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Digest

State of the art speech analysis and feature extraction techniques rely mainly on simplified
auditory models (e.g. the Mel scale or PLP features). These systems can model any sound
and are not particularly specialized in the modeling of speech. Hence, they fail to reflect some

typical speech characteristics such as co-articulation.

To bridge this gap, we propose to match some speech production paradigms with Automatic
Speech Processing technologies (ASP). This matching is based (1) on an analogy between the
Linear Prediction (LP) of speech and the acoustic modeling of lossless tubes, and (2) on the fact
that most of today’s state of the art speech production models use an acoustic tube as the inter-
face between the acoustic level and the speech production strategy level. In this framework, we
develop two innovative feature extraction methods: the Non-Uniform Topology (NUT) analysis,
and the “Relating Acoustics to a Linear Shape Model” (ReALiSM) method.

To establish the NUT analysis, we begin with generalizing the traditional LP lattice fil-
ter/lossless tube equivalence to the case of tubes discretized in unequal-length sections, such as
the non-uniform tube used for the Distinctive Regions and Modes (DRM) speech production

model.

We show that imposing unequal-lengths
to the tube sections is equivalent to con-

straining some reflection coefficients to stay

zero-valued in the corresponding lattice fil-

ter. This “Non Uniform Topology” constraint

allows to de-couple the number of degrees of
freedom (DoFs) of the model from the di- Fig.1: a NUT tube and the equivalent lattice filter.
mensions of its acoustic counterpart (given by the number of poles). To use this new model
as an analysis tool, we derive some relevant parametric estimators, based on the analytic mini-
mization of a well-defined error criterion. Finally, remarking that a fixed non-uniform topology
(e.g., the one of the DRM production model) may not be optimal for every part of speech, we
propose a method to optimize the repartition of the lengths/delays.

The assessment phase shows that NUT models permit a significant reduction in the number
of parameters necessary to describe a speech spectrum, while keeping a high level of spectral ac-
curacy. It is verified that they consistently produce a lower residual error than the unconstrained
filters with and equal number of DoFs. It is also verified that the NUT models are consistent
with spectral analysis since the topology optimization helps minimizing the spectral distortion
induced by the reduction of the number of DoFs. Moreover, the tube topologies themselves may

be used as an analysis tool.
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Alternately, to establish the ReALiSM method, we implement a projection of the solution
of inverse LP lattice filtering into the parameter space of Maeda’s linear vocal tract shape model,

through a series of linear and non-linear transformations:

Bi Lossy tubes LPC filtering, Klatt
s=Vuw Si = aid; or Linear Prediction or Electrical Analogy
SYNTHESIS LINEAR aB ACOUSTIC SYNTHE-
( COMBINATION q ( TRANSFORM q ( MODEL q ( -SIZER q
Articulatory . Acoustic
Parameters Profile shape Area function Parameters Speech
t LEAST J t INVERSE a8 J Si t ”\"\\é(E)FfJSSETIOCF J ks t ACOUSTIC J
SQUARES TRANSFORM MODEL ESTIMATOR INVERSION
1
— Tyy—1y,T — (Si\B; L —q. 1-kigy Preprocessing+
w=(VIV)T Vs di = (O‘z) ‘ Si = Sit1 I+kitr Itakura-Saito

The assessment of this system is realized in two phases. First, it is ver-
ified that information losses that occur within Least-Squares smoothing,
area functions resampling and reflection coefficients estimation still allow

) for recovery of synthetic template tract shapes. A set of synthetic vowels
d is produced (cardinal French vowels registered in the UPSID phonemic
database), and informal listening tests ensure that they are acceptable
despite the fixed length approximation and the lossless LPC synthesizer.
Subsequent inversion results show that the estimated shapes are close to

the original synthetic shapes.

IA/ In a second phase, the system is used to invert real speech recorded
from a French male speaker in a quiet environment. Several vowel se-
quences and VCV sequences are tested. For example, results correspond-
ing to the vowels /i A u/ are given on figure 2. The system locates cavities
at phonetically relevant places of articulation (e.g. front for /A/, back for
/i/). Lip apertures are also realistic, e.g., in an /A bi/ sequence the /b/

lul consonantal closure is detected. This system offers significant advantages

over existing acoustico-articulatory inversion schemes, such as real-time

Fig.2: Inversion of computation, modularity and links with Digital Signal Processing tech-

human vowels. niques.

Since Linear Prediction analysis is used as a feature extraction method in most of the main
ASP technologies (such as speech coding, speech/speaker recognition, speech synthesis, speech
enhancement etc.), the production-based analysis methods that we have developed create a new
gateway for the integration of speech production constraints in the main classical ASP
applications. To assess the benefits that these methods introduce, we propose multiple ways to
exploit the NUT and ReALiSM systems in various branches of the ASP domain. In particular,

we provide and discuss encouraging preliminary speech recognition results.



Version abrégée

Les techniques de 1’état de l'art en analyse de la parole et extraction de parametres caractéristiques
reposent principalement sur des modeles simplifiés de appareil auditif (par ex. avec I’échelle Mel ou les
parametres PLP). Ces sytémes peuvent modéliser n’importe quel son, et ne sont pas particulierement
spécialisés a la modélisation de la parole. Ainsi, ils échouent & refléter des caractéristiques spécifiques a

la parole, telles que la co-articulation.

Pour combler cette lacune, nous proposons d’intégrer certains paradigmes de production de la parole
aux technologies du Traitement Automatique de la Parole (TAP). Cette intégration est basée (1) sur une
analogie entre la Prédiction Linéaire (LP) et les modeles acoustiques de tubes sans pertes, et (2) sur le fait
que plusieurs des modeles de 1’état de I’art en production de parole emploient un tube comme interface
entre le niveau acoustique et celui de la stratégie de production. Dans ce cadre, nous développons deux
méthodes innovantes pour I’extraction de parametres caractéristiques: "analyse a topologie non-uniforme
(NUT en anglais), et une méthode reliant I’acoustique & un modele linéaire de forme de conduit vocal
(ReALiSM en anglais).

Pour établir 'analyse NUT, nous commencons par généraliser I’équivalence traditionnellement
établie entre la prédiction linéaire et les modeles de tubes sans pertes au cas ol les tubes sont discrétisés

en sections de longueurs inégales, comme dans le cas du modele de production a régions distinctives
(DRM).

Nous montrons que I'imposition de sections
inégales est équivalente a contraindre certains
des coefficients de réflection du filtre associé a
garder une valeur nulle. Cette contrainte de

“Topologie Non-Uniforme” permet de dé-coupler
le nombre de degrés de liberté (DdLs) du modele
de la dimension de sa contrepartie acoustique

Fig.1: Un tube NUT et le filtre en treillis équivalent.

(donnée par le nombre de pdles). Pour utiliser ce

nouveau modele en analyse, nous dérivons des estimateurs paramétriques adéquats, basés sur la minimi-
sation analytique d’un critere d’erreur bien défini. Enfin, en remarquant qu’une topologie non uniforme
fixe (telle que celle du modele DRM) peut ne pas étre optimale pour tous les constituants de la parole,

nous proposons une méthode pour optimiser la répartition des longueurs/des retards de filtrage.

La phase de validation montre que les modeles NUT permettent de réduire significativement le nombre
de parametres nécessaires a la description d’un spectre de parole, tout en gardant un haut degré de
précision. Il est vérifié qu’ils produisent de maniére consistante une erreur résiduelle moindre que les
filtres non contraints & nombre de DdLs égal. 1l est aussi vérifié que les modeles NUT sont en accord avec
I’analyse spectrale grace a 'optimisation de la topologie, qui permet de minimiser la distortion spectrale
relative a la réduction du nombre de DdLs. En outre, les topologies peuvent en elles-méme étre utilisées

comme un outil d’analyse.
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Par ailleurs, pour établir la méthode ReALiSM, nous réalisons une projection de la solution du
filtrage linéaire inverse vers l’espace des parametres du modele de conduit vocal de Maeda, a travers une
séries de transformations linéaires et non-linéaires:

Bi Lossy tubes LPC filtering, Klatt
s=Vuw Si = aid; or Linear Prediction or Electrical Analogy
SYNTHESIS LINEAR aB ACOUSTIC SYNTHE-
( ICOMBINATION q ( TRANSFORM q ( MODEL q ( -SIZER q
Articulatory X Acoustic
o, Y Profile shape Area function Parenaiero Speech
t LEAST J g INVERSE o J Si t N ouere J ki t ACOUSTIC
SQUARES TRANSFORM MODEL ESTIMATOR INVERSION
1
— T —1y,T — (Si\B; L —q. 1-kij1 Preprocessing+
w=(IV)TVs di = (5H)% 51 = Sttt Ttakura-Saito

La validation de ce systeme est réalisée en deux phases. Premierement, il
est vérifié que les pertes d’information relatives au lissage par moindres carrés,
au ré-échantillonnage de la fonction d’aire et a l’estimation des coefficients de
réflection permettent de retrouver des formes de conduit vocaux synthétiques

fil imposées. Pour cela, un ensemble de voyelles synthétiques est produit (voyelles
cardinales frangaises de la base UPSID), et des tests informels d’écoute assurent
qu’elles sont acceptables malgré ’approximation a longueur fixe et malgré le
synthétiseur LPC sans pertes. Les résultats consécutifs montrent que I'inversion

de ces voyelles produit des formes proches des formes synthétiques originales.

IA/

Dans une seconde phase, le systeme est utilisé pour inverser de la parole réelle
enregistrée dans un environnement, silencieux par un locuteur francais. Plusieurs
séquences de voyelles et de VCV sont testées. Par exemple, les résultats cor-
respondants aux voyelles /iAu/ sont donnés dans la figure 2. Le systéme lo-
calise les cavités au niveau de lieux d’articulation raisonnables d’un point de vue
phonétique (par ex., en avant pour le /A/, en arriere pour le /i/). Les ouver-
u/ tures aux levres sont également réalistes, par ex., dans une séquence /Abi/, la
fermeture consonnantique du /b/ est détectée. Ce systeéme offre des avantages sig-
nificatifs par rapport aux systemes d’inversion acoustico-articulatoire existants,

Fig.2:  Inversion de ., 6 16 calcul en temps réel, la modularité et des liens avec les techniques du

voyelles humaines. Traitement Numérique du Signal.

Comme l'analyse par Prédiction Linéaire est a la base de I’état de ’art des techniques d’extraction
de parametres utilisées par la plupart technologies du TAP (telles que le codage, la reconnaissance de
parole ou de locuteur, la synthese, le débruitage etc.), les méthodes d’analyse que nous proposons, basées
sur la production, créent une nouvelle passerelle pour I'intégration de contraintes de production
dans les principales applications du TAP. Pour évaluer les bénéfices que nos nouvelles méthodes
introduisent, nous proposons plusieurs manieres d’exploiter les systemes NUT et ReALiSM dans diverses
branches du TAP. En particulier, nous fournissons et discutons des résultats préliminaires encourageants
en reconnaissance de la parole.
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CHAPTER 1

Introduction

One of the beauties and curses of the Automatic Speech Processing techniques (ASP) is that
they aim at interfacing the rigid and deterministic world of computers with the purely human,
randomness-prone phenomenon of speech. While computers always give the same output when
processing the same data, the acoustic realization of a particular suite of phonemes can vary
across a noticeable scale without breaking the underlying message. The variability of speech

can be of two kinds:

e extrinsic variability, the one introduced by the environment where the speech signal is

collected;

e intrinsic variability, which arises from coarticulation phenomena, physiological differences

between speakers, dialogue context or emotional state of the speaker.

Dealing with these sources of variability is one of the main challenges that most ASP applications
have to face. As a matter of fact, these variabilities constitute sources of information that are
spurious to the pure phonetic content of speech, and that one does not necessarily want to
recognize (in the framework of speech recognition) or to transmit (in the framework of speech
coding). Conversely, one may wish to exploit these variabilities independently of the phonetic

content, e.g. in the framework of speaker recognition, speech synthesis or auditory scene analysis.

In today’s state of the art recognition and coding systems, the extrinsic variability is mainly
dealt with at the feature extraction level, through the use of additive and convolutional noise
cancellation techniques (such as spectral subtraction and blind deconvolution, e.g. cepstral mean
subtraction [Lockwood and Boudy, 1991; Hermansky and Morgan, 1994; Mokbel et al., 1997]).
But so far, less attention has been paid to the definition of features that would allow to isolate

the sources of intrinsic variability of speech.



2 Introduction

It is usually stated that articulatory-based features would be suitable candidates for a better
modeling of the intrinsic variability. As a matter of fact, they would allow a characterization
of speech in relation to its production process. The production process is considered more
stable (less intrinsically variable) than its acoustic counterpart. The review of the arguments
supporting these assertions will be the occasion to expose the general theoretic framework of

the present thesis (section 1.1).

The above statements have found support in a domain of human sciences known as Articu-
latory phonology, which will be introduced in section 1.1.1. This subject has boosted the study
of a class of problems known as Acoustico-Articulatory Inversion (AAI), aiming at recovering
articulatory gestures from the speech sound alone, and described in section 1.1.2. But we will
see that despite the many existing AAI methods, the exploitation of articulatory knowledge in

Automatic Speech Processing remains a challenge (section 1.1.3).

Rather than trying to recover accurate gestures from the sound of speech, we propose to
constrain the estimation of LPC features with respect to speech production constraints (sec-
tion 1.2). This idea is viewed as a means of allowing articulatory knowledge to penetrate the
analysis schemes used in state of the art ASP applications. The rationale leading to this idea is

presented in section 1.2.1, while the practical realization of it is introduced in section 1.2.2.

After the exposition of the general theoretic framework and of the thesis position, an overview

of this report will be given in section 1.3.

1.1 General theoretic framework

1.1.1 Articulatory phonology and the motor theory of speech perception

Starting from a cognitive point of view, the Haskins Laboratories have developed the Motor
Theory of Speech Perception [Liberman et al., 1967; Liberman and Mattingly, 1985], which
states that a listener uses articulatory a-priori knowledge, related to his/her ability to produce
speech gestures, in the course of speech or speaker recognition. This implies that human beings

use articulatory clues in the process of recognizing speech.

Browman and Goldstein [1987, 1990] have deepened this idea by establishing the Articulatory
Phonology theory. This theory states that speech is the product of overlapping dynamical
regimes, called gestures, which regulate the shape of the vocal tract. From that perspective,
the actual units of speech are gestures. Variability in the synchrony of gestural units during
the process of acoustic production of speech gives birth to the intrinsic variability known as

coarticulation.

Exploiting these conclusions into current speech recognition or modeling systems would mean

performing recognition or coding of more stable gestural/articulatory patterns rather than acous-
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tic features. As a consequence, recognition or coding performance may improve.

We will see in chapter 5 that the expected improvement has actually been observed in
several speech recognition experiments. But as a prerequisite to the application of articulatory
paradigms in recognition or coding, we will first see that the use of acoustic-to-articulatory

inversion is necessary to have access to some articulatory features.

1.1.2 Acoustico-articulatory inversion

While experimental articulatory speech processing systems can make use of recorded articula-
tory data, real-life systems have to use acoustico-articulatory inversion to have access to some
articulatory features. As a matter of fact, devices able to record articulatory data (X-ray devices
[Bothorel et al., 1986; Westbury, 1994], scanners [Story et al., 1996] or electro-magnetic articulo-
graphs [Cartsens and Carstens, 2001]) are expensive and invasive, and most of all, incompatible
with some potential everyday life applications. Hence, it is desirable to extract the articulatory
information from the speech waveform. In this case, the microphone stays the main speech input

device, and a reliable acoustic-to-articulatory inversion scheme has to be developed!.

The acoustic-to-articulatory mapping is a “one-to-many” inversion problem that has no
direct analytical solution. Indeed, given a vocal tract configuration and a defined excitation
signal, the speech signal at the output of the vocal tract is unique. But conversely, several vocal
tract configurations can produce the same acoustic signal [Atal et al., 1978; Bonder, 1983]. In
mathematical terms, the transformation between the articulatory space and the acoustic space
is not an homeomorphism: it is a surjection from the articulatory space to the acoustic space.
This problem has been largely studied in the past [Schroeder, 1967; Mermelstein, 1967; Atal
et al., 1978; Schroeter and Sondhi, 1994], and several approaches have attempted to overcome

or regularize the ill-posed nature of the problem. They can be classified into:

e Codebook approaches [Atal et al., 1978; Shirai and Honda, 1980; Charpentier, 1984;
Schroeter et al., 1990; Yu, 1993; Ouni and Laprie, 2000], where the articulatory space
is quantized and the corresponding acoustic features are synthesized to form a codebook
of acoustic/articulatory vector pairs. The inversion is implemented as a search in the

codebook, and coarticulation is modeled as constraints ruling the possible search paths.

e Neural network approaches [Atal and Rioul, 1989; Rahim and Goodyear, 1990; Soquet
et al., 1990; Laboissiere et al., 1991; Shirai and Kobayashi, 1991; Rahim et al., 1993], where

the parameters of some neural networks are trained to get a nonlinear continuous mapping

!Video-based inputs are also more and more used, allowing to perform “audio-visual” speech recognition
[Yehia et al., 1997; Luettin, 1999; Dupont and Luettin, 2000]. Methods for segmenting face pictures sometimes
specifically aim at extracting articulatory features such as the lip shape or the jaw opening, with the goal of using
these features in the recognition system. Aspects related to such video-based methods won’t be dealt with in the

present thesis.
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between the articulatory parameters and the acoustic features. In this case, coarticulation

is modeled through topological constraints imposed to the network.

¢ Constrained optimization approaches [Flanagan et al., 1980; Levinson and Schmidt,
1983; Shirai and Kobayashi, 1991; Prado et al., 1992], where classical iterative optimization
techniques are used to drive the parameters of an articulatory synthesis model in order
to minimize a distance between a template acoustic feature vector and a synthesized one.
Various constraints (continuous mapping functions, speed of articulatory movements, ...)

can be introduced in order to overcome the ill-posed nature of the inversion problem.

e Analytic approaches, where the correspondence between the acoustic features and the
articulatory parameters is explicitly defined by some analytic expressions. The analytic

approaches in themselves can be based on different methods:

— the variational method [Jospa et al., 1994; Ciocea and Schoentgen, 1998; Laprie and
Mathieu, 1998], where variational calculus is used to match acoustic trajectories with
articulatory trajectories. This method includes inherent coarticulation constraints in
the definition of an energy function to be minimized analytically;

— the Fourier expansion based approach [Mermelstein, 1967; Schroeder, 1967; Mokhtari,
1998; Mokhtari and Clermont, 2000], where the parameters of a Fourier expansion
of the vocal tract shape are shown to correspond, under certain conditions, with the

parameters of the speech formants;

— the Linear-Prediction coding (LPC) based approach, where the propagation of sound
waves through acoustic tubes (in our case, vocal tracts) is modeled by Auto-Regressive
(AR) modeling techniques [Wakita, 1972; Wakita and Gray Jr., 1975; Wakita, 1979;
Scaife, 1989]. In this method, well-known Digital Signal Processing estimation meth-
ods are used to recover articulatory parameters. This technique facilitates the in-
version problem because it has a clear mathematical formulation, but it does not
overcome completely the ill-posed nature of the problem because it produces sensi-
tive solutions. As for today, it doesn’t incorporate articulatory constraints that would

allow to produce more robust solutions.

e Stochastic modeling and statistical inference methods, which bring an attractive
solution to inverse problems since they allow to efficiently model many-to-one mappings
[Ghahramani, 1993]. As a matter of fact, the whole set of solutions to an inversion prob-
lem can be represented by some mixtures of conditional probability density functions.
Furthermore, some coarticulation constraints can be learned from the data (by performing
conditional probability measures) rather than being imposed from some a-priori phonetic
knowledge. The vogue for this class of solutions has only started recently. Different meth-

ods have been proposed, making use of:

— Mizture Density Networks [Richmond, 2001], which provide a multi-modal stochastic

mapping after training with a non-linear optimization algorithm;
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— miztures of dynamical systems (Kalman filters) [Ramsay, 1996; King and Wrench,
1999; Frankel and King, 2001], where speech is modeled as a random walk in a graph
connecting several dynamical regimes. Each separate dynamical system corresponds
to the articulatory realization of a particular phoneme. The training of this system

is performed via the EM algorithm;
— Hidden Markov Models (HMMs) with an articulatory state space [Deng and Sun, 1994;

Erler and Freeman, 1996; Richardson et al., 2000a], where coarticulation is implicitly

modeled by the topology imposed to the state transitions graph;

— Mazimum Likelihood Continuity Mapping [Hogden, 1996], which broadens the artic-
ulatory HMMs idea by proposing to infer the model topology in a non-supervised
way. This is made possible by imposing some constraints which rule the continuity
and the speed of motion from one articulatory state to the other. Based on these
constraints, the state space is automatically structured by a Maximum Likelihood
method rather than manually structured through a supervised design of the model’s
transition graph;

— Bayesian Networks [Stephenson et al., 2000], where some probabilistic articulatory
dependencies are explicitly included as hidden states in the transition graph, rather

than implicitly modeled in the network topology.

