dB 48.0 2.47 signal correlated noise X X 
30 -70 -64 MNRU, Q=10 dB 33.4 1.75 signal correlated noise X X 
31 -70 -64 MNRU, Q = 5 dB 23.7 1.37 signal correlated noise X X 
32 -70 -64 MNRU, Q = 0 dB 19.0 1.22 signal correlated noise X X 
33 -100 -100 IS-54 89.4 4.33 mobile codec w/o noise  X 
34 -70 -100 IS-54 83.9 4.16 mobile codec, low noise  X 
35 -60 -100 IS-54 71.3 3.66 mobile codec + noise  X 
36 -50 -100 IS-54 56.7 2.93 mobile codec + noise  X 
37 -40 -100 IS-54 41.8 2.15 mobile codec + noise  X 
38 -30 -100 IS-54 26.9 1.48 mobile codec + noise  X 
39 -55 -64 IS-54 62.9 3.25 mobile codec + noise X  
40 -40 -64 IS-54 41.8 2.15 mobile codec + noise X  
 



 -28- 

Table 2 

Parameter Abbr. Unit Default 

Send Loudness Rating SLR dB +8 

Receive Loudness Rating RLR dB +2 

Sidetone Masking Rating STMR dB 15 

Listener Sidetone Rating LSTR dB 18 

D-Value of Telephone, Send Side Ds – 3 

D-Value of Telephone Receive Side Dr – 3 

Talker Echo Loudness Rating TELR dB 65 

Weighted Echo Path Loss WEPL dB 110 

Mean One-Way Delay of the Echo Path T msec 0 

Round Trip Delay in a 4-Wire Loop Tr msec 0 

Absolute Delay in Echo-Free Connections Ta msec 0 

Number of Quantization Distortion Units qdu – 1 

Equipment Impairment Factor Ie – 0 

Circuit Noise Referred to 0 dBr-Point (narrow-band) Nc dBm0p −70 

Noise Floor at the Receive Side (wide-band) Nfor dBmp −64 

Room Noise at the Send Side Ps dB(A) 35 

Room Noise at the Receive Side Pr dB(A) 35 
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Table 3 

Transmission Rating Range Speech Transmission Quality Category 

100 ��R � 90 best 

90 < R ���� high 

80 < R ���� medium 

70 < R ���� low 

60 < R ���� poor 

R < 50 not recommended 
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Figures 

Figure 1: Reference telephone connection of the E-model for network planning (ITU-T Rec. 

G.107, 2000). 

Figure 2: Telephone line simulation model. 

Figure 3: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: narrow-band circuit noise, Nc. 

Figure 4: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: wide-band noise floor, Nfor. 

Figure 5: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: signal-to-quantizing-noise ratio, Q. 

Figure 6: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: Codec. 

Figure 7: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: Combination of codec and narrow-band circuit 

noise Nc. German recognizer, Nfor = -100 dBmp. 

Figure 8: Comparison of adjusted recognition rates and E-model prediction for speech 

communication quality. Variable parameter: Combination of codec and narrow-band circuit 

noise Nc. Swiss-French recognizer, Nfor = -64 dBmp. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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