The four later methods are specifically designed for speech recognition applications: in
those cases, acoustico-articulatory inversion is a byproduct of the decoding phase and does

not suit any particular speech analysis interest.

1.1.3 The problem of using speech production knowledge in ASP

Apart from the stochastic methods, most of the exposed approaches give practical solutions to
the inversion problem but do not provide an accurate knowledge of the acoustico-articulatory
mapping topology that would go beyond the injective (“one-to-many”) nature of the mapping.
This is a severe problem, because without more knowledge it is impossible to relate statistics
in the acoustic domain to statistics in the articulatory domain. In particular, it is yet impos-
sible to provide articulatory statistics that would relate to an acoustic distance. Alternately,
the definition of a purely articulatory distance is not available?. These problems have pre-
vented a successful application of the evoked methods in the frameworks of speech coding and

speech/speaker recognition.

Alternately, the stochastic approaches may solve the problem, but they require a sufficient
amount of data to train the models. As a matter of fact, the acoustico-articulatory databases

which have been available so far, such as the Strasbourg X-ray Cineradiographic database [Both-

2The definition of a distance is necessary both in speech/speaker recognition, to match an observation against

a set of models, and in speech coding, to allow for an efficient quantization of the transmitted features.
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orel et al., 1986], the University of Wisconsin X-ray Micro-Beam database (UW-XRMB) [West-
bury, 1994] and the ATR X-ray film database [Munhall et al., 1995], have been designed for the
needs of phonetic studies: they usually don’t provide enough data for an accurate training of
a mapping model. Furthermore, they often require an extensive preliminary work of resource
management, including image or feature segmentation, hand-made or automatic labeling, and
listening assessment. The recent boost of the stochastic mapping approaches is indeed linked
with the appearance of more adequate databases, such as the MOCHA acoustico-articulatory
recordings [Wrench and Hardcastle, 2000].

From that point of view, the exploitation of speech production knowledge in the ASP frame-

work appears to be a still open research issue.

1.2 Position of the thesis

1.2.1 Owur manifesto

One workaround to the evoked problems is to try and constrain the extraction of acoustic fea-
tures on the basis of articulatory considerations, rather than trying to extract pure articulatory

features.

A similar reasoning has proven fruitful when including auditory paradigms in speech analy-
sis. The contemporary state of the art speech recognition/coding systems have indeed broadly
benefited from auditory notions such as the Mel scale [Rabiner and Juang, 1993], critical band
spectra and loudness curves [Hermansky, 1990; Hermansky and Morgan, 1994] or more elaborate
perceptual models [Painter and Spanias, 2000]. In the corresponding approaches, the purpose
was not to include the precise quantitative characteristics of somebody’s ear in the extraction
process, but rather to exploit some of the general human ear principles with the enhancement of
a particular application in mind. As a matter of fact, the Mel scale used for the Mel Frequency
Cepstral Coefficients (MFCCs) or the loudness curves used in RASTA analysis correspond only
roughly to human characteristics. Nevertheless, they help reducing bit-rates or enhancing speech

recognition performances.

In regard, few concluding proposals have been made concerning the use of speech production
paradigms for speech analysis. The Vocal Tract Length Normalization (VTLN) techniques [Zhan
and Waibel, 1997] seem to be the only relevant example.

Hence, the position we want to adopt for the present thesis is the following. Speech Pro-
duction knowledge could be used to reduce the number of degrees of freedom in the feature
extraction process, thus allowing for less intrinsic variability. We would like this speech pro-
duction knowledge to be directly represented into the speech features (or into the speech code),

rather than implicitly represented in the structure of a wider acoustico-articulatory model. In-
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dependently of their degree of anthropomorphic accuracy, these features may help improving

some end ASP applications.

The feature extraction systems most commonly used in nowadays’ state of the art ASP
systems are based either on non-parametric spectral analysis techniques, with “FFT-based”
parameters such as filterbank outputs or MFCCs, or on parametric spectral analysis tech-
niques, with Linear Prediction Coding techniques such as the Levinson recursion [Rabiner and
Juang, 1993] applied to the extraction of reflection, prediction or cepstral coefficients. Al-
ternately, it is well known that the LPC techniques have been designed in relation to crude
vocal tract models [Markel and Gray, 1976; Wakita, 1979]. We have also seen that the LPC-
based acoustico-articulatory inversion methods provide a clear mathematical formulation of the
acoustico-articulatory mapping. From that perspective, building upon the LPC-based acoustico-
articulatory inversion approaches and matching them with state of the art parametric feature

extraction techniques appears to be the best way to achieve our goal.

Throughout the present thesis, we will therefore stick to the theoretic framework of LPC
modeling through inverse filtering and use this framework as the gateway for the introduction

of more elaborate speech production constraints in state of the art speech analysis methods.

1.2.2 Practical realization of our objectives

Now, the question arises as how to include more speech production knowledge in the LPC
modeling framework. The answer we propose [Krstulovié, 2000a] stems from the following
remark : most of the speech production models known today use an area function as the interface

between the articulatory level and the acoustic modeling level (figure 1.1).

The area function describes the repartition of the cross-sectional areas of the modeled vocal
tract as a function of the position along the curvilinear tract axis. The prior role of the speech
production model is to constrain the shapes to correspond to some realistic speech production
characteristics, while the subsequent role of the acoustic model is to describe the filtering effects

of the shaped tubes in terms of acoustic features.

As a matter of fact, the LPC-based AAI methods allow to relate the area function to some
particular acoustic parameters deriving from the LPC analysis, and known as the reflection
coefficients. This relation uses a simple non-linear expression. By reflecting the shape constraints
arising from a speech production model in the LPC analysis process via the area function and

the reflection coefficients, our objective will be met.
Among the available speech production models, two classes of models, corresponding to

different production constraints, will be employed to put the proposed idea in practice:

e the models considering that the vocal tract is a series of tubes of unequal length, such as
the Distinctive Regions Model (DRM) [Mrayati et al., 1988; Krstulovi¢, 1996];
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il

Tube models : Fant [1973], Ishizaka-Flanagan [Flanagan et al., 1980],
DRM [Mrayati et al., 1988]

model

Area Function Speech

Factor-based models :
Maeda [1979)
ICP [Beautemps et al., 1996] @ /

Geometric models :
Coker & Fujimura

Figure 1.1: From speech production models to speech acoustics via the area function.
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e the models considering that the shape of the sagittal cut of the vocal tract can be modeled
as a linear combination of articulatory factors, such as in Maeda’s model [Maeda, 1979] or
in the related ICP model [Beautemps et al., 1996].

More precise definitions of these models, plus a more detailed explanation of the relationship
between the area functions, the reflection coefficients and the other LPC coefficients will be

given in the relevant chapters of this report.

1.3 Overview of the thesis

This introductory chapter described the theoretical framework and the position of our work. It
stated our objective, which consists in incorporating speech production constraints in the state
of the art speech analysis methods via the exploitation of a possible link between LPC modeling

and some well known speech production models.

Chapter 2 will actually expose the relationship between LPC analysis and vocal tracts seen
as lossless tubes. In this part, and for the need of our study, we will extend the traditional

analogy to the case where the tubes are made of a concatenation of unequal-length sections.

In chapter 3, we will expose how these non-uniform tube models (NUTSs) can be used as a
speech analysis tool. Experimental results will show that they allow to achieve a lower modeling
error than traditional LPC models with the same number of degrees of freedom. Hence, they
allow for a dimensionality reduction of the feature space, while retaining a good spectral modeling

accuracy.

Chapter 4 will expose the developments related to the exploitation of a factor-based produc-
tion model. Results will show that our LPC-based shape extraction method is able to capture
some of the human speech production characteristics, while being based on a fast analytic
method.

Chapter 5 will expose the benefits that the developed feature extraction methods can bring

to some selected ASP applications.

We will conclude by summarizing the contributions of the thesis.



10 Introduction

Chapter 2

Equivalence between LPC lattices and Lossless Tubes:
extension to the case of unequal length tubes/delays

Constrained Analytic Optimisation Non-Linear Projection
Chapter 3 Chapter 4
Non-Uniform Topology Models Linear Vocal Tract Shape Model

Constrained Speech Features

Chapter 5

Applications:
Speech Coding - Speech Recognition - Speech Enhancement

Figure 1.2: Organization of the thesis.



CHAPTER 2

Relating LPC to articulation:

the lossless tube model

It is traditionally considered that the LPC parameters extracted from the speech signal account
for the changes in the vocal tract configuration, while the corresponding residual signal plays
the role of the excitation produced by the vocal cords. Authors such as Wakita [1972, 1979],
Markel and Gray [1976] and Bonder [1983] have actually established a formal analogy between
LPC and the process of wave propagation into lossless discrete acoustic tube models, possibly

used as vocal tract models.

As such, LPC constitutes a crude speech production model. Indeed, the formal analogy
classically implies that the individual portions forming a discretized tube all have a unit length.
Equivalently, on the Digital Signal Processing (DSP) side, the model does not incorporate any
other a-priori knowledge about the signal being modeled than the all-pole nature of the corre-
sponding filter. On both sides, the model is unspecialized: it could be applied to any signal,

and is not bound to model additional a priori knowledge about speech production in particular.

On the other hand, some speech production models issued from the phonetic sciences, such
as the Distinctive Regions Model (DRM, [Mrayati et al., 1988; Krstulovi¢, 1996]), consider
that tubes with unequal-length sections are better suited to a realistic driving of the formant
trajectories. Alternately, taking up the LPC/tube analogy, there is no reason for the tube

representing the vocal tract to have as many degrees of freedom as the resulting spectral model.

The challenge taken up in the present chapter consists in representing some a priori knowledge
about unequally spaced tube interfaces in the equivalent LPC lattice filter. This will constitute
a particular kind of production constraint, and we will see that it allows to de-couple the

dimensionality of the production model from the dimensions of is spectral counterpart.

To begin with, the review of the reasoning linking LPC to lossless tubes will be the occasion

for us to extend the classical analogy to the case of tubes with unequal length sections.

11
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2.1 The DSP side of the problem: Linear Prediction Coding of

speech

The Linear Prediction Coding method considers that any signal may be modeled as the output of

an all-pole filter excited by a white noise or an impulse train source [Makhoul, 1975a] (figure 2.1).

Lt

Impulse train

or _ G
‘White noise Un H(Z) T AR)
Source, Filter, Speech output
flat spectrum harmonic spectral shaping

Figure 2.1: The Linear Prediction model of speech production.

The all-pole transfer function has the form:

H(z) = (2.1)

A(z) = Zakz*k; ap =1 (2.2)

A(z) is called the inverse filter, and p represents the number of poles it contains.

If H(z) is stable [Oppenheim and Schafer, 1989; Kunt, 1996], A(z) can be implemented in a
lattice form [Friedlander, 1982] (fig. 2.2). The lattice parameters are the reflection coefficients

ki, related to the prediction coefficients a; by the following recursion :

a%n) =kp; agm)zl
(2.3)
ag-m) = ag-m_l) + k:magzn:jl); 1<ji<m-1

This recursion allows to grow the degree of A(z) by addition of successive individual lattice cells

(growing with m =1,2,--- |p from ay = kg = 1).
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+
Yt F F F F ¥ F F i (7)
Speech ey ks ><d ks ks g ><7 Residual Error
71 Pz Pzt (+>—{Zl Pz Pzt Pzt (+>_._~ Et(7)

Figure 2.2: The inverse filter in its lattice form. y; is the speech input, €, (i) (resp. €, (7)) is the

residual forward (resp. backward) residual error after the ith filtering stage.

The lattice form has several advantages over the transverse form:

e it provides a simple test for the stability of the filter: H(z) is stable if Vi, |k;| < 1;

e the transfer function can be grown by a simple serial addition of independent lattice
filtering cells. Hence, the values of the reflection coefficients k; ;—o.... mm, are not modified
(m)

by the addition of k1. Conversely, in the transverse form, all the coefficients a; ;,_ ..

i1 -,m?

are modified if the order of the filter is grown to (m + 1);

e the reflection coefficients are known to have a good robustness to quantization errors
[Viswanathan and Makhoul, 1975]. Hence, they are used in state of the art coding systems
such as the Code Excited Linear Prediction (CELP) [Schroeder and Atal, 1985], used in
GSM telephony.

This model represents a somewhat unspecialized production model, in the sense that the only
assumption it makes about the represented signal is that it should correspond to the output of an
all-pole filtering process. In the DSP terminology, the signal is assimilated to an Auto-Regressive
(AR) process.

On the one hand, this assumption is well adapted to the modeling of the voiced parts of
speech, which have peaky spectra. With adequate estimators for the coefficients a; or k; and a
correct guess for the order of the model, LPC also achieves a reasonably good spectral fitting in

the non-voiced and nasalized parts of speech.

On the other hand, the underlying model is mainly based on mathematical formulations of
spectral or temporal fitting problems [Makhoul, 1975a,b; Markel and Gray, 1976] rather than on
a phenomenologic study of speech production. For instance, it describes speech with a number
of degrees of freedom corresponding to the LPC order, whereas speech production may result

from the action of a more limited number of articulators.
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2.1.1 Reducing the number of degrees of freedom of the LPC filter

associated with an M

Via the lattice form, the transfer function H(z) = 5~ = =t
Anm(2) Dito izt
order all-pole model can be built recursively by application of the following matrix recursion [Op-

penheim and Schafer, 1989; Haykin, 1996]:

Am+1(Z) 1 km+1
Bpti(2) | | Emi1zT 27

Az) ] 1
Bo() | —z1] .

where:

e A, (2) is the transfer function of an m'* order forward predictor, modeling the current

sample as a linear combination of (m — 1) past samples;

e B,,(2) is the transfer function of an m'* order backward predictor, modeling the m'* past

sample as a linear combination of (m — 1) future samples;

® ki1 is the reflection coefficient allowing to grow the predictors from order (m) to order
(m+1).

th

Suppose that from the m"" step of this recursion, a known number (n,,11 — 1) of the reflection

coefficients following k,, 1 are fixed to zero. The equivalent lattice flow chart will look like:

& (m) + 7 v e (m+1)
K1 k=0 k=0
E; (m) + 271 ‘ 271 — \ 2'71 etifnerl (m + 1)

(Nmt1 — 1) times

and the corresponding portion of the matrix recursion becomes:

1 0 1 0 1 km
. +1 (2.5)
0 2zt 0 2zt km+1z_1 27!

~

-~

(M1 — 1) times

which can be reduced to a single matrix:

[ ! Fimt1 ] (2.6)

km+1z_nm+l z_nm+l



2.1. The DSP side of the problem: Linear Prediction Coding of speech 15

This matrix describes an inverse filtering cell of the form:

e (m) + e (m+1)
karl
& (m) ) 27 e, (1)

Hence, if the recursion steps are re-numbered from 1 to the number of non-zero reflection coef-
ficients (i.e. if the steps with null reflection coefficients are ignored in the indexing), the whole

matrix recursion can be rewritten as:

Ana(2) | _ |1 Km-+1 Am(2) ]
Bpit1(2) | | kmy1z AL g B (2)
Alz) | [
Bo(x) | = | e ] (2.7)

where the delays z~"m+! can be of any order greater than or equal to 1 for each step of the

recursion.

2.1.2 Effects of the constraint in the DSP domain

Generally speaking, all the relations that describe the mathematics of standard lattice filters are
still valid in the framework of the constrained lattices described above [Krstulovi¢ and Bimbot,
2000]: they will only undergo formal modifications due to the imposition of zero-values at
particular places. For instance, the transfer function A,/(z) of the forward-error filter remains
a polynom in z !. Similarly, the backward predictor B,,(z) can be deduced from the forward

predictor A,,(z), using the expression:
Bp(z) = —2~ Zi=o™ A, (1/2) (2.8)
The growth of the forward predictor can thus still be formalized as:

Am+1(2) = Am(2) + kmi1Bm(1/2) (2.9)

Nevertheless, the inclusion of the a priori null values introduces interesting structural constraints

to the Linear Prediction model.

From equation (2.7), one can remark that the global LPC order of Aj(2) is equal to the sum
of the various delays n,, m—o,..,m—1. In the classical case, where n,, =1 Vm, the global order
is equal to the number of reflection coefficients. Conversely, in the constrained lattice case, the

global order can be greater than the number of unconstrained reflection coefficients.



16 Relating LPC to articulation: the lossless tube model

As a matter of fact, the reflection coefficients can be viewed as the intrinsic degrees of freedom
(DoF's) of the equivalent linear predictor. Constraining some reflection coefficients to stay zero-
valued amounts to reducing the intrinsic number of DoFs without changing the global order of
the predictor. Hence, the number of DoFs and the global order become independent values.
For instance, the transfer function H(z) (and the corresponding spectral model) can have more
poles than the number of parameters used to describe the pole locations. Alternately, for a fixed
specification of the number of DoFs, a wider portion of the signal’s past, corresponding to the

greater global order, can be used for the prediction.

Finally, the choice of the location of the zero-valued coefficients allows to represent some
structural constraints, pertaining to signal production from unequal-length tubes, in an other-

wise unspecialized model.

2.2 The physical side of the problem : acoustic filtering by loss-

less tubes

This section follows the path that leads from the description of the state of a fluid vibrating in
a tube to the computation of the tube’s transfer function in the z-transform domain. Unequal
length sections are considered instead of the traditional case of a uniform discretization of the

tubel.

2.2.1 Fluid dynamics basis of the problem

Basic system

The vocal tract is considered to be an acoustic tube discretized in M cylindrical sections of
various lengths (figure 2.3). These sections are numbered in crescent order from lips to glottis.
Their cross-sectional areas S;(t)i—1,.. v, are allowed to vary across time. Alternately, their

lengths l;, j=1,... A, remain fixed.

Simplifying assumptions

e The sound waves are plane fluid waves [Flanagan, 1972, pp.24-25] [Morse and Ingard, 1968,
p.467].

e The tube is rigid (no wall impedance is considered).

!The same kind of reflection processes are also met in geophysics [Robinson and Durrani, 1986], with layered

earth models instead of tubes, and where the earth layers may be unequally spaced.
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DSy (t) e 0So(t)  0Si(t)  0Se(t)

GLOTTIS LIPS
2 WV W a WVZaN
Glottal puff Speech

Figure 2.3: An acoustic tube with non-uniform lengths.

e The quantization of the tube introduces an acceptable error if the lengths of the sections
are kept short compared to a wavelength at the highest frequency of interest [Flanagan,

1972, p.25]:
c

l
e << Fma:v

where c is the speed of sound, /4, is the maximum acceptable length for the longest tube

section and Fj,,, is an upper bound for the considered acoustic spectrum.

e The energy losses due to the viscosity of the air and to the heat conduction are neglected.

Fluid state equation

Posing the problem in terms of fluid dynamics, we can consider that the volume velocity u,, (¢, d)

and the pressure p,,(t,d) in the m!” section derive from a potential ®,,(t,d) :

U (, d) = — S, 22nlld)
(2.10)
pm(t,d) = Paq)néigt’d)
where :
e ¢ is the time variable; e S,, is the cross-sectional area of the m!* section;
e d is the distance variable; e p is the density of the air.

The evolution of the fluid state is thereafter described by Webster’s equation [Bonder, 1983] :

PP (t,d) 1 0?P,(t,d)
_ = 2.11
od? c? ot? 0 ( )

where ¢ denotes the sound velocity.
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Equation solving

If we assume that the excitation source (the “glottis” of the tube) delivers a sinusoidal signal,

then the solution of the differential equation (2.11) is of the classic form:
By (t,d) = Aexp/®(t=4/) 4 B expi@t+d/c) (2.12)

where A and B are constants. If the excitation signal is made of a linear combination of sine
waves, which is the case for signals admitting a Fourier Series development, the corresponding
solution is a linear combination of the solutions for any individual sinusoidal component. In the
case of speech, the relations developed here do not loose their generality (in the limits of the
assumptions made at the beginning) since the non-sinusoidal excitation such as the wave coming

out of the vocal cords admits a development in Fourier series.
Injecting the solution (2.12) in (2.10), we have:

U (t, d) = 125mA oxpielt=d/e) _ joSnB gypi(t+d/c)
(2.13)
Pm(t,d) = pjwAexp?®(=4/9) 4 pjuy B explw(tHd/e)

In the above equation, we can remark that the volume velocity u,,(¢,d) is made of a forward-

traveling wave u,! (,d) and a backward-traveling wave u,, (¢, d) :

u%(t, d) = jwimA expjw(t—d/c)

(2.14)
(1, d) = L2502 expI14/0)
Hence, the solution (2.13) can be decomposed in the following way :
U (t, d) = uy, (t, d) — g, (t, d)
(2.15)

Pm(t d) = &= {uf,(t, d) + ug,(t,d)}

Additional continuity relations

At the connection between the section m and the section m — 1, the volume velocity and the

pressure must be continuous. We therefore have the additional relations:

U (t, dim) = Um—1(t, dp)
(2.16)

pm(t7 dm) = pmfl(ta dm)

d,, being the distance between the glottis and the connection of the sections m and m — 1 (see
figure 2.4).
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Figure 2.4: Volume velocities in the vocal tract modeled as a non-uniform lossless acoustic tube.

SECTION m
| No losses : |
/ uh(t—2d, + Al) = uh(t,dn)
l U (t+ 2L d + Al = u(t,di)
At dy + Al dy,

Figure 2.5: Conservation of the volume velocities in a given tube section.
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Alternately, since there is no loss in a particular section, we also have inside the limits of a

section :
wh (t, dp) = uj(t — 8L d,y, + Al)
(2.17)
U (£, dm) = up (t + &L, dy + Al)

Al being a time-independent arbitrary length taken inside the considered piece of tube and ¢
being the speed of sound (figure 2.5). This equation system tells us that the forward traveling
wavefront standing at the abscissa d,, at time ¢ was standing at the abscissa d,, + Al at an
earlier time ¢ — %. Similarly, the backward traveling wavefront which stands at the abscissa d,,
at time ¢ will reach the abscissa d,,, + Al at a later time ¢ + %. In particular, when starting

from the abscissa d,,, to reach the abscissa d,,,_1, we have:

tdm) = uh(t— 2k d, + Aly)
= up(t— Aimadm+1)
4 (2.18)
Uy (tdy) = up(t+ 2 d, + Aly,)
\ = upy(t+ lm s dmi1)

From (2.15) and (2.16), it results that :

=

wh (b= 5 digr) = g (E+ 52,

c !

ma1) = U;i_n_1(tadm) - Ur_n_1(tadm)

% {“;'r_z(t - Aém s A1) + up, (t+ Aim ) dm+1)} = S:Lc,l {“iz—l(ta dm) + u;lfl(t, dm)}
(2.19)
In the above system, the spatial dimension d,, is completely specified by the interface index m.
Furthermore, from (2.17), it is clear that the fluid state in a whole section can be deduced from
a value measured at the preceding junction. Hence, the relations (2.19) can be restricted to the

values at the junctions without a loss of generality, and the distance variables can be dropped:

(b= 2E) =, (4 2) =g (8) = w4 (8)

m—1

(2.20)

£ (ot = 2m) +up (o 2} = 2 {uk (1) + (1)

Since the speed of sound is constant, we can note At,, = % the time necessary for a wave
to travel through a tube of length Al,,, and we finally get :
(= Apt) = up (t+ Amt) = ug, 1 () = up, 4 (t)
(2.21)
U (t = Appt) + U (£ + Apt) = % {1 (8) +up_ (1)}
The above steps are very important, because they allow to express the spatio-temporal descrip-
tion of the whole fluid state in terms of time series measured at the tube junctions. Furthermore,
the junctions can be located by discrete time positions rather than discrete distances. These

considerations open the access to a discrete signal processing analysis framework.
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2.2.2 From fluids to discrete signals
“Folding” of the filtering process and appearance of the reflection coefficients

Defining some reflection coefficients as:

Sm_ m—1
= om T oml 2.22
m =g =5 — (2.22)

and applying to (2.21) when solving for v and u,,, we obtain:

U (t = Apt) = ﬁ {u:;_l(t) + Mmu;n—l(t)}
(2.23)

Up (8 + Bnt) = 7 {1 () + U1 (D)}

Application of the z-transform

To be able to apply the z-transform to (2.23), and thus definitely join the DSP world, we
need to define a unit length Al,,;; which is the greatest common divisor of the set of lengths
{Al,,,m =1,--- M}. This unit length allows to express the length of each individual section

as a non-dimensional integer number n,,, via the relation:

A,
B Alumt

(2.24)

Nm

Since the speed of sound is constant, the unit length relates to a time constant A,,;f such that:

Aty
Atunit

Tom (2.25)

If we sample the temporal signals with a frequency of Fs = Wc-t’ we can apply the z-transform

to (2.23), with z defined as z = e/@?Alunit/¢ = giw2Atunit and we obtain :

z 2" U (2) = l—lum [U£71(z) + MmU%q(z)]
(2.26)
U (2) = =4 (U1 (2) + Uy (2)]
ie.: -
Ui (2) = foi [U_y(2) + o Uy (2)]
(2.27)
Un(2) = o [m 27" Upp 1 (2) 4+ 277 Upp 1 (2)]
and, in matrix notation :
Upn(2) L=t | pmz=mm 27 || Uy (2)
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Development of the transfer function

If we assume that the section corresponding to the lips extremity is connected to a tube of
infinite section, the following boundary condition at the front end (or lips end) of our model is
verified :

571200 :>,u0:—1

Applying this condition, we can write:

U | _ s w0 | 25O ]t -
) ] = 2l ) K, [ pa(2) (U (2) - Uy (2)} (2.29)
with
] B PO | PSSR PO | ey
D, (2) fop 2"z m P12~ "l T mol prz~™M 2™ —z Mo
(2.30)
and .
1
K, = g - (2.31)

Neglecting the overall delay 2(3Z8%0m8) and the gain K,,, the true transfer function for the vol-

ume velocity when traveling from lips to glottis corresponds to D;!(z), and can be built recursively

by applying :

[ Dt (2) ] 1 Frm41 ] [ Dy, (2)

Dy (2) | iz g
Di) | _ |1
Dy (2) —z Mo

As a matter of fact, the recursion (2.32) is exactly the same as the recursion (2.7)

] (2.32)

found in the section 2.1.1 to grow the transfer function of a constrained lattice filter.

After the development of this recursion up to the order M (i.e., for a tube with M sections),
D, (2) will represent the transfer function describing the waveform U}, (2), entering the glottal
end, as a function of the waveform {Uy (z) — U, (2)} output at the lips end. The “synthesis
oriented” transfer function, describing the forward filtering action of the vocal tract, corresponds

simply to the inverse of D}, (2):

Hi(2) = (2.33)

Dy ()
Alternately, D,,(z) describes the waveform U,,(z), reflected towards the glottal end, as a

function of the waveform {U; (z) — U, (z)} output at the lips end. It is not of direct interest

in a speech synthesis framework, since the backward wave is usually considered to be absorbed
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by the lungs cavity. Nevertheless, this “backward” transfer function is useful from an analysis
point of view. We can show by mathematical induction from equation (2.30) that we have, for
any step m:

D, (z) = —z 2k=0" D (1/z) (2.34)

This means that the forward inverse filtering function D}’ (2) is always the time shifted reciprocal
of the backward inverse filtering function D, (z). Developing (2.32) for the order m + 1, and
applying (2.34), we obtain:

Db (2) = Dji(2) — pmi1 2 Zico ™ Dif(1/z)
(2.35)
D} (1/2) = —pmy1 25%=0 ™ D (z) + D(1/2)

If we change the variable z to 1/z in the first of the above formulae, we obtain the formula in the
second line. Both formulae describe equivalently the relationship between D} | (z) and D}, (z).
Starting from Dar (z) = 1, the recursive application of this relationship describes the growth of
the transfer function when one adds a section to the acoustic tube. This equation represents an

explicit development of the matricial recursion (2.32).

2.2.3 Lattice form of the acoustic filtering process in the general case

In the equation (2.32), each of the elementary matrix blocks of the form

1 m
fime1 (2.36)

Nm+1z_nm+l z_nm+l

corresponds to an inverse filtering cell of the form :

UE-H (t) (+) ub ()
< glottis P41 lips =
Uiy (E = Nmp1) 7 mm @ U, (t)

The inverse transfer function DX_/[(Z) can thus be built by connecting M of these cells serially,

starting with a first cell of the form:

ug (t) y(t)

< glottis -1 lips

’U/a(t — no) - o
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Alternately, the corresponding synthesis filter with a transfer function H(z) = 1/D7,(z) can be

represented by a series of cells of the form :

TR () ut (t)
< glottis lips =
U1 (E = Mmg1) =< Z77m u, (t)
with a first cell of the form:
ug (t) y(t)
& glottis -/ lips

Ua(t—no) - /o

2.2.4 Nature of the acoustic filtering process in the general case

We will now develop the relations (2.35) in order to study more precisely the nature and the

growth of the transverse form of the transfer function H(z) = D%(Z). This development will be
M

made in the traditional case of tubes with equal length sections, corresponding to unit delays,

and then in the more general case of tubes with unequal-length sections, corresponding to delays

of any order.

Transverse form in the classical case: the length of the sections is uniform

In this case, the transmission delay induced in every piece of tube is the same. It corresponds
tony =1 Vk,ie 2™ =z"' Vk in all the above equations. z is then defined as z = e/¥2Al/¢,

Al being the length of every cylindrical piece of tube.

From equation (2.30), it can be seen that D (z) is of the form:
m -
Di(z) =Y al™z (2.37)

1=0

which corresponds to a Finite Impulse Response (FIR) inverse filter.
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When used for acoustic filtering in the “synthesis direction” (from glottis to lips), it therefore

acts as an all-pole filter:

1 1
H(z) = - . (2.38)
Dyj(2) > ino az(m)z_l

Hence, the lossless tube model represents speech production as an all-pole filtering process applied

to the glottal waveform, or, equivalently, as a Linear Prediction process.

When adding a new cylindrical section to our tube, we have:

D y(2) =Y al™t)e (2.39)

which means that the degree of the polynomial inverse transfer function increases by one at each

tube growing step (see for instance the development operated in figure 2.6).

In this case, the relation between the transfer function coefficients a; and the reflection

coefficients y; can be formalized explicitly. The relation (2.35) gives:

m+1 m m
Z aEmH)z*i = Z aim)zﬂ. + Um—+1 z (Mt Z agm)zi (2.40)
=0 =0 =0
1.e.
m+1 m m
Z agmﬂ)z*" = Z aim)zfi + fm1 Z agm)zif(mﬂ) (2.41)
=0 =0 =0

or, changing the mute index i to (m + 1 — i) in the second sum of the right term:

m+1 ) m . mtl ;
Z aEm—l—l)ZiZ — Z agm)zfz —+ M1 Z a%n_zl_izﬂ (242)
=0 =0 i=1

Identifying the coefficients of the polynoms in 2% on each side of the equal sign, we obtain :

r a(()m+1) = a(()m)zl
o™ = o™ 4 pyray)
(2.43)
at™ = ™ 4 pgaal™
E—
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1
1
1 — 27t
11 P e,
-1 —2
L+ (popr — )z — p2z
-1 -2 -3
pezm A+ (g —popm)zTC — oz
—1 —2 -3
L 4 (popn — pn + pspe) 2 +  (—p2+ papn — papop) 2 — pzz
-1 _ -2 _ _ -3 _ —4
p3 2™+ (pe — papa + pspepn) 270 4+ (B — popn — pspe) 2 z
1 4 EEIE+M£§+§5 4 Itm._.EtthEIftumw.fthltuEti.EE + Iftwtmltuw_.waletm — o4
Lha N\H + EEE+§\M%E+EEE + E\E&EE+§§t«ﬁﬂ§§+§§§\EE + E\EE\N\%:W\:WE _ N\m

Figure 2.6: Growth of the transfer function of a tube with equal length sections. Note the regular increase in the polynomial

degrees.
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which can be formalized in a simple form as:

Tnitialization: al”) = 1 and a{” =0, Vk#0
( agm-i-l) -1
(2.44)
Recursion o™ = ™ — i aall, i 1<i<m
+1
\ agbn-pl )= Hm+1

These equations are identical to those linking the reflection coefficients k; to the prediction

coefficients a; in the classical definition of the lattice filter (see equation (2.3), page 12).

Transverse form in the more general case: the length of the sections is not uniform

In the more general case where the length of the sections is not uniform, we must deal with the
irregular delays and the =™ not being equal to z~'. To formalize the growth of the transfer
function in a readable way, we will borrow the notation of the summation indexes to the set

theory.

Let €, be the set of all possible indexes k for the discrete delays ny met in a particular
tube:

Q= {0,1,-+ ,m} (2.45)

Let I be a set containing one of the possible index combinations?:

I'cQn, (2.46)

We know from equation (2.30) that D;}(z) is a polynomial in z and we can now express its form

as :

D (z) = Z a%m)z* 2ker M (2.47)
rc{o,1,--m}

This transfer function has a special (constrained) form: it still corresponds to a FIR filter (still

all-pole when reverted for synthesis), but not all the polynomial degrees are represented.

T’ belongs to the set of all subsets of 2,,,. We can remark that this later set defines a o-algebra on the set of
delays nj. A measure on this set could be defined as )7, .. nx. We don’t know if such measure theory notions
have already been used in the framework of polynomial transfer functions analysis, but researchers interested in

measure theory might find here a lead to an alternate way of formalizing the problem.
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As before, we can observe the growth of the inverse transfer function. When adding a new

section, we have :

Di(e) = >0 af™Va Berns (2.48)
rc{o,1,-m+1}

We see here that when going from step (m) to step (m + 1), the polynomial degree increases by

—Nmy1, and that not all the degrees between 0 and — ), .- ny are guaranteed to be represented.

Coming back to the development of the a; < p; relation, the equation (2.35) now gives:

Y Al Teerme = 37 oMo Tner Mgy 2 S M 3T oM Tier e (2.49)
FCQm+1 FCQm FCQm

1.e.

> a{™ Y = Sper e = > a{™ 7~ Tker™ 4 g >, o™ pker M ikenn 1 T (2 50)
FCQm+1 FCQm FCQm

For a particular subset I' of our index set €2,,,, we can show the following:

Ekef‘ ng — Zkeﬂm+1 ng = an - Z ng  —Nm+1

ker k€Qm (2.51)

N~

= — 2 ke Mk ~m+1

T being the complementary set of T' so that [ UT = €,,. Equation (2.50) then becomes :

S oM Berme = ST My Beerm gy ST ol Sher et rni(2.59)
N I'CQm I'cQm

In this case, the analytical identification of the polynomial coefficients has to be performed on

a case-by-case basis.

This can be illustrated by an example. Let us consider a tube that has 8 sections of unequal
lengths with Al,,;s = L/30 (L being the total length of the full tube). The lengths of the sections
are distributed as follows from lips to glottis: Aly = 3Alypnit, All = 2Alynit, Alo = 4ALnt,
Alz = 6ALunit, Aly = 6ALynit, Als = 4Alynit, Alg = 2Alynit, Aly = 3Alynic>. In this case, the

recursion (2.32) expands as follows:

D¥(z) | |1 pr 1 pe | |1 2 1 f11 1
D (z) | | prz™® 273 pez"2 27?2 poz™4 274 piz72 27?2 —z73

3This model corresponds to the configuration of the Distinctive Regions and Modes phonetic model [Mrayati
et al., 1988; Krstulovié¢, 1996].
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When observing the growth of the inverse transfer function between, for instance, step 3 and
step 4 (see the equations developed in figure 2.7), and replacing the I" indexes by some integer
indexes corresponding to the place of the increasing negative powers of z, we obtain the following

set of equations:

a(()4) = ag3) =1
ag4) _ af’)

ag;) _ aga)

a§4) _ ag:a)

%(14) _ af’)

agl) = ag)%— ,u4a(73)

< = (2.54)

a$4) _ M4a§;3)
NORC I
I
=
O
B = el
aly = a

\

Therefore, in the general case, it is clear that if we try to operate a polynomial coefficients
identity starting from equation (2.35), the relation tying the prediction coefficients a; and the
reflection coefficients p; appears as a shifted version of the relation expressed in the equal-length

case.

2.3 Summary and key relations

Given some simplifying assumptions in the physical domain (section 2.2.1), the filtering process
operated by a lossless acoustic tube can be related to the LPC formalism. This relation is based
on the core idea that since the tube portions are lossless, the only information changes that are
relevant to the tube filtering action occur at the interfaces of the independent sections. Hence,
when using an adequate spatial discretization of the tube and a corresponding adequate time
sampling to measure the wave propagation, the spatio-temporal model becomes analogous to a

non-dimensional lattice model.
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Figure 2.7: Growth of the transfer function of a tube with non-uniform length sections. Note the disturbance in the growth

of the polynomial degrees, as compared to figure 2.6.
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In particular, the correspondence appears in the matricial recursion used to compute the

transfer function both in the physical domain and in the DSP domain, and which has the form:

Amt1(2) _ 1 km+1 Am(2) ]
B11(2) ] I kmy1z7 "+l zTmtl B, (2)
Ao(2) | 1
BEEz; | =] ] (2.55)

The reflection coefficients k; can be related to the prediction coefficients a; (and thus to a spectral
model) by accounting for some forced zero values and reorganizing the indexing in the classical

k; < a; relation given by :

4 a(()m) -1
$alm =l phpal Vs 1< <m -1 (2.56)

Another key relation is the one linking the parameters of the lattice representation to the physical

dimensions of the tube:
Siy1—5;

Sit1+ S;

This relation constitutes a bridge between the physical tube model and the LPC acoustic model,

kiy1 = (2.57)

via the parameters of the area function.

In this chapter, we have reviewed the LPC/non-uniform lossless tubes analogy from a gener-
ative point of view. Starting from some physical constraints imposed to a lossless tube, namely
the unequal length sections, we have studied a method to compute the tube’s transfer function,
which accounts for its acoustic filtering effects. The development of this method has used the

formalism of lattice filters, related to the general LPC framework.

Now, the question arises as how to use this parametric model as an analysis tool, i.e. how to

estimate the parameters of the constrained model from the sound of speech.
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CHAPTER 3

Speech analysis with Non-Uniform

Topology predictors

In the previous chapter, we have derived a class of parametric production models from the
introduction of unequal lengths in the lossless tube models. We have shown that this is equivalent
to using non-unit delays at a-priori locations in the lattice all-pole filtering framework. This idea
stemmed from the consideration that some well-known speech production models, such as the
DRM [Mrayati et al., 1988] model, use unequal lengths in the area functions that they represent.
In the present chapter, we will explore the use of the unequal-length models as an analysis tool

incorporating specific production constraints.

The idea of using unequal-length models for synthesis or analysis may not be new:

e Frank and Lacroix [1986], following Lacroix and Makai [1979], have proposed to use
unequal-length models for the copy-synthesis of speech signals, with the ultimate goal
of finding articulatory rules to drive the synthesis system. Unfortunately, information is
sparse as to the details of the analysis system they used and as to their establishment of
the LPC/tube equivalence;

e Chan and Leung [1991] have proposed to reduce the number of non-zero coefficients in
both the transverse form and the lattice form of the all-pole filters, in order to provide
vocoding at a lower bit-rate. Their work is developed in a signal processing framework,
which does not focus on a possible physical interpretation in terms of equivalent speech

production models;

e Viliméki [1995] has proposed to use unequal-length tubes that correspond to fractional
delay filters to model wind instruments. The fractional delays result from the introduction

of all-pass filters in the lattice structure. His developments are made in a synthesis only

33
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framework, where no focus is put on the estimation of the parameters of the model.

In this context, providing an updated mathematical development of the LPC/lossless tube equiv-
alence in the unequal length case, such as the development given in chapter 2, is still necessary
to have a deep understanding of all the physical and mathematical mechanisms involved in the
equivalence. Similarly, the analysis method and the experimental results that we propose in the
present chapter will provide new insights into the question of using some unequal length models

for speech analysis.

In the following, the constraint made up by the unequal lengths or unequal delays will
be referred to as the Non-Uniform Topology (NUT) of the lattice filter or of the equivalent
tube. In a first section, we will establish the equations allowing to estimate the parameters
of the NUT filters from the observation of an analyzed signal when the topology is given in
advance. Then, remarking that the deduction of the topology from the signal itself may lead to
a more accurate result, we will propose a method to find the optimal tube configuration while
minimizing the inverse filtering residual error. Finally, a series of experiments will help us to
observe the modifications of spectral modeling performance induced by the incorporation of the
NUT constraint into the classical inverse filtering framework. Results showing how the NUT

filters specialize in the modeling of various signals will be given and discussed.

3.1 Estimation of the reflection coefficients for a given topology

In the classical lattice formulation [Makhoul, 1977; Friedlander, 1982], the reflection coefficients
usually derive from the minimization of an error criterion based on a norm of the forward residual
€/, the backward residual €, or a combination of both. The norm can be the variance of the

forward /backward signal, or equivalently the mean square of those signals.

In the following, we will study the modifications that the NUT constraint brings to some
classical estimators. As a preliminary illustrative example, the complete development of an

estimator will be given in the case of Burg’s method [Burg, 1978].

3.1.1 Detailed development of a NUT estimator through Burg’s method

Definition of a Least Mean Square error criterion

Burg’s method is based on the analytic minimization of a modeling error criterion which corre-

sponds to the sum of the mean squared backward and forward residual errors:
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2 _ 1 al + 2 al _ 2
Er =59 2 W+ > [a @) (3.1)
t=p+1 t=p+1

At each step (p), the mean-square of the forward and backward errors is computed over a window
of length N — p, where p represents the number of unit delays met at the previous steps of the

lattice.

In the case of NUT lattices, the total delay is shifted due to the potential presence of some

non-unit delays. Let 3, denote the sum of all the delays n;, from order 0 to order p:

P
k=0

Introducing this sum in the above criterion, and replacing the index p by p+ 1 to simplify some

upcoming expressions, we get :

N N
Corn=23 3 e+’ + Y laer] (33)
t=5p+1 t=3p+1

The figure 3.1 illustrates the principle of this criterion.

Introducing the parameter ky; in view of the analytic minimization of £?(p+ 1), we obtain:

N N

D=3 3 [d0) k0] + 3 [an®) thade)] § 64
t=%p+1 t=x,+1

where n,, is the delay of the pth cell.

€ (2)

2
m F + thi21+l [6:(2)]
Analytic 2
K ks Minimization & (2)
—n —-n . ?
Zm0 FH—zm S Sits 6 (2)]

Figure 3.1: Burg’s error criterion.
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Minimization of the Mean Squared Error criterion

In the case of the classical Burg’s method, an optimal estimator for the coefficient &, is found at
each stage (p+1) of the lattice by the analytic minimization of the mean squared error £2(p+1).

In the case of the unequal delays, performing the analytic minimization is still possible:

08 (p +1)
Dy D (3.5)
N N 9 N 9
= 2 Y GO, kY d®] + X [, w)
t=%p+1 t=%,+1 t=%,+1

DDA ( W ()
N kpB+1 _ Zt72p+1 t t—np (36)

Et]ixpﬂ [et*(p)]Z + Ei\izpﬂ [Ef—np (p)]2

The equation (3.6) defines an optimal estimator for the coefficient k,1; at each step (p + 1)
of the lattice growth, given a particular lattice topology (or, equivalently, given a particular

repartition of delays). The application of this estimator is illustrated in the figure 3.2.

More generally, since this procedure is optimal for each step (p + 1) with respect to the
minimization of £2(p + 1), the recursive application of the estimator provides a globally optimal
solution {k;; i = 1--- M} when the whole topology is specified (i.e., when the respective delays

of the M cells are fixed in advance).

Yy ¥ & (1) + e (2)
. oy e (e (1)
1 12+ — i 5 — k
i SNl O, e )] ’
L | 7o Zm e (1) + e (2)

Figure 3.2: Application of Burg’s estimator.
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3.1.2 Other possible estimators

Other possible estimators are given in table 3.1. The forward estimator kg 41 (resp. the backward
estimator kg +1) corresponds to the analytic minimization of the mean square of €/ (resp. €, )
over the same window span as used for the Burg error criterion. From (3.6) and the linearity of

the differentiation, it is clear that kfﬂ is the harmonic mean of k;: 41 and klb) 41

Alternate ways of combining the forward and backward estimators lead to:

e the minimum method, where the estimator k;: 41 Or kg 1 having the least absolute value is

chosen for each cell;

e the Itakura-Saito estimator, which was originally based on a stochastic formulation [Itakura

and Saito, 1972] but can be interpreted as the geometric mean of k;: 41 and kg 1

h

e the generalized mean method, which considers the r*? mean of k;: 41 and kg 41

These NUT estimators differ from their classical unconstrained counterparts only in the lags

and boundaries used to measure the autocorrelations and intercorrelations of ef and et__np.

3.1.3 Interpretations of the NUT constraint in the analysis framework

Partial correlation measures

It can be demonstrated [Itakura and Saito, 1972; Friedlander, 1982] that the reflection coefficients
relate to some measure of the partial correlations which characterize the analyzed signal y;. As
a matter of fact, in the stochastic formulation of spectral analysis, the spectral density of y; is

the Fourier transform of a set of 7 autocorrelation coefficients :

rr = <yt ) yt77'> (37)

where (-,-) denotes the scalar product. The autocorrelation coefficients r, can be viewed as
a measure of the linear dependency between 1, and y;_,. They can be gathered in a correla-
tion matrix to solve directly for the prediction coefficients a;, as expressed by the Yule-Walker

equations [Friedlander, 1982].

But since y; results from a prediction process, the elements of the vector {y; t=1,--- ,N}
are not independent. Hence, the coefficients r, represent a multi-linear dependency with some

redundancy, and each r; depends in turn on {r.; 7 # 7}.
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Method Development paradigm Estimator for k£,
.. . 2 N + 2 b |MM<HM +1 mm_.CuV €n (p)
Forward Minimization of: £(p+1) = > ,Ls 1 [¢ (p+1)] kpy = - s
i MUmeut T%QL
e 2 N — 2 b -2y +1 € (D) €r_r,, (P)
Backward Minimization of: £(p+1) = > ,Ls 1 [e (p+1)] kpyr = . b
! MUNHM@i Tﬂwzw QL
Minimum Minimum absolute value of & 541 and kb kM, =5 - min A_ .I_ kD _v
) 2 N _ 2 23 e () e, (p)
Burg Min2 of: £2(p+1) = WAMUNM e+ +X0 e (p+1) W kKB . = v P :
2 t=S,+1 [e; ] t=%,+1 [e; ] b+l = ST T%@L +MUM<HME+HTM|§€LN
- +(p) e
Itakura-Saito Geometric mean of &/ D1 and \aw L1 kLS L 21 ¢ (P) iy (P)

P /\MUW Sp+l mu.c& .MUM,\HMNILTM\:@@LN

General Mean

th

; b
Generalized r* mean of &/ o1 and kp .

kpi1=95- WA_ i_ﬁ+_ sl vﬁ\ﬁ

Notes: e ¥, denotes the sum of all the delays n; from order 0 to order p: ¥, =

P
k=0 ng.

oS = mﬂmiw@tv = mﬁs@mtv. (It can be demonstrated that wmi and \%i always have the same sign [Makhoul, 1977].)

Table 3.1: Various estimators for the reflection coefficients of the inverse NUT lattice filters.
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Alternately, the notion of partial correlation defines a set of coefficients that get rid of this
redundancy. If € (7) (resp. €,_; (7)) denotes the residual of the forward (resp. backward) inverse
linear filtering of y; for the order 7, the partial correlation coefficients [Anderson, 1971] are

defined recursively by :

kry1 = (&' (1), e4(7))
\/<(€t+(7))2 ; (6?(7))2> <(e,§_1(r))2 : (65_1(7))2>

In this definition, the 2-norm is applied to compute the autocorrelations. In this case, when the

(3.8)

scalar products are developed over a given observation window, (3.8) corresponds to the Itakura-
Saito estimator. Similarly, if the r-norm is applied instead of the 2-norm, the partial correlation
th

measurement will correspond to the generalized r** mean estimators. Burg’s estimator also
relates to this expression, since the harmonic mean can be interpreted as an approximation' of

the geometric mean operated in the Itakura-Saito estimator [Makhoul, 1977].

Getting back to the interpretation of the NUT constraint, it is now clear that this constraint
allows to control more precisely the measurement of the linear dependencies which build the
signal 1;. Partial correlations are measured in a selective manner: the lags between ¢ and
€/_p, are ruled by the non-unit delays n,, and some of the possible lags between 0 and X, are
disregarded because they correspond to a combination of delays that is not authorized by the

production model.

The covariance-lattice formulation

To clarify a bit more the interpretation of the constraint setting a particular k, to zero, it may

be useful to compare it with a parameter quantization problem where no bits are allocated to k,.

It is common to treat the problems involving quantized reflection coefficients with a lattice
filter formulation, because this formulation avoids the use of some optimality assumptions in
the recursive computation of the parameters [Makhoul, 1977]. As a matter of fact, the covari-
ance measures which define the reflection coefficients can be expressed in terms of some linear

combinations of the signal covariance and of the linear prediction coefficients [Makhoul, 1977] :

Fo) = B{[¢ 0"} = Y2 aa (ki) (3.9)

k=0 =0
9 p P

Bip) = B{la @]’} = Y3 ala oo +1-kp+1-1i) (3.10)
k=0 =0

Ci(p) = E{et*(p) Et—l(p)} = Zza;’”ag”’q)(k,pﬂ—i) (3.11)

!This approximation reduces the computational load by avoiding to execute the square root.
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where :

e Fy(p) is the covariance of €, (p), By(p) the covariance of €; (p), C;(p) the inter-covariance

of ¢/ (p) and €—1(P);

e t is the discrete time; ¢/ (p) (vesp. €; (p)) is the forward (resp. backward) residual signal
after the pth cell; F{.} denotes the expectation operator;
° az(-p ) are the prediction coefficients at step (p), and are related to the reflection coefficients
by:
( agp) =1
») _ =1 (p-1), ; _
\ ¢ =a; +hkpa, ;'3 1<j<p-1 (3.12)
\ aigp) = pr

o ¢i(k,i) = E{y; kyi—i} is the covariance of the analyzed signal y; (and the subscript ¢ of
¢y is dropped to clarify the formulae);

In the stationary case, the covariance of the analyzed signal reduces to the autocorrelation :

¢(k,i) = R(i — k) = R(k — i) (3.13)

In the case of the classical Levinson algorithm [Rabiner and Juang, 1993], which does not

use a lattice formulation, the reflection coefficients are defined as [Makhoul, 1977] :

klz—szﬁR@+Lm)
e (1 —Fk2) Fy(p—1)

(3.14)

This formulation assumes the strict optimality of k,, since the denominator of (3.14) corresponds
to computing the correlation of the forward error in a recursive manner: errors made on the
successive k; propagate and end up with modifying significantly the measure F;(7). By extension,

these errors corrupt the analysis of the correlation of the input signal itself.
Conversely, in the lattice case, it is possible to define the reflection coefficients as:

i _ -2 Cy(p)
P Fy(p) + Bi_1(p)

_ —22 Y Oak a )R(p—i-l—i—k) (3.15)

f0 21 o“k “) R(i — k) + >0 >0 0% ap)R(k—z’)

In this formulation?, the true correlation R(i, k) is used at each step (p). Hence, if an error (or
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(p)

3

a “modification”) is made on the value of k,, it is transmitted to the subsequent values of a

after the application of (3.12). The value of k,1; is modified in the next step, but the original

measure of correlation of the input signal remains untouched.

The above formulation is known as the covariance-lattice or correlation-lattice formulation,
and is due to Makhoul [1977]. It can be shown that it is strictly equivalent to the application
of the classical direct lattice estimators (of the type of table 3.1 in the equal-length case), but

that it is computationally more efficient?.

Coming back to the interpretation of the NUT constraint, and interpreting it with the help

of the covariance-lattice formulation, we see that :

e imposing the NUT constraint in the framework of Levinson’s recursion violates a necessary

optimality assumption (this explains the contradiction observed in [Krstulovié¢, 1997]);

e in the lattice framework, setting £,,; = 0 amounts to having:

p p
SN aVdPRp+1—i—k) =0 (3.16)

(p)

which represents a constraint on the values of the prediction coefficients a;’, but does not

corrupt the observation of the correlation of the analyzed signal.

The lattice analysis framework, equivalent to the recursive application of (3.15) and (3.12),
authorizes to constrain some reflection coefficients k; to adopt an arbitrary constant value (e.g., 0)
without betraying the nature of the analyzed signal. The true effect of the NUT estimators is
therefore to re-distribute the correlation information (or covariance information) across the free

reflection coefficients, according to the topological constraints imposed by the production model.

%(3.15) corresponds to the Burg method in the stationary case, but alternate formulations can be defined in the
same manner for the forward, backward, Itakura-Saito and rth mean methods, as well as for the non-stationary

case where covariances do not reduce to correlations.
3This formulation is more efficient in terms of the number of elementary mathematical operations, but from

our programming experience, it involves more cost in terms of pointer arithmetics, and therefore yields slower

software implementations.
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3.1.4 Stability issues

We have shown in section 2.2.4 that the transfer functions corresponding to synthesis-oriented
acoustic tubes had always an all-pole form. This form describes Infinite Impulse Response (ITR)

filters, which do not have a guaranteed stability.

In the lattice formulation, the stability condition translates in a very simple condition on

the values of the reflection coefficients:
Vp, |kp| <1 (3.17)

As a matter of fact, having |ky;1| < 1 for a new cell at step (p + 1) guarantees that the global
energy of the backward and forward signal will decrease from step (p) to step (p + 1). Let us
verify this fact in the case of the NUT Burg estimator.

From the lattice form, we have:

e p+1) = &® + ke, () (3.18)
& +1) = 6,0 + ke (p)
Hence:
N N
1 2 _ 2
Ep+1) = 59 X @@+’ + Y o @+1)] (3.19)
t=%p+1 t=%p+1
1 N 9 N 2
= 33 Y [d@ ke, @] D 6, 0) + ke 0)]
t=%p+1 t=%p+1
N
= 20 Y [0+ 2 D, () + R, )]
2 t p+1¢¢ t—np p+1%t—n,p
t=%p+1
N
> [, 07+ 2hpae D) (0) + K e ()]
t=%p+1
N
= ()’ + 5S4k D> 6 D), ()
t=%p+1
N N
2 + ()12 — 2
2 | X ol Y [, )]
t=%p+1 t=%,+1

By application of the estimator (3.6) on one of the k,; in the second member of the bracketed
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addition, we obtain :

Ep+1) = &p)?
N
+2kpi1 Y € (P)ery, ()
t=%p+1

~ Sty 4 P, () USSR
e Gl et o O )

N
= (0 —kpr Y & (e, ()
t=Sp+1
= £(p)? = kpr1 (kp1 £(0)) (3.20)
= Ep+1) =1-k)E D) (3.21)

Hence, for each cell added at step (p + 1) with a reflection coefficient |k,;1| < 1, and following

an arbitrary repartition of delays n; j<p+1, the MSE is guaranteed to decrease.

Of all the estimators given in table 3.1, all but the forward and backward estimators guar-
antee that the reflection coefficients have an absolute value below 1, and that the resulting filter
will always be stable?. In those cases, the introduction of the NUT constraint does not disrupt
the stability of the filter. The same conclusion can be more simply drawn from the fact that
the NUT constraint corresponds to imposing |k;| = 0 for some 4, which obviously respects the
condition (3.17).

It is also interesting to remark that the reflection coefficients are defined in the physical

domain as:
kip1 = S =5 S _ 1z kin (3.22)
Sit1+Si Siv1 L4+ kip
Hence, the stability condition corresponds to keeping positive areas for each section of the
equivalent acoustic tube. The values ¢;11 = :_]Z:: are called Area Ratios, and are used

as speech features in some speech processing applications [Viswanathan and Makhoul, 1975;
Rabiner and Juang, 1993].

“For instance, in the Burg case:

-2 ab
>az+> b2

<1 & |-2ab] < a’®+0b

+2ab < d®+0
0 < a®>F2ab+b*

0 < (a£b)> QED
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3.2 Optimization of the filter topology

In the section 3.1, we have developed some new estimators for the reflection coefficients when
the topology of the tube or of the NUT filter is known in advance (figure 3.3; e.g., when
accounting for the topology of the DRM model [Krstulovié, 1998, 1999]). But various constraints,
or equivalently various shifts in the measures of the signal’s correlations, are likely to lead to
different modeling performances. It may therefore be more accurate to try and optimize the
topology than to impose a single a-priori NUT configuration. In the following, we propose to
implement the search for a best topology as an additional optimization layer [Krstulovi¢ and
Bimbot, 2000, 2001].

XXX

A-priori Topology

Reflection coefficients
Estimator

Signal frame Feature frame
(Reflection Coefficients)

Figure 3.3: NUT feature extraction with an a-priori topology.

3.2.1 Search for the best topology
Method

The specification of a number Ny of unequal-length sections to be distributed over a given number

N, of unit sections is equivalent to the consideration of (Ns; — 1) free interfaces out of (N, — 1)
N.—1

er) possible combinations® of

possible positions. Hence, a [Ng/N,] couple defines a set of (
delays.

To search for the best configuration in the specified set, all the lattice topologies respecting
the [N/ N, ] specification can be generated and systematically used to inverse-filter some training
data. The one bringing the least Mean Squared Error (MSE) over the considered training set
will be regarded as the best topology.

®The notation (;), sometimes noted CZ, corresponds to the notion of combination used in the standard
combinatorics theory. It counts the number of ways of combining n objects p by p, and is mathematically defined

by (:) =Cr = WLP)! , where ! is the factorial operation.
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The dependency of the optimal topology to the training set corresponds to a specialization

of the inverse filter to the data of interest. The training set can be defined in several ways:

1. it can correspond to a single frame of signal. In this case, the topology optimization layer

finds the best topology for each signal frame (figure 3.4);

2. it can correspond to a particular speech class, e.g. instances of a particular vowel or
utterances from a particular speaker. In this case, a class-specific topology will be found
(figure 3.5);

3. it can consist in a greater volume of speech, to examine if the resulting speech-specific
NUT topology can tell us something about the global properties of speech production by

lossless tubes.

Results pertaining to the application of these different modes of topology optimization will be

given in the upcoming sections.

Notation

In the following, the various NUT lattice configurations will be identified by strings starting
with the number of delay blocks N, expressed over the number of spanned unit delays IV, and
followed by the enumeration of their order. An example would be: [5/22:3x3,8,5.], which reads:
“a NUT lattice with 5 cells spanning 22 unit-delays, and which has three 3"¢ order delays, one

8" order delay and one 5 order delay.” The corresponding flow chart looks like :

Yt ¥ ¥

This model is equivalent to a lossless acoustic tube made of Ny = 5 unequal-length sections
distributed over N,, = 22 unit sections (3 x 3 +8 + 5 = 22):

This notation also relates to:

e the number of degrees of freedom (DoFs), or number of free reflection coefficients. Since
this number is equal to the number of interfaces delimiting the unequal-length sections, it

corresponds to (Ng — 1);
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=
|

Reflection
Coefficients
Estimator

Signal frame

1 ]

Reflection
Coefficients

Estimator

Figure 3.4:

Feature frame
(Reflection Coefficients)

NUT feature extraction with a frame-specific topology optimization.
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XXX
XX

Next Topology

XXX

All Topologies
respecting [Ns/N,]

NO
Reflection CUMULATED Performance Best
— Coeﬂicients (Mean Squared Error over Peflormanes ©
Estimator the whole training set)
Class-specific frames YES

(Training data)

XX X

Class-specific Topology

Reflection
— Coeflicients =
Estimator
Signal frame Feature frame

(Reflection Coefficients)

Figure 3.5: NUT feature extraction with a class-specific topology optimization.
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e the global LPC order of the NUT lattice, which is equal to the sum of the delays’ order
minus the order of the last delay (or sum of the sections’ lengths minus the length of the

last section).

In our example, the [5/22:3x3,8,5.] model corresponds to a lattice with 4 DoF's (4 unconstrained
reflection coefficients), but it leads to a 170 order all-pole model (22 — 5 = 17).

3.2.2 Computational considerations
Base algorithm

The enumeration of a [IV;/N,,] set of topologies corresponds to a tree-structured process (fig. 3.6),

where :

e cach new level corresponds to the addition of a new degree of freedom (a new mobile

interface);
e the tree has Ny levels;

e the values at the nodes identify the order of the newly added delay, or equivalently the
length of the newly added tube section;

e the valid branches correspond to the paths where the node values sum up to the global

number N, of unit delays.

ST >
N ey o
¢ & & &
Zm e 4 3 2 1 3 2 6 2 1 1 Leaves
L R | | [ P
N
Z M ny 1 2 3 4 1 2 3 1 2 1 The branches
O k1 a4 \\// \/ \/ - must sum up to 6
Z-m 1o 1 P 3 4
Root
Yt

Figure 3.6: The tree corresponding to a [3/6] specification.
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The global computational load depends both on the number of tested filters, imposed by the
[Ng/N,] specification, and on the length of the observation window used for the estimation of

the correlations. The complexity of the algorithm is of the order of:
Ny - (Ng —1) - eMe=D (3.23)

where N,, is the number of samples in the observation window, (Ns; — 1) is the number of free

reflection coefficients and (NN, — 1) is the total number of available positions. The exponential

Ny—1

N _1) possible filters.

term derives from the enumeration of the (

However, testing each of the resulting filters individually implies some redundancy: the
values of the reflection coefficients for lower indexes are not modified if the delays at higher
indexes are varied. This redundancy can be eliminated by organizing the estimation of the
reflection coefficients and of the residual errors in accordance with the depth-first browsing of
the tree: the results obtained for the lower levels can be re-used when following a particular
branch upwards. The complexity is then reduced to a value lying between N, - (N, —1)-e(Ne—1)
and N, - (Ny, —1) +e™=1) | In any case, it remains exponential with the number of unit
sections N,°. Note that if one wants to preserve the consistency between the filters and the

tube models, N, is in turn related to the sampling frequency of the analyzed signal.

A straightforward but naive way of realizing the depth-first browsing of the tree consists
in using a recursive function. This solution leads to a readable implementation but entails a
significant memory and function calls overhead. Instead, we have implemented a more efficient
but less straightforward solution which uses a single loop. As an example of the order of
magnitude of the “real world” computation time, the exhaustive search of 116’280 filters, for
a [8/22] specification with an observation window of 556 samples and using the NUT-Burg
estimator, takes an average time of 1.8 seconds on a PentiumlIII@1GHz. For a frame rate of

10ms, this corresponds to about 200 times real time.

To make the number of tested filters more tractable, further constraints can be imposed
to the optimization scheme, such as a minimum delay order. For instance, in the case of the
distribution of 7 degrees of freedom (delimiting 8 sections) on a 315 order LPC process (32 unit
sections), 2’629°575 filters have to be tested. Imposing the minimum delay to be no shorter than
2 units reduces this number to 245’157 filters.

®Chan and Leung [1991] propose to use a dynamic programming algorithm to optimize the values of the
unequal delays in a “sparse” lattice filter similar to the model studied here. They claim a complexity of the order
of N, - N2. However, we believe that their method constrains the position of the free reflection coefficients in
a sequential way which may not necessarily correspond to an optimal solution. We did not have a chance to

experiment their solution and to compare it to ours before the completion of the present thesis.
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Potential refinements

We have also investigated some ways of pruning the search tree by exploiting the dependency
of the filtering error on the levels of the tree. For instance, we have tried to determine some
relative upper bounds for the filtering performance of the branches starting at a given node.
This would have enabled us to sort and prune these branches without browsing them up to the
leaves level. In a first attempt, we have tried to set all the delays following a particular node
to 1, up to the global model order and without imposing further NUT constraints in the higher
levels of the lattice. Experiments proved this approach to be wrong: on a long test sentence,
19% of the frame-dependent topologies found with this pruning scheme were different from the

solution issued by an exhaustive search.

As a matter of fact, it seems that no a priori ranking can be determined between the perfor-
mances of filters with a different number of degrees of freedom. Because of the various layouts for
the correlation measures, the number of DoFs for non-optimal topologies is no more an absolute
indicator of the filtering performance : filters with less DoF's may perform better if their topology
happens to be more closely related to the structure of the analyzed signal. Alternately, when
probing the lower levels, trying to keep a fixed number of DoFs while respecting the specified

global order falls back on the exhaustive search.

Globally, the decoupling of the number of DoF's from the LPC order entails a dependency of
the filtering performance on the whole filter structure, rather than on the step-by-step accurate
estimation of the parameters of each individual cell. The values of each reflection coefficient at
each lattice stage become dependent on the whole filter topology. The topology represents a
“longitudinal” constraint, which ties the respective dynamic ranges of the reflection coefficients,
and hence determines globally the filter performance for a particular signal. Hence, to our
current knowledge, only the comparison of optimal configurations makes sense when ranking the

topologies that have an unequal number of degrees of freedom.

Practical issues

In the absence of a more detailed understanding of the explicit relationship between the filter
performance, the form of the topology and the dependency upon the analyzed signal, we have
preferred to try and find a practical solution to the speed-up of the exhaustive search, to be
able to carry on with the experiments rather than spending all our time on the development of

a pruning algorithm.

As a matter of fact, distributed computation can be used to speed up the computation.
When dealing with a whole database, our approach has consisted in spreading the feature ex-

traction process across the machines of a whole network”, using a load control mechanism to

"IDIAP and EPFL’s LTS lab networks, comprising SUN Ultras with 440/330/110MHz CPUs and Linux PCs
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avoid disturbing the usual network activity (i.e., launching processes on the “free” CPUs only,
and letting the processes of other users override our occupancy of a particular CPU). With
about 40 machines of various powers available at any time on average, the feature extraction
for the 1860 files composing the “Citation” tasks of the University of Wisconsin database (see
appendix A) took about 30 hours for a frame-by-frame topology optimization and feature ex-
traction (116’280 configurations per frame, corresponding to a [8/22] specification, with 25ms

observation windows).

We acknowledge that the resources needed to achieve this somewhat “reasonable” computa-
tion time are more compatible with a research framework than with everyday life applications.

However :

e a more efficient algorithm than plain exhaustive search may be found if a scheme for

pruning the search tree without disturbing the optimality proves to be realizable;

e with no more thought effort, faith can be placed in the growth of the computational
power of low-cost computers to make such heavy computational problems accessible to the

applicative domain;

e our distributed feature extraction scheme used potentially wasted CPU resources, since
it operated only during the time slots where target CPUs were idle; this touches another
trend of modern computing, that of distributed computing across the free resources of

whole networks rather than within a single machine.

After the review of these computational issues, which have cost us a significant amount of
time in terms of software design and development, let us review some experiments aiming at

assessing the accuracy of the NUT modeling scheme.

3.3 Experimental results

The experiments that we have realized aim at studying two different aspects of the NUT modeling
method :

1. the evolution of the inverse filtering and spectral modeling accuracy in relation with the
reduction of the number of degrees of freedom and in relation with the various possible

filter configurations;

2. the interpretation of the information represented in the unequal-length topologies, and

therefore the possibility to use the topologies as an analysis tool.

Results pertaining to these two topics will be given in the following sections.

with 1GHz and 500MHz CPUs.
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Figure 3.7: Comparison of Log Residual Errors for various NUT lattice models (for a frame
of vowel /a/ @ 24kHz). The original value of £2 is indicated above the bars. The light bars
correspond to the optimal NUT configurations, while the dark bars correspond to some a-priori

topologies.
3.3.1 Accuracy of the optimized NUT filters

Inverse filtering accuracy

Figure 3.7 shows the value of the relative mean squared residual error (MSE) after the application
of variously constrained filters on a frame of vowel /a/ (taken as the whole training set, for a
frame-based optimization of the topology). This frame is drawn from a test sentence spoken by
a French male speaker: “dans cette crémerie, on mange du fromage fort; je ne peuz atteindre

les bocauz de confiture” (anechoic chamber, 32kHz resampled to 24kHz).

From 24 unit sections, the number of degrees of freedom (DoFs) has been constrained to the
values 1, 2, 3, 7, 11 and 23 (no constraint). On the figure, for each of these DoF reductions, an
a-priori configuration (dark bars; two a-priori configurations in the case of 7 DoF's) is compared

with the configuration found by the optimization algorithm (light bars).

If we focus on the comparison between an a-priori configuration and an optimal one for a
particular number of DoF's, the figure shows that the optimization of the topology is able to
bring a reduction of the MSE for a given number of degrees of freedom. Various topologies will
give errors ranging from the optimal one to at least the error shown in the case of the chosen
a-priori cases. The optimization of the topology is therefore able to specialize the structure of

the filter to the analysis of a given signal, given a [Ny/N,] specification.

It is important to note that the comparison made in figure 3.7 does not prejudge of the relative

amplitude of the achievable MSE reduction: the large differences in performance observed in
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Figure 3.8: MSE decrease in function of the number of Degrees of Freedom, for various vowels.
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this figure for the white and dark bars simply indicates that the employed a-priori topologies
are particularly ill suited to the modeling of the analyzed test frame. The specialization, in
itself, consitutes the significant phenomenon. In this respect, the optimization of the topology

represents an essential step in the NUT modeling framework.

Now, focusing on the light bars only, the figure 3.7 also shows, as could be expected, that
the optimal error decreases monotonically with the increase in the number of preserved degrees
of freedom. Figure 3.8 gives some additional results in the case of other vowels drawn from
the same test sentence®. There, a comparison is operated between the optimal NUT lattices of
the type [n/24] and the unconstrained LPC lattices with an equivalent order. The figure shows
that the optimal NUT filters produce a lower residual error than the classical LPC with an equal
number of DoFs. The observed error reductions typically range from a few percent to about
45% in the case of the vowel /7/.

Two different phenomena play a role in these MSE variations. In the case of the uncon-
strained predictors, the decrease in the modeling accuracy is induced by the reduction of the
prediction time span (going with the reduction of the LPC order). In the case of the constrained
predictors, the decrease in MSE results from the reduction of the number of DoFs, while the
prediction time span stays the same. Hence, a [8/24] predictor still uses 23 speech samples
for its prediction, whereas a [8/8] predictor uses only 7 samples. Given that the two curves
necessarily join at their lower end ([24/24], equivalent to the LPC order 23), it appears that the
loss induced by the reduction of the time span is greater than the loss induced by the reduction
of the number of DoFs.

Figure 3.9 shows the decrease of the residual error for the reverse experiment, namely keeping
a fixed number of parameters and augmenting the global order of the NUT lattice. In this figure,
the flat portions of the curve represent the zones where only the last delay is increased in the
successive topologies found by the optimization. Changing the last delay does not change the
transfer function of the forward predictor: it affects the order of the backward predictor only.
The figure shows that the accuracy of the inverse filter can slightly augment with the global

order, while keeping a fixed number of parameters for the model description.

465——T—T—T—T—TTTT T 7T T T T T T T T

F(M) (dB)

455 P T S S T S T S S SR S S S S S R S
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Number of unit sections

Figure 3.9: Residual error decrease versus increase in the global order, for a frame of vowel /a/
@ 24kHz, when going from [13/13] to [13/32] (12" order LPC — 31°! order NUT).

8The Worldbet phonetic notation [Hieronymus, 1993; Lander, 1997] is used throughout the present report to

identify the vowels.
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Spectral modeling accuracy

By definition, the mean squared residual error is directly proportional to the spectral fitting
accuracy of a particular inverse filter [Makhoul, 1975a,b]. Hence, the NUT filters should be able

to capture spectral shapes within a certain margin of accuracy.

The figure 3.10 compares the spectral shapes obtained with Burg estimators? in three dif-
ferent cases corresponding to a 237 order LPC: a classical [24/24] model, an optimized [3/24]
NUT lattice and an a-priori [8/24] NUT configuration. The figure adds to the idea that the

optimization of the topology is essential to the framework of NUT modeling.

Spectrum for a frame of vowel /a/
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Spectrum magnitude (dB)
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Frequency (Hz)

continuous line ( ): 2374 order LPC — [24/24:24x1.];
bold line ( ): optimal NUT lattice w/ 8DoFs — [8/24:1,1,1,5,4,4,5,3.];
dash-dot (— - —): a-priori NUT configuration w/ 8DoFs — [8/24:8x3.].

Figure 3.10: Spectral accuracy of the optimized vs. unoptimized lattice configurations.

As a matter of fact, while the optimized NUT is able to capture the speech formants with a
reasonable accuracy, the a-priori [8/24:8x3.] model is totally unadapted to the modeling of the
analyzed frame. This particular a-priori topology is only able to model the spectra showing a
periodicity of one third the sampling frequency since, in this case, we have:

3

H(z) = H(z™%) = H(e /%)

Fs
3

the range 0 < f < Fs. (Hence the repetition, around 8000Hz, of the peak occurring close

which is equivalent to sampling the signal at and which brings periodicity (or aliasing) in

to frequency 0 in figure 3.10.) Since the spectrum of the vowel /a/ does not feature such a

°From the reflection coefficients, the transfer function H(z) can be deduced via the relation (2.3). The eval-
uation of H(z) along the upper half of the unit circle, for the complex variable z, gives the smoothed spectrum

[Makhoul, 1975b]. Only the spectral magnitudes are considered here.
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characteristic periodicity, the modeling error of [8/24:8x3.] is necessarily huge for this frame.
The same type of phenomenon will occur with all the structures where the greatest common
divisor of the lengths of the sections is not 1. For instance, this is the case with the a-priori

topologies which have been used in figure 3.7, and which show large modeling errors.

The figure 3.11 shows the spectral fitting performance of the optimal [8/24] NUT lattices
for various other vowels. It is clear that the [8/24] NUT optimized for each frame is able to
retain a good spectral modeling accuracy while dividing the number of necessary parameters

by 3: 7 parameters can be used to drive 23 poles, given an adequate NUT configuration.

These results confirm that with NUT lattices, part of the signal coding is transfered from the
coefficient values to the filter structure. A coding scheme exploiting this model would replace
p conventional reflection coefficients (or log area ratios [Viswanathan and Makhoul, 1975]) with
a lower number of coefficients distributed over a p** global order, plus a codeword to index the
optimal filter topology. The set of topologies searched during the optimization could be pruned
after a statistical study on databases containing many instances of the signals of interest (e.g.,
speech), in order to remove the unused filter structures. By eliminating the unused or seldom
used topologies from the search, the optimization would be made faster, and the number of bits
necessary to index the topologies would be reduced. The quality compromise found by adjusting
all these specifications, in addition to an efficient coefficient quantization method, may allow to

reach a better coding quality at a lower bit rate than the unspecialized LPC models.

NUT filters appear to be a valid spectral analysis model. But further experiments are needed
to determine whether the topologies reached by the second optimization layer are also useful from

an analysis point of view, i.e. if they are informative about some actual acoustic phenomena.

3.3.2 Optimal configurations and dependency upon the signal

Topologies versus synthetic signals

To determine the nature of the information captured by the NUT topologies, the optimization
of the topologies has been first applied to individual frames of non-speech test signals sampled
at 32kHz and spanning 25 milliseconds (800 samples). With 100 different frames of Gaussian
white noise, a [8/32] optimization yielded 100 different topologies showing no special pattern.
Conversely, frames of sine waves with random phase values consistently gave the topologies
shown on table 3.2. These results are of course independent of the signal’s amplitude (various
amplitudes corresponding roughly to the standard deviation of speech have nevertheless been
checked).
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Figure 3.11: Constrained vs. unconstrained spectra for various vowels.
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Sine wave | Best configuration
1000 Hz [8/32:16,1,1,1,1,1,1,10.]
2000 Hz [8/32:8,1,1,1,1,1,1,18.]
4000 Hz [8/32:4,1,1,1,1,1,1,22 ]
8000 Hz [8/32:1,1,1,1,1,1,1,26.]

Table 3.2: Best configurations for various sine waves with a [8/32] NUT filter.

These results confirm that the topology optimization layer is able to capture the lags with

maximum correlation from the signal, and to reflect them in the structure of the NUT lattice.

Topologies versus frames of speech signals

The figure 3.12 shows the results of a [8/24] NUT analysis applied to a a French test sentence
(“dans cette crémerie”) spoken by a male speaker, recorded in an anechoic chamber with a
32kHz sampling frequency and resampled to 24kHz prior to the NUT analysis. The original
waveform (3.12.a) is aligned with a diagram showing the tube interfaces where the free reflection
coefficients occur (3.12.b). The evolution of the values of the free reflection coefficients is also
shown (3.12.c).

From the diagram 3.12.b, it is clear that the topologies relate to the various waveform regimes
characterizing the different phonemes of the utterance. Some invariance of the topology may be
observed where the waveform remains stable. This diagram is also interesting in the sense that
it recalls the notion of independent overlapping segments evoked in many speech production
theories. More work would be needed to assess if and how the topologies found by the NUT

scheme relate to the layout of the actual human speech production apparatus.

To go further, it would be interesting to study more precisely the variability of the topologies
in relation to some specific phonetic classes. If the topologies prove stable for various classes
of speech signals, the optimization tree could be pruned to retain only some speech-specific
configurations. In a coding framework, this would allow to reduce the number of bits necessary to
index the codebook of candidate topologies. To study that possibility, the NUT analysis should
be performed with various instances of individual vowels and consonants, and the resulting

configurations should be plotted into phoneme-specific diagrams.

We have not been able to put this experiment in practice because we have not disposed
of a sufficient time and of sufficient resources to collect a suitable phonetic database. As a
matter of fact, the existing databases usually contain whole words with a separate labeling

information rather than sound files for each individual phoneme. Hence, an automatic phoneme
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Figure 3.12: Results of a [8/24] NUT analysis on the French utterance “dans cette crémerie”.
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extraction system should be used'?. This extraction should rely on a hand-labeling of the sound
files, since an automatic labeling, e.g., through forced alignment, determines recognition specific
speech units rather than the phonemes defined by the human perception of minimal pairs. For
example, it is common to hear pieces of the surrounding consonants in the “vowels” delimited by
a forced alignment. This problem does not occur with hand made labeling. Given the overhead
induced by those practical matters, the realization of this experiment has been left in the domain

of future work.

Is there a global speech specific topology ?

An alternate experiment has consisted in learning a global NUT filter configuration from speech
segments that span more than one frame, to find the layout which produces the least residual
error averaged over all the frames. This layout may be informative about some speech production
phenomenon that would not be visible in the classical reflection coefficients. This is also an
alternate way to determine some NUT lattices which are globally specialized in the modeling
of a class of signals instead of being specialized to one particular frame. Using these alternate
class-specific topologies could again help pruning the search tree: instead of searching the
total number (]X,Zj) of possible topologies, a reduced number of suboptimal but class-specific

topologies could be searched.

To determine some global topologies, three different speech signals have been used. One is
a portion of a French test sentence (“dans cette crémerie”) spoken by a male speaker, recorded
in an anechoic chamber and sampled at 32kHz. The two others are 3 unconnected words (“dor-
mitory school has”), taken from the English word lists of the UW-XRMB database for a male
speaker (jwll) and a female speaker (jw16), recorded in laboratory conditions and sampled at
21.739kHz.

The tables 3.3 and 3.4 give the optimal configuration for various constraints and for the
three tested speech signals. The number of configurations to be tested for each constraint is also
indicated. The interpretation of these results is difficult, because the only clear-cut tendency of
the optimization is to locate a maximum of degrees of freedom towards the “lips” end of the
tube, or equivalently towards the output of the synthesis filter. It would be tempting to remark
that in the human vocal tract apparatus, the maximum mobility actually occurs in the mouth
region. However, given our current level of knowledge of the model, it is difficult to tell to which
extent this phenomenon relates to actual physiological properties, or to which extent it is an

artifact of our selective correlation analysis.

As a matter of fact, our model allows to de-couple the number of degrees of freedom of the

'The HCopy application in HTK [Young et al., 1999] allows to extract a label-specific part from a sound file.
Perl scripts reading the phonetic transcription and calling HCopy for each label could therefore be used to cut a
whole file into all its label-specific pieces. Alternately, integrating a segmentation module to our NUT analysis
software should not be too difficult.
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Number of DoFs

Nb. of configurations

Male speaker/32 kHz

1 31 2/32:2,30.
2 465 3/32:1,1,30.
3 4’495 4/32:1,1,2,28.
4 31’465 5/32:1,1,2,2,26.
5 169’911 6/32:1,1,1,1,2,26.
> 700’000
26 169’911 27/32:18x1,3,6x1,2,3.
27 31465 28/32:19x1,2,6x1,2,3.
28 4’495 29/32:27x1,2,3.
29 465 30/32:29x1,3.
30 31 31/32:29x1,2,1.
31 1 32/32:32x1.

Constraints including minimum length :

6 DoF 134’596 7/32:5x2,18,4.
min. length = 2
7 DoF 245157 8/32:6x2,16,4.

min. length = 2

speaker data.

Table 3.3: Best configurations for various [n/32] constraints applied to the 32kHz French male
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Nb. of DoFs | Nb. of conf. | Speaker jwll (m) Speaker jw16 (f)
1 21 2/22:1,21. 2/22:1,21.
2 210 3/22:1,1,20. 3/22:1,1,20.
3 1’330 4/22:1,1,5,15. 4/22:1,1,2,18.
4 5’985 5/22:1,1,4,4,12. 5/22:1,1,2,2,16.
) 207349 6/22:1,1,2,2,1,15. 6/22:1,1,1,1,2,16.
6 54’264 7/22:1,1,2,2,1,4,11. 7/22:1,1,1,1,2,2,14.
7 116’280 8/22:1,1,2,2,1,3,1,11. 8/22:1,1,1,1,2,2,2,12.
8 203’490 9/22:1,1,1,1,2,1,3,1,11. 9/22:1,1,1,1,1,1,2,2,12.
9 293’930 10/22:1,1,1,1,1,1,1,3,1,11. 10/22:1,1,1,1,1,1,2,1,1,12.
10 3527716 11/22:1,1,1,1,1,1,1,3,1,7,4. || 11/22:1,1,1,1,1,1,1,1,1,1,12.
11 352’716 12/22:11x1,11. 12/22:10x1,7,5.
12 2937930 13/22:11x1,7,4. 13/22:10x1,2,5,5.
13 203’490 14/22:11x1,3,4,4. 14/22:10x1,2,2,3,5.
14 1167280 15/22:11x1,3,2,2,4. 15/22:10x1,2,2,2,1,5.
15 54’264 16/22:11x1,3,2,1,1,4. 16/22:10x1,2,2,2,1,3,2.
16 20’349 17/22:11x1,2,1,2,1,1,4. 17/22:10x1,2,2,1,1,1,3,2.
17 5985 18/22:14x1,2,1,1,4. 18/22:12x1,2,1,1,1,3,2.
18 1’330 19/22:14x1,2,1,1,3,1. 19/22:17x1,3,2.
19 210 20/22:14x1,2,1,1,2,1,1. 20/22:17x1,3,1,1.
20 21 21/22:18x1,2,1,1. 21/22:18x1,2,1,1.
21 1 22/22:22x1. 22/22:22x1.

Table 3.4: Best configurations for various [n/22] constraints applied to data from two speakers

of the UW-XRMB database.
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production model from the dimensions of its acoustic counterpart. This constitutes a first step
towards connecting the parametric speech modeling techniques inherited from Digital Signal
Processing with some speech production models issued from phonetic theories. Our approach
entails a new form of model dimensionality reduction, which proves efficient on the ground of
spectral modeling accuracy. This reduction is based on the selection of the most important
partial correlations, which are related to the interleaving of the frequencies making the speech
signal. These frequencies are themselves shaped by the resonances of the vocal tract. However,
a different kind of work, more related to the domain of the phonetic sciences, is still needed to
determine the extent to which our selective partial correlation analysis is accurate as an interface

between the acoustics and the actual physical configurations of the vocal tract.

3.4 Summary of the NUT inverse filtering analysis method

The NUT inverse filtering analysis method can be decomposed into the following steps:

1. Signal preprocessing

a) To remain consistent with speech production paradigms, adapt the sample fre-
g
quency of the speech data to the constraint imposed by the model, namely :

C

Fo=——
° 2 Alum,t

(3.24)

where ¢ is the speed of sound (34000 cm/s) and Al is the unit length defined in
the section 2.2.2.

Assuming that a vocal tract is 17 centimeters long on average, the adequate sampling
frequency corresponds to the number of unit sections considered in the NUT model,
e.g. 32kHz for [n/32], or 24kHz for [n/24]. The resampling can be performed with the
polyphase algorithm [Bellanger et al., 1976; Elliott, 1987], which combines computa-
tional efficiency with a good interpolation quality (little or no aliasing is introduced
by this method).

This step is optional if one does not care about the consistency with tube models,

but is just interested in viewing the model as a constrained correlation analysis.

(b) pre-emphasize the obtained speech wave by a simple differentiation.
This step is performed to compensate for the effects introduced by the shape of
the glottal waveform and by the radiation effect at the lips. These effects are not
otherwise modeled by the NUT filters.
This point is therefore linked with the notion of consistency with tube models. Nev-
ertheless, from a pure Digital Signal Processing point of view, it can be shown that
the pre-emphasis helps reaching better spectral estimates by reducing the spectral

tilt and hence augmenting the global spectral contrast [Makhoul, 1975a).
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2. Estimation of the parameters and of the topology

Several variants can be implemented, depending upon the way of specifying the topology :

(a) imposition of an a-priori topology —(fig. 3.3)— a particular a-priori topology can
be considered better suited to the analysis of a whole range of data. The corre-
sponding NUT filter can be used as a parametric model without any further topology
optimization. In this case, as seen from figure 3.10, data which do not correspond to
the range of the a-priori topology will be modeled with a low spectral accuracy.

The inverse filtering parameters can be estimated every 10ms by computing the re-
flection coefficients k; from one of the estimators of table 3.1. For speech, 25ms

observation windows are usually employed.

(b) frame-by-frame topology optimization —(fig. 3.4)— Alternately, one can seek the
best topology for each frame of the analyzed signal. In this case, for a given frame, all
the topologies respecting a given [Ng/N, ] specification are used in turn, and their pa-
rameters are estimated as in the variant (a). Their respective accuracies are computed
in terms of mean squared residual error (e.g., MSE = 7k ZZ]\LI ((ET(M))Z + (& (M))2> )s
and the (topology,parameters) pair giving the least MSE is retained to represent the

analyzed frame.

(c) global optimization of the topology over a class of signals —(fig. 3.5)- it is
also possible to determine the best topology pertaining to a particular class of signals,
e.g., sentences from a particular speaker, or a particular class of speech sounds, and to
apply it to unseen frames. This case requires two passes. The first pass allows to find
the topology, out of a set respecting a given [Ns/N,] specification, which produces
the least mean squared residual error cumulated over the whole set of “template”
signal frames. The second pass uses the determined topology to extract the reflection
coefficients on a frame-by-frame basis, without re-optimizing the topology for each

frame.

In all these variants, the extracted reflection coefficients can be further transformed into

log area ratios or into area functions.

3. Inverse-filtering of speech

The inverse filtering of speech, using the extracted models, allows to retrieve the residual

excitation signal for a potential application to coding or synthesis.

This analysis scheme reduces the number of required LPC modeling parameters while keeping
the related increase of prediction error to its lowest level. Equivalently, it allows to predict a
signal sample from a longer portion of its past with fewer parameters than the usual all-pole

models.

The corresponding reduction in the number of degrees of freedom represents a speech pro-

duction constraint in the sense that if one assimilates speech production to acoustic filtering
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by a lossless tube, a relevant number of degrees of freedom can be imposed to the produc-
tion model independently of the dimension of the acoustic counterpart. Besides, the [Ng/N,]
specification accounts for a smoothness constraint on the tube shapes in the longitudinal di-
rection: imposing some fixed zero-values, or equivalently “gluing” some interfaces, constrains
the potentially irregular shapes of tubes with a great number of equal-length sections to adopt
the smoother shapes of tubes with a reduced number of unequal-length sections. Finally, the
optimization of the lengths of the sections allows to code part of the acoustic information as

structural modifications of an underlying physical model.

It could be argued that from a geometric and physiologic point of view, NUT tubes rely on
rather crude tube shapes. For instance, a more anthropomorphic constraint could be given in
the form of reflection coefficients fixed to non-null values. These non-null constants could be
drawn from the study of X-ray pictures or other adequate vocal tract shape measurements. The
next chapter will expose our attempt at incorporating some more anthropomorphic articulatory
constraints in the NUT/LPC framework.
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CHAPTER 4

Speech analysis by projection into a

basis of human shape factors

The model of Maeda [Maeda, 1979, 1990] represents the sagittal profile of the vocal tract rather
than the whole tube shape. This profile is described by a linear combination of basis vectors
that have been determined from the observation of an X-ray database [Maeda, 1979]. To recover
the whole area function from the profiles, the o transform [Heinz and Stevens, 1965; Sundberg,
1969; Perrier et al., 1992; Lecuit and Socquet, 1996] can be subsequently used. In the design of
this model, morphologic issues come before acoustic or phonetic issues: the model first tries to
be anthropomorphic, since it is based on the direct modeling of the movements of the human
vocal tract profiles, and then it is verified that it provides an accurate acoustic modeling (i.e.

correct formant trajectories, a realizable vowel space [Boé et al., 1989], etc.).

So far, attempts at inverting Maeda’s model, i.e. recovering its parameters from some acoustic
features, have been mainly based on the use of codebooks [Laprie and Mathieu, 1998; Ouni and
Laprie, 2000] or of neural networks [Laboissiere, 1992]. These approaches do not try to explain
analytically the link which exists between the acoustic level and the articulatory level: they
build and explore a mapping based on the simple training of an associative system. In the
case of neural networks, an additional problem is that the mapping cannot be inverted in a

straightforward way.

As an alternative, we propose a new idea which builds upon the analogy exposed in chapter 2.
Our idea consists in interfacing the linear profile shape model with the inverse lattice filtering
methods through the application of a least squares shape smoothing in the articulatory domain.
Starting from the area functions issued by the LPC or the NUT analysis, this can be realized
with the help of two additional analytic steps:

e the projection of the area function into the space of sagittal shapes through the analytic

67
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inversion of the a8 transform;

e the smoothing of the obtained shapes through least-squares decomposition into a basis of

shape factors drawn from Maeda’s statistical analysis of human X-ray data.

This idea creates a link between the acoustic level and the articulatory level through a series of

analytic and invertible relations.

In the following, this method will be designated by the acronym ReALiSM, standing for
“Relating Acoustics to a Linear Shape Model”. After having reviewed the various components
of the corresponding processing chain, we will report some inversion results obtained with both

synthetic and human vowels [Krstulovié, 2000b)].

4.1 Description of the components of the ReALiSM system

The system decomposes into the blocks depicted on figure 4.1. Each block will be described

below.

4.1.1 Relation between the sound and the acoustic parameters

As seen in the previous chapters, inverse lattice filtering provides an interface between the sound
of speech and some acoustic features. For the current preliminary system, a 7" order uncon-
strained lattice filter has been used with speech sampled at 8kHz. Its 7 reflection coefficients
have been estimated with the Itakura-Saito estimator. Alternately, a NUT model could be used

at this stage.

In the synthesis direction, the generation of the speech signal corresponds to exciting a lattice
filter with the residual error obtained after inversion, or with quantized error sequences (such
as in Code Excited Linear Prediction, CELP) or with a white noise, a pulse train or a more
elaborate synthetic glottal-like excitation (e.g. Rosenberg’s glottal wave [Rosenberg, 1971]). The

filter’s parameters are updated every 10 milliseconds.

More elaborate and complex methods, based on aeroacoustics [Krane et al., 2000] or the
Finite Element Method [Matsuzaki and Motoki, 2000; Motoki et al., 2000], are currently being
developed to compute accurately the acoustic filtering effects of some non-cylindrical vocal tract
shapes. Alternately, a more simple and well understood method [Flanagan, 1972; Mrayati, 1976;
Atal et al., 1978; Badin and Fant, 1984, etc.] is commonly used to find the acoustic counterpart
of the area function with an acceptable accuracy. This method considers that the acoustic effects
are not significantly disturbed if the vocal tract is assimilated to a series of lossy cylindrical or
conical section. The area function describes circular areas, and an electrical analogy is used to

formalize the computation of the transfer function. The next simplification step, which considers
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that the energy losses due to viscosity, heat conduction and wall yielding can be neglected, leads

to the lattice filtering formulation.

The more elaborate acoustic models cited above can be plugged in place of the employed
lossless All-Pole model, provided they admit an inversion method to preserve the integration of

inversion and synthesis in a coherent processing framework.

4.1.2 Relation between the acoustic parameters and the area function

As discussed in chapter 2, the process of All-Pole filtering is analogous to acoustic filtering in

discrete lossless acoustic tubes provided that :

1. sound waves are considered to be plane fluid waves;

2. the lengths of the individual tube sections are kept short compared to the wavelength at

the highest frequency of interest (this introduces a spectral boundary);

3. the sampling rate of the speech signal is Fy = Winit’ where Al is the length of a tube

section;

4. no losses are accounted for.

As exposed in the previous chapters, if the speech signal is pre-emphasized to compensate for
the spectral characteristics of the glottal excitation and for the radiation impedance at the lips,
estimates of the lossless tubes’ area functions can be recovered from the speech waveform by
using inverse lattice filtering and the following relation :

Siv1— S 5 — Si—l—ll — ki1
Sit1+ S; 1+ ki1

where k;;; denotes the reflection coefficients and S; denotes the areas of the corresponding

ki+1 = (41)

discrete lossless tube, numbered in ascending order from lips to glottis. If the lips section is not
available, this recursion can be applied in the reverse direction by considering that the glottis

section is fixed to 1.5¢m?2.

Considering that the area function (or vocal tract) should be approximately 17 centimeters
long, and that the speed of sound is equal to 340m/s, the 374 condition imposes to use M sections
for speech sampled at M kiloHertz. In the preliminary system, 8 sections, or equivalently 7
mobile interfaces, have been used for speech sampled at 8kHz (this imposes the 7** order filter

employed in the LPC analysis of section 4.1.1).

The area function can be resampled to meet further processing requirements. In our case,
the 8 sections corresponding to the 7% order LPC model have been redistributed over 30 sections
to match the dimensions of the af transform and of the profile shape model described in the
upcoming sections. Alternately, a 30th order LPC or a [n/30] NUT model could be used with
speech sampled at 30kHz.
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4.1.3 Connecting the areas and the profiles

Since the human vocal tract does not have circular sections, the relation between area functions

and vocal tract profiles is usually described by the a3 transform [Sundberg, 1969] :

N\ /B
Si = OzzdlﬁZ <~ di = <&> (4.2)

a;

where S; is the area of a section, d; is the diameter measured from the profile outline, and (o, f3;)
are section-dependent parameters drawn from the study of human vocal tract shapes [Sundberg,
1969; Perrier et al., 1992]. From (4.2), it is clear that this relation admits an exact, one-to-one

reciprocal.

Various definitions exist for the diameters d;. While the works related to Maeda’s model
usually employ a pseudo-diameter derived from some lateral areas, our choice has been to stick
to the original af rationale by measuring the diameters along the lines of a semipolar grid.
However, finding adequate transformations between the areas and the profiles is still an active
field of research: numerous other transformations exist [Lecuit and Socquet, 1996]. Other
models can readily replace the original o/ relation in the processing chain of figure 4.1 if they
prove to be more accurate and still invertible. Alternately, this step could be suppressed by

directly using a three dimensional factorial model, as the one proposed by Badin et al. [1998].

4.1.4 Description of the profiles with a linear articulatory model
Principle of the original model
Maeda’s model [Maeda, 1979] represents the vocal tract profile shapes as a linear combination

of articulatory factors. These factors are determined from some measurements taken on X-ray

movies showing the vocal tract of a real speaker, as shown on figure 4.2.

‘ = + + +
—
—
1) X-ray segmentation 2) Articulatory measurements 3) Factorial analysis through Linear Regression

Figure 4.2: Design of Maeda’s model.
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First, the X-ray images have been hand-segmented to extract the vocal tract contours. From
these contours, 32 measurements made in 3 distinct zones of the vocal tract are taken, with the

help of a semipolar grid (fig. 4.3):

e in the lips zone, lip aperture (LIPap), lip protrusion (LIPpr) and lip width (LIP4) are

measured;

e in the tongue region, 25 tongue shape measures are plotted along the semipolar grid lines
(TNG1 to TNG25);

e in the larynx zone, two points delimiting the lower larynx edge are plotted (LRX,, ,, and
LRXm,yz)'

In addition, a fixed back wall outline is measured in the semipolar grid. It delimits the diameters
in the lips and the tongue regions.

Each of the 32 mobile features is related to a set of 5 control parameters by an orthogo-
nal factor analysis (a form of driven linear regression) [Maeda, 1979]. The linear factors are

determined so that the control parameters have an articulatory interpretation:

e jw represents the influence of the jaw on all the features;

e Ip, ts and tt control the tongue position, the tongue shape and the tongue tip position

respectively;
e [h and [p control the lip height and the lip protrusion;

e [z controls the larynx height.

In this framework, modeling a vocal tract inner contour corresponds to applying the following
block-structured linear equation system of dimensions 32 x 7:

hi1 he L LIPpy
o 0 by las| O LIPap
l31 l32 133 i Jw i LIPq
tip tie tiz tig ? TNG;
to1  too  l23  l24 0 ts TNG,

I I I : tt | = : (4.3)
tos1 tos2 tos3 tosa lh TNGos
lai,1 lai o Ip TXCEI
lag 0 lags | L 1z ] LRX,,
las 1 lasso LRX,,
las, las | LRX,, |
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Figure 4.3: The various components of the linear profile shape model.
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where [; ;, t; j and la; ; are the factors determined for the lips, the tongue and the larynx action
respectively. The features resulting from this linear combination are projected back to the

semipolar grid to obtain the actual vocal tract contour.

Fixed length approximation to the model

The area function, and thus the profile, must have a fixed length to permit a connection with
lattice filtering (or, more exactly, to be compatible with a fixed sampling frequency). Hence,

our system makes use of some approximations:

e the lip protrusion parameter Ip and the related factors are ignored. The lip protrusion

measure LIPpy is fixed to 0.5cm instead of being computed from the linear combination;

e the lip width quantity LIP 4 is also ignored: the area of the lips section is derived from

the lip aperture parameter by direct application of the af transform;

e the larynx shape is approximated by assuming that the two larynx points LRX;, 4, and
LRX4, 4y, always move along the second grid line. The larynx height parameter [z is not

used;

a fixed glottis section is added along the last grid line, with a constant area of 1.5¢m?.

The subsequent lines and columns are thus removed from (4.3), reducing the dimensions of the

system to 30 x 5:

lo1 0 lao LIPap

tip tip tiz tig TNG,

ton  t22 toz to4 O [ jw | TNG:

: : : : tp :

tos1 tos2 los3 l254 ts | = | TNGo;s (4.4)
lar.y ot LRX,,

lag 0 L (b ] LRX,,

las.y LRX,,

las, | LRX,, |

This approximation does not affect the tongue shapes, but affects the overall vocal tract length
through blocking the lip protrusion and the larynx height variations. This is likely to entail
some inaccuracies in the synthesis and inversion of some French vowels, such as /u/ and /y/?,

for which the lip protrusion plays an important role.

!The Worldbet phonetic notation [Hieronymus, 1993; Lander, 1997] is used throughout the present report to
identify the vowels.



4.2. Acoustico-articulatory inversion results 75

Inversion

The linear system (4.4) comprises 30 equations for 5 variables. Hence, inverting it, i.e. finding the
values of the control parameters given a particular shape, amounts to solving an overdetermined

linear problem. Solutions for such problems are available through Least-Squares solving:

Vw=s ~ w=(VIV)1vTs (4.5)

where V' is the matrix of known factors, s is the vector describing the tract shape, and w is the
vector of articulatory parameters (1 being its Least Squares estimate). This method finds the
closest shape, in a Least Squares sense, that the linear model can produce with respect to the

given shape. Hence, it performs a model-driven smoothing of the input shape.

Fortunately, in the fixed length case, the factors matrix V has full rank and is well condi-
tioned. Numerous algorithms such as the Singular Value Decomposition (SVD) and the QR
factorization are thus available to solve the problem [Golub and Van Loan, 1983]. We have used
the SVD in the current implementation (LAPACK routine dgelss [Anderson et al., 1999]), but
it could be substituted with any other algorithm liable to bring more adapted or more accurate

solutions.

4.2 Acoustico-articulatory inversion results

4.2.1 Auto-inversion

As a first assessment, it is useful to verify whether information losses that occur within Least-
Squares smoothing, area functions resampling and reflection coefficients estimation still allow

for the recovery of synthetic template tract shapes.

Hence, a set of synthetic vowels has been produced, using articulatory parameters that corre-
spond to some cardinal French vowels registered in the UPSID phonemic database [Maddieson,
1984]. Informal listening tests ensured that the synthetic vowels were acceptable in spite of
the fixed length approximation and the lossless LPC synthesizer. A more complete evaluation
of the synthesis capabilities of the system should nevertheless be performed, e.g. with formant

measurements and comparison with human values.

Results depicted in figure 4.4 show that the estimated shapes lie close to the original synthetic

shapes. The observed variations result from the pulse train excitation used for synthesis.



IA/ (pate) 18/ (peur) Jil (pis) ol (port) Iyl (pus)

Figure 4.4: Auto-inversion for 5 synthetic vowels. The bold grey line corresponds to the original profile. The thin black line shows the

Speech analysis by projection into a basis of human shape factors

mean of the extracted profiles, which vary between the two dashed lines.
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4.2.2 Inversion of real speech

The system has been used to invert some real speech recorded from a French male speaker in
a quiet environment. Several vowel sequences and VCV sequences have been tested. Results
corresponding to a “vocalic triangle” (/ie E A o u/ sequence) and to the /A b i/ sequence are
given in figures 4.5 and 4.6 (next page). The system appears to locate the cavities at phonetically
relevant places of articulation (e.g. front for /A/, back for /i/ [Ladefoged and Maddieson, 1996]).
Lip apertures also seem realistic. In the /A b i/ sequence, the /b/ consonantal closure appears
to be detected. A spurious constriction is nevertheless observed in some cases at the back of the

tongue.

The obtained results are good from a qualitative point of view. Further work would include

comparing them with human data to assess their quantitative accuracy.

4.3 Discussion

4.3.1 Principle of the ReALiSM estimation

The ReALiSM scheme minimizes an articulatory cost on shapes derived after minimization of an
acoustic criterion. Equivalently, it allows to drive the parameters of the linear model with the
outcome of the LPC analysis. It could be argued that this somewhat violates the assumption
that speech is an acoustic object carrying inherent articulatory constraints, since the acoustic
estimation is corrected a posteriori instead of being directly constrained by the shape model.
As a matter of fact, the coupled evolutions of the acoustics and of the articulatory model can
be interpreted as a latent space modeling problem. When the mathematical relation linking
the observations and the latent variables complicates too much the optimization in the latent

space?, such sub-optimal solutions are commonly used.

On the other hand, being able to add some articulatory information coming from an external
model allows to go beyond the limitations of speech analysis in terms of acoustics only. As

remarked by Sondhi during the discussions related in [Carré et al., 1977, p.21]:

“(...) if we go back from the speech wave to the articulatory parameters, then
we are in a vicious circle which we can never break, because the articulatory in-
formation cannot tell you anymore than what the speech waves carries about the
articulation. We have to break the circle somewhere and the only way to do it is to
make a measurement, otherwise the information that we get is a different parametric

representation of exactly the same information.”

*We have tried to incorporate the expression of the linear model in an expansion of Burg’s error criterion (the
equation (3.1) of section 3.1.1), to solve for a direct estimator of Maeda’s parameters. This leads indeed to a very

complicated mathematical problem.
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Figure 4.5: Inversion of human vowels.
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The measurements proposed by Sondhi were referring to the capture of the vocal tract impedance
at the lips, which can be used to recover the whole vocal tract shape [Sondhi, 1979]. In our
case, the principle of the underlying model is very different, but the idea of adding some relevant

articulatory information from a separate source is present.

4.3.2 Articulatory relevance of the LPC solution

Alternately, our results bring support to the idea that LPC is able to capture some pieces of
qualitatively relevant articulatory information, provided an adequate post-processing scheme.
The addition of the anti-af transform and of the least-squares shape smoothing opens the door

to a true comparison of the LPC-based inversion with some actual human vocal tract measures.

However, in the absence of such a comparison, no conclusion can be drawn yet as to the
anthropomorphic accuracy of the extracted features. Such a comparison is still relatively difficult
to perform in practice, with regard to the cost of acquiring and segmenting articulatory data
and with regard to the fact that a method to normalize the measured vocal tract shapes without

betraying the corresponding acoustics is not available.

Nevertheless, if the method eventually proves to provide a sufficiently precise acoustico-
articulatory inversion (AAT) result, it will represent a significant advance in the domain of AAI
since it is able to operate in real time. To help the method getting closer to actual AAI, any
of the blocks used in the acoustico-articulatory chain of figure 4.1 can be replaced with a more
elaborate or more precise component, provided that the replacement block admits a reciprocal.
Hence, current limitations may be alleviated in future versions by the use of a more detailed
profile shape model, better profile-to-area transformations, or acoustic estimators incorporating

more elaborate relations to speech production.

4.3.3 Bridging the gap between Articulatory Modeling and Digital Signal
Processing

Globally, the method creates a straightforward link between the shape-based articulatory model
and the whole gear of parametric DSP tools (all-pole spectral modeling, spectral distortion mea-
sures, parametric speech coding methods, etc.). This link could be exploited in the framework

of some Automatic Speech Processing (ASP) applications.

The next development step towards a use in ASP would consist in estimating some smoothed
profile shapes from sound, going back to the spectral modeling level and then examining the
spectral distortions induced by the least squares shape smoothing (figure 4.7). Some additional
processing could be applied in the articulatory domain to allow for some articulation-based

warping of the speech spectra.
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We have begun to investigate these points, but have faced large spectral distortions. More

work is needed to determine the exact cause of these distortions, and to tell if they constitute

a meaningful or meaningless warping of the spectra. Only after a better understanding of this

point will it be reasonable to compute speech features for ASP in the ReALiSM framework.

s=Vw S; = aid?i Warped Spectrum

Linear Prediction

LINEAR af ACOUSTIC /\\/\\/\
¢ COMBINATION TRANSFORM MODEL

Optional "Articulatory™ Processing:

thresholding, notch filtering,

Distortion Measure
smoothing of trajectories, - - -

Speech
\ LEAST Anti- INVERSE OF ACOUSTIC J
ntiaf ACOUSTIC [~
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1
_ T —1+,T _ {(Si\B; - 1—k;4q P .
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Figure 4.7: Evaluation of the spectral distortion in the ReALiSM framework.
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CHAPTER 5

Potential applications

The NUT and ReALiSM analysis schemes match some speech production paradigms with the
LPC speech modeling method, which is the core of most of the speech feature extraction systems
used in state of the art Automatic Speech Processing (ASP) applications. Hence, the NUT and
ReALiSM methods represent an innovative contribution to the realization of production based
ASP. The present chapter exposes some research tracks to develop these methods in the areas

of speech recognition, speech coding and speech enhancement.

5.1 Speech recognition

Speech recognition experiments from other researchers bring support to the idea of using artic-
ulation in speech processing: they are discussed in section 5.1.1. However, a critique of these
experiments is necessary before implementing a functional articulation-based recognition system.
In particular, the question of defining a perceptually relevant articulatory distance measure has
to be evoked : this is done in section 5.1.2. NUT models propose a straightforward solution to
this problem, and preliminary speech recognition results using NUT analysis are presented in

section 5.1.3.

5.1.1 Speech recognition with articulatory paradigms: results from other
researchers

Some authors have suggested that speech recognition would significantly benefit from the appli-
cation of the Articulatory Phonology theory [Schroeter and Sondhi, 1989; Rose et al., 1994]. As
an application of this idea, some speech and speaker recognition systems have been developed

by many researchers. These systems can be divided in two classes:

83
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e those which model the probability densities of articulatory features alone or mixed with

pure acoustic features, in order to perform a direct recognition of the articulatory features;

e those which use some articulatory information to structure the acoustic probability density

models.

Recognition of articulatory features

Schmidbauer [1989] has found that the performance of HMM-based recognizers is improved by
introducing an articulatory feature vector as an intermediate level between the acoustic and
the phonetic level in the decoding scheme. He observed a 9.8% relative decrease in error on
a speaker dependent phoneme recognition task, as compared with a system using plain Mel
Cepstrum Coefficients (MFCCs).

Zlokarnik [1993] has reported up to a 70.7% relative decrease of the Word Error Rate (WER)
in a speaker dependent, highly-confusible nonsense words recognition experiment, by augment-
ing the usual MFCC feature vectors with articulatory data recorded by an electromagnetic
articulograph (EMA) [Cartsens and Carstens, 2001]. He also tried recognition with some artic-
ulatory features inferred from the acoustics by means of a neural network, but could not obtain
an improvement in WER with the inferred features. From this work, he therefore drew two

important conclusions:

e the articulatory data brings an information that is complementary to the acoustic infor-

mation;

e while the use of natural® articulatory features does bring an improvement of recognition
scores, the quality of the acoustic-to-articulatory inversion scheme has to be carefully

checked to reach such an improvement.

Papcun et al. [1992] correctly recognized a set of highly confusible consonants ({/p/,/b/},
{/t/,/d/}, {/k/,/g/}) using a template matching technique which was using some observations
of the articulatory trajectories alone. These trajectories were estimated by a neural network
trained on the University of Wisconsin (UW-XRMB) database [Westbury, 1994]. In a follow
up of this work, Zacks and Thomas [1994] have obtain a 86.67% recognition rate on a speaker
independent vowel recognition task, using neural networks trained with estimated gestural fea-
tures alone. For the acoustico-articulatory inversion task, they proposed to use a new neural
network architecture, able to recover trajectories from sound after training on the UW-XRMB
database. They complemented the network with a template matching algorithm to go back from
the trajectories to a gestural level, thus being in closer accordance with the theory of articulatory

phonology.

li.e. measured from humans, as opposed to features estimated from inversion.
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Globally, this class of methods has only been applied to limited tasks such as phoneme or
nonsense words recognition, and most of the time in a speaker dependent way. This is due
to the difficulty in obtaining sufficient acoustico-articulatory data for a proper training of the
models. As a consequence of the development of the new and more adequate MOCHA acoustico-
articulatory database [Wrench and Hardcastle, 2000], Wrench and Richmond [2000] have been
able to extend the principle of recognition with recorded articulatory features to a speaker
dependent connected words recognition task. For this more realistic task, they observed a 6%

relative improvement in Word Error Rate (WER).

Articulatory structure in acoustic models

Erler and Deng [1992] have developed a specific statistical approach, closely related to the
Articulatory Phonology theory, in which the acoustic structure of the phoneme models reflects
the organization of some underlying, possibly overlapping, articulatory features. They have
successfully applied the idea to speaker dependent isolated nonsense word recognition, observing
a 26% relative drop in WER for Consonant-Vowel (CV) nonsense words and a 13% relative WER
reduction for CVC nonsense words as compared to classical phoneme models. Deng and Sun
[1994] have further tested the idea in a speaker independent phoneme classification task and

have reported up to a 27% relative WER reduction.

When using the same method on a large vocabulary, speaker dependent, isolated word recog-
nition task, Erler and Freeman [1996] have observed that this Articulatory Feature Model (AFM)
was competitive with conventional HMMs using MFCCs, despite the early stage of development
of the AFM model.

In a follow up, Richardson et al. [2000a,b] have extended the recognition task to a speaker
independent, isolated word, noisy telephone speech recognition task. While their Hidden-
Articulatory Markov Models (HAMM) do not bring WER improvements when used alone, they
help reducing the WER by 18-35% (depending on the lexicon size) when combined with some
standard HMMs using MFCCs. In noisy speech, a relative improvement of 23-26% has been

observed.

Frankel and King [2001] propose a radically different approach by modeling a latent articu-
latory state space as the hidden space for some Kalman filters (also known as Linear Dynamic
Models, LDMs). These segmental models are subsequently gathered in Markov chains, thanks to
a bigram language model, to allow for speech recognition. In a preliminary phone classification
experiment, they compared the performances pertaining to different observation spaces. The
use of recorded articulatory features (the EMA measurements of the MOCHA database [Wrench
and Hardcastle, 2000]), in addition to cepstral coefficients plus energy, brought a 13% relative
classification score improvement over the cepstral coefficients + energy alone. Conversely, the

use of articulatory features simulated from a neural network did not bring an improvement.



86 Potential applications

(This confirms the observations of Zlokarnik [1993].) Frankel and King’s research team is cur-
rently implementing a stack decoder adapted to their Linear Dynamic Markov models, to be
able to apply the system to actual speech recognition problems (i.e., to be able to deliver a

segmentation of the utterances rather than a plain phone classification).

Most of the works exposed in this paragraph require the use of recorded or hand labeled
articulatory features rather than features estimated from sound. But gathering and labeling an
articulatory database is an expensive and long running task. This explains to some extent why
the principle of articulatory based speech recognition is still experimental and is just beginning
to be tested in full-scale recognition systems. As evoked earlier, the development of full scale

systems is tied to the development of a more adequate database.

But the difficulty of exploiting articulation in speech recognition is also due to the fact that
one crucial question, that of the definition of an articulatory distance that would be meaningful

with respect to speech perception, hasn’t yet been solved.

5.1.2 Speech recognition with speech production paradigms: our approach

As a matter of fact, speech recognition techniques belong to the domain of pattern matching. In
this respect, they require the definition of a distance between the features and the pattern or
model to be matched. Whereas several acoustical distances have already been defined, put in
relation to human perceptual properties and well studied [Gray and Markel, 1976; Rabiner and

Juang, 1993], no perceptually significant articulatory distance has been defined.

For instance, it can be shown that the Euclidean distance between cepstral coefficients is
related to the root mean square log-spectral difference [Basseville, 1989; Rabiner and Juang,
1993], which in turn is perceptually relevant [Gray and Markel, 1976]. Furthermore, the log-
likelihood computed from HMMs can be viewed as a Mahalanobis distance between a template
Gaussian probability density function and an observation vector [Basseville, 1989; Krstulovi¢,
2001a]. The Mahalanobis distance is in turn equivalent to a Euclidean distance weighted by
a covariance matrix to allow for a margin of variability in the observations. Hence, decoding
cepstral observation sequences with respect to HMMs comprising multi-Gaussian densities in
their states amounts to operating a series of perceptually relevant spectral distortion measures,
within a certain margin of variability, and accounting for the transitional constraints imposed

by a hidden Markovian state space.

This interpretation should be carefully re-evaluated when using HMMs to model other fea-

tures than cepstral coefficients. As stated in [Rabiner and Juang, 1993] (p.191):

“For other parametric representations [than cepstra], such as log area ratio coef-
ficients, a Euclidean distance [-- -] might actually be reasonable. However, spectral

distortions based on parameters such as log area ratios have not been extensively
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studied because it is relatively difficult to interpret the measured distortion in terms

of spectral deviation.”

This implies that articulatory distances may exist (for instance, a Euclidean distance between
two vocal tract area functions or between two sets of log area ratios), but understanding their
implications in the acoustic domain is rendered difficult by the limited knowledge of the topology
of the articulatory-acoustic mapping. More clearly put, two vocal tract shapes that are close
with respect to the Euclidean distance could result in very different acoustic results from an

acoustic point of view.

As a matter of fact, speech recognition results obtained with some area functions or some
log area ratios are usually worse than those obtained with cepstral features (see for instance
[Atal, 1974] in the case of speaker recognition). The recognition results obtained with cepstral
coefficients (versus other features) are usually the best in today’s state-of-the-art systems, and
Mel Frequency Cepstral Coefficients (MFCCs) have become a sort of de facto speech featuring

standard.

Our work establishes an alternative approach, which consists in estimating some acoustic
features constrained by speech production considerations instead of trying to extract and to
recognize some purely articulatory features. Hence, we stay consistent with the consideration
of speech as an “acoustic object”. For instance, we remain consistent with telephone-based
applications, where no visual or explicit articulatory clues are accessible. From the production
constraints introduced in the inverse filtering framework, it is possible to estimate constrained
reflection coefficients, then it is possible to derive the corresponding prediction coefficients,
then finally to derive some Linear Prediction Cepstral Coefficients (LPCC) that inherit the
information pertaining to the production constraints. The matching of the acoustic modeling
with speech production modeling is operated in an integrated DSP framework, which allows to

use meaningful acoustic distances.

In addition, since our systems do not require the use of recorded articulatory features, it is
possible to perform full-scale speech recognition with usual, purely auditory speech recognition

benchmarking databases.

5.1.3 Preliminary results

As stated in the previous section, it is now widely recognized that the best speech or speaker
recognition results are obtained with cepstral features rather than with plain spectral features.

The cepstral coefficients can be derived from the Linear Prediction coefficients in several ways :

e analytically, by application of the following recursion [Rabiner and Juang, 1993]:

1 n—1
Cn =~ — Z(n —i)ajcp—; for n >0 (5.1)
i=1
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where ¢, are the cepstral coefficients and a; are the linear prediction coefficients with

ao =1, a; = 0 for ¢ > n, and ¢ is the log of the spectral power;

e numerically, by computing the LPC smoothed spectra, integrating them in linear or Mel

scale filterbanks and applying the Discrete Cosine Transform to the log of the outputs:

Evaluati
H(Z) »@‘mua 10110117 M/\ — TW’ — E — LOg+DCT — ¢,

the unit circle Filterbank

Numeric spectrum Spectral vector

Since the LP coefficients a; can be obtained from the reflection coefficients £, through the
relation (2.3) (page 12), the computation of some cepstral coefficients constrained by speech
production considerations is straightforward in the framework of the NUT or ReALiSM analysis
methods.

Experimental setup

In a preliminary speech recognition experiment, NUT-related cepstral features, computed nu-
merically with the recursion (5.1), have been tested on a speaker independent, unconnected
words recognition task. The training and test data have been drawn from the University of Wis-
consin XRMB database [Westbury, 1994], comprising speech together with recorded articulation

(see appendix A for the complete specifications of the database).

The choice of the UW-XRMB data had been initially motivated by the possibility to compare
the extracted articulatory clues with some real ones, if we had managed to solve the distance
problem, or to use some recorded articulation for recognition, although this was not our primary
goal. The main advantage of this database is that it has become a reference for studies in speech
production and its implications in speech recognition (see for instance [Papcun et al., 1992]).
As a matter of fact, before the recent advent of the MOCHA database (which is still in a
development phase [Wrench and Hardcastle, 2000]), the UW-XRMB database was representing
the biggest volume of acoustico-articulatory data collected within a unique and well-defined

measurement and segmentation framework.

Although the volume and repartition of this data is too limited to train speaker dependent
models or to perform Large Vocabulary Speech Recognition (LVCSR), it is compatible with a
medium vocabulary speaker independent speech recognition experiment. The specifications of
our implementation of this experiment are given in table 5.1. An extensive prior work of resource
management, including listening assessment and correction of the orthographic transcriptions,

has been necessary and is described in the appendix A.
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|EXPERIMENTAL SPEECH RECOGNITION SETUP|

Characteristics of the recognition task: speaker independent, medium vocabulary, lists of

isolated words, microphone speech with band-limited machine noise.
Base software platform: HTK [Young et al., 1999].

Phone set: DARPABET, 39 phonemes (same as the DARPA Resource Management

database phone set), plus beep, silence, preamble and short pause (total 43 models).

vy ¥y

HMMs type: monophones, left-right, 3 emitting states. WW

HMMs Emission PDF type: multi-Gaussians, 5 Gaussian components, diagonal covari-

ances.

Training set: 41 speakers, approx. 12000 isolated words from the UW-XRMB “citation”
tasks.

Test set: 6 speakers, 1873 isolated words from the UW-XRMB “citation” tasks.
Lezicon: part of CMU version 0.4; 106 words plus beep, preamble/postamble and silence.
Grammar: beep, then preamble, then 5 to 7 words, then optional postamble.

Wawveform characteristics: 16 bits PCM, 21.739kHz sampling frequency, peak of machine

noise around 5435Hz.

Wawveform preprocessing : notch filtering around 5435Hz with a 20Hz bandwidth.
Feature type and feature extraction: see the various results.

Training procedure : flat start + embedded training with Gaussian splitting:

1. flat start, i.e. initialization of means and variances of mono-Gaussian pdf models
with the mean/variance of the whole training data;

4 epochs of embedded training;

splitting of the mono-Gaussian pdfs into 3 components mixtures;

4 epochs of embedded training;

splitting of the 3 Gaussians mixtures pdfs into 5 components mixtures;

A T

28 epochs of embedded training without further splitting (preliminary studies indi-

cated that this number of training epochs is sufficient to reach convergence).

Table 5.1: Specifications of our speech recognition experiment with the UW-XRMB database.
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Compared features

Recognition results comparing the Word Error Rates (WER) related to the Linear Prediction
Cepstral Coefficients (LPCC) and to the Log Area Ratios (LAR), using various estimators and

various LPC orders, are given in table 5.2 and table 5.3.

In the case of the LPCCs, the 12 cepstral coefficients have been computed by application of
the equation (5.1). The required prediction coefficients have been obtained from the reflection
coefficients, using the relation (2.3) (and accounting for the zero-valued k; coefficients in the
NUT case).

The Log Area Ratios have been obtained from the application of the relation:
1— ki—l—l)
lar; 1 =log | ———— 5.2
i1 = log (1 52)

The number of LARs in a feature vector is equal to the number of degrees of freedom of the

corresponding model.

In the various NUT cases of the type [n/22], the frame-based topology optimization has
been applied. Conversely, in the case of the DRM, the topology has been fixed for all the
frames to [8/30:3,2,4,6,6,4,2,3.], and an upsampling of the signal from 21.7kHz to 30kHz (using
the polyphase method [Bellanger et al., 1976; Elliott, 1987]) has been applied to respect the
consistency between the physical model and the DSP model. This was not needed in the other
NUT cases, since the 21.7kHz sampling frequency matches approximately the 22 unit sections

specification.

No speech recognition experiments have been performed with the ReALiSM method because

of the unsolved distortion issues evoked at the end of section 4.3.

An additional result with Mel Filterbank Cepstral Coefficients (MFCC) is given for reference.

Analysis of the results

First, the results check that unconstrained cepstral coefficients issued from a non-parametric or
from a parametric spectral analysis (MFCCs and LPCCs) give about the same performance.
The choice of the estimator does not appear to play a significant role in the performance of the

parametric features.

Next, the results show that the NUT-derived features are competitive when compared to

usual cepstral features involving the same number of degrees of freedom.

When the number of DoFs is divided by two, the performance degrades significantly. Ap-
parently, in this case, the higher spectral detail theoretically maintained by the NUT of type
[8/22] does not help to keep a low word error rate.
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Cepstral Coefficients
12 cepstral coefficients + Energy + A + AA

Feature type DoF's LPC order WER
MFCC, 24 channels filterbank 4.11%
LPCC Levinson 14 14 4.70%
LPCC Itakura or Burg 14 14 5.45%
NUT LPCC [15/22] 14 21 4.81%
LPCC Levinson 7 7 11.80%
NUT LPCC [8/22] 7 21 15.70%
DRM LPCC [8/30:3,2,4,6,6,4,2,3.] 7 29 19.43%

Table 5.2: Speech recognition results with Cepstral Coefficients.

‘ Log Area Ratios
[DoF's] coefficients + Energy + A + AA

Feature type DoF's LPC order WER
LAR Burg 14 14 11.48%
LAR Levinson 7 7 13.03%
LAR Itakura or Burg 7 7 13.29%
NUT LAR [8/22] 7 21 17.41%
LAR DRM [8/30:3,2,4,6,6,4,2,3.] 7 29 10.04%

Table 5.3: Speech recognition results with Log Area Ratios.
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Results involving the configuration of the DRM model [Mrayati et al., 1988] are given for
reference, since their achievement was part of the early objectives of our work. Because of the
resampling step, their comparison with the other results is difficult. Nevertheless, the success of
the LAR-DRM features is an intriguing point, and the failure of the DRM-LPCC features raises
questions as to the “inheritance of relevance” linking the various parameters at various levels
of a parametric processing chain. More clearly put, better relative recognition results with Log
Area Ratios do not seem to imply better relative results with cepstra, even if the two feature

sets derive from the same reflection coefficients.

In any case, the low results obtained with Log Area Ratios reflect the fact that “throwing
features into the system” is not sufficient to achieve good recognition results: a finer under-
standing of the discriminative power of the features in relation to an appropriate recognition
system is necessary. Speech recognition systems have now reached a degree of sophistication
which goes beyond the mere “associative black box” concept. Hence, if cepstral coefficients give
good results with HMMs for the very precise reasons developed in the section 5.1.2, a different
system, able to draw more relevant discriminant information from the Log Area Ratios, may

exist and may still be undiscovered.

Relevance of the results

Indeed, the preliminary results shown here should be taken as a demonstration of the feasibility of
using the NUT method in speech recognition, but should by no means be viewed as a definitive
assessment of the NUT analysis performances in this framework. As a matter of fact, the

following points are still open:

e only one method to derive cepstral coefficients from the NUT-constrained reflection coef-
ficients has been used (namely, the method corresponding to the application of the equa-
tion (5.1)). This standard parametric method may not be adapted to the NUT case, and
a deeper study of the distortions induced by the NUT models in the cepstral domain is

necessary;

e the true advantage of speech production based features should appear with noisy speech,
since it is hoped that production-based features will be able to focus on the speech parts
of the auditory scene, and that they will remain somewhat “blind” to noise (or at least,

more discriminant of the noise and speech parts);

e using the new features as a complement to standard features in a mixed recognition system
(multi-stream or other mixture of experts) should enhance the recognition results, by

bringing some additional information;

e more extensive testing should be performed on more “standard” speech recognition bench-
marking databases, such as Numbers [Cole et al., 1995] or Phonebook [Pitrelli et al., 1995]
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for medium vocabulary recognition tasks, or ultimately Switchboard [Linguistic Data Con-
sortium, 1997] if the technique becomes mature enough to be applied to Large Vocabulary
Continuous Speech Recognition (LVCSR).

Again, assessing the performance of new features in a pattern recognition framework is indeed a
difficult task because their discriminative power depends on the definition of the classes and on
the employed discrimination method. Hence, more work is needed to understand precisely under
which conditions the inclusion of the NUT constraint or of the ReALiSM constraint within a
particular recognition setup can enhance the discriminative power of cepstra used in conjunction
with HMMs.

In fact, the class-based structural specialization induced by the NUT paradigm may better
express its utility in the framework of Auto-Regressive HMMs [Poritz, 1982; Juang and Ra-
biner, 1985] (from [Bourlard et al., 1996]). In these models, each state is characterized by an
Auto-Regressive signal model (or, equivalently, a Linear Predictor) instead of a multi-Gaussian
probability density function, and the likelihoods correspond to the prediction errors of each AR
model. Since the use of class-based predictor topologies increases the contrast of the prediction
errors between in-class and out-of-class observations, the NUT paradigm may prove useful in

enhancing the discriminative power of the AR-HMMs.

In any case, a definitive assessment of the performance of NUT-derived features for pattern
recognition may only be conceived as a long-term goal : their use in HMMs represents a sort of
sanity check (plus an interesting didactic exercise for the PhD student), but the study of their
implications in the development of an alternative and potentially more adapted recognition

system exceeds our current scope.

5.2 Speech coding

We have seen little or no use of articulatory paradigms in the speech coding framework. The
modern state of the art coding systems seem to rely mainly on perceptual paradigms, or they
focus on achieving a graceful degradation in variable bit-rate channels (e.g., for applications in
IP-based telephony). However, the reduced dimension and the smoothness of the trajectories
brought by articulatory features would make them candidates of choice for an application to low

bit-rate coding systems.

As a matter of fact, the analysis systems that we propose achieve a dimensionality reduction
with respect to the usual acoustic vectors, and implement the access to feature spaces linked
with some speech production paradigms. Lattice filtering being the core of many state of the
art coding systems (e.g., the CELP [Schroeder and Atal, 1985], used in GSM telephony), the
validation of our extraction method can also take place in the coding domain: it is possible to

check if a higher speech quality could be achieved when incorporating the NUT or ReALiSM
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constraints in the lattice filtering scheme of a coder.

Nevertheless, a careful study of the following points should be performed to assess precisely

the interest of our analysis methods in the framework of speech coding:

o cffects of the quantization of the parameters — the statistics of the constrained parameters
extracted from the speech data should be examined to determine a suitable quantization
and bit allocation scheme for the parameters of the filter and for the codebook of excitation

vectors;

e [istening assessment — a listening assessment of the waveform rebuilt after parameter quan-
tization and potential degradations should be performed, using the standard Mean Opin-
ion Score (MOS) procedure or some other objective speech quality measures [Quackenbush
et al., 1988].

The necessarily limited time span of a thesis has compelled us to leave these points in the domain

of future work.

5.3 Speech enhancement : de-noising, production-based speech

processing

We have seen in the chapter 3 that the NUT models were able to specialize in the analysis of
classes of signal by capturing some of the signal structure in their topology. As a matter of
fact, the non-null reflection coefficients occur at the lags corresponding to a maximal correlation
between the forward and the backward errors. This capacity could be exploited in a de-noising
framework. For instance, using NUT filters trained on clean speech data for the parameterization

of noisy speech may allow to increase the robustness of the feature extraction schemes.

As a matter of fact, the structure of the NUT filter codes the places of most significant
correlation that are relevant to a class of training signals. If the class-based topologies are re-
used with noisy instances and without any further optimization, the NUT analysis will keep its
focus on the same “places of correlation”. This could result in enhanced spectral estimates in

noise. To assess the relevance of this idea, the following experiment should be led:

1. train the topologies of some nut filters on some clean instances of a particular class of

signals;

2. use the trained topologies or a classical LPC model to estimate the spectral models of the

clean instances;

3. add some noise to the analyzed instances;
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4. estimate some spectral models of the noisy instances with some classical (unspecialized)
LPC models and with the trained NUT models;

5. measure a spectral distortion between the clean spectra (the reference) and the noisy

spectra obtained respectively with the classical LPC and the NUT models.

If the noisy spectra obtained with NUTs prove to be less distorted than the noisy spectra in
the usual LPC case, it means that the NUT analysis will have somewhat corrected the noisy

spectral estimate by focusing on relevant “places of correlation”.

Alternately, in the framework of the NUT model, the spectral warping induced by a voluntary
modification of the positions of the non-null reflection coefficients could be exploitable for speaker

normalization, e.g.:

1. estimate a global topology for each speaker;

2. estimate speaker-dependent reflection coefficient trajectories, using the speaker-dependent

topologies;

3. normalize the features by “forgetting” the original topologies, setting them all to a template

configuration (e.g., all ones);

4. re-compute the transfer functions, the spectra and the cepstral features based on the

template configuration, to obtain some warped spectral and cepstral features.

After a study of the induced spectral distortions and of the effects on the variability of the
spectral and cepstral features, this system could be tested in a speech or speaker recognition

framework.

Finally, the spectral estimates issued in relation with production models could be further
constrained by acting on the extracted articulatory or pseudo-articulatory trajectories, e.g.,
through smoothing, thresholding to physiologically plausible values, or notch filtering around
human rates of change (see the figure 4.7 on page 81). After the application of these constraints,
it is possible to go back to the acoustic features through the computation of some new reflection
coefficients inheriting the imposed articulatory constraints. Once again, as a pre-requisite, the

induced spectral distortions should be carefully studied.
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CHAPTER 6

Conclusion

From the depths of Digital Signal Processing to the shores of phonetic sciences and articulatory
phonology, from the fluid dynamics of lossless tubes to the dry landscapes of C programming,
surfing the articles exposing the state of the art methods and applications, this thesis has been

the occasion to explore the vast domain of Automatic Speech Processing.

The basic challenge consisted in finding innovative ways of accounting for some speech pro-
duction paradigms in the feature extraction process. After a study of the available acoustico-
articulatory inversion techniques, we have found that the analogy existing between the Linear
Prediction (LP) analysis of speech and the lossless acoustic tube models [Markel and Gray, 1976;
Wakita, 1979; Bonder, 1983], despite its being part of the DSP tradition for a long time, had
not led to recent developments. Yet, it is a fact that most of today’s state of the art speech
production models (e.g. the Distinctive Regions Model, DRM, [Mrayati et al., 1988] or Maeda’s
model [Maeda, 1979]) use an acoustic tube as the interface between the acoustic level and the
speech production strategy level. Hence, using the LP /tube analogy as a bridge between speech

production modeling and DSP appeared to be an innovative and well-founded idea.

Our development of this idea has led to the foundation of two new features extraction
methods: the Non-Uniform Topology (NUT) analysis, and the “Relating Acoustics to a Linear
Shape Model” (ReALiSM) method.

To establish the NUT model, we have begun with generalizing the traditional lattice fil-
ter/lossless tube equivalence to the case of tubes discretized in unequal-length sections. To
be able to use these non-uniform tubes as analysis models, we have derived and studied some
relevant parametric estimators, based on the observation of the acoustics and on the analytic
minimization of a well-defined error criterion. Then, remarking that a fixed non-uniform topol-
ogy (e.g., the one of the DRM production model) may not be optimal for every part of speech,

we have proposed and studied a method to optimize the tube topology from the acoustic ob-
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servations. To assess this new model, we have studied its spectral modeling properties. They
revealed that the NUT estimation is able to achieve a better spectral modeling accuracy than
the classical Linear Prediction Coding (LPC) with an equivalent number of parameters. Alter-
nately, we have investigated the potential use of the tube topologies themselves as an analysis

tool.

In the case of the ReALiSM model, the first development step has consisted in adapting
Maeda’s model to the constraints introduced by a connection with the inverse lattice filtering
form of LPC. Then, we have integrated the model with the lattice filtering framework through
the development of a completely analytic acoustico-articulatory processing chain. Our new
system allows to project the solution of the LPC estimation in an articulatory space. Hence,
we have provided a qualitative assessment of the LPC solution and of the ReALiSM model in a

phonetic framework.

Since no pre-existing software was adapted to the study of these new methods, our research
work has involved the development of a complete portable and stand-alone software package,
which implements the proposed methods in C language. This software package is freely available
for academic purposes as ftp://ftp.idiap.ch/pub/sacha/Warez/libart.0.0.tar.gz. The

contents and documentation of this package are given in the appendix B.

In addition, Linear Prediction analysis is used as a feature extraction method in most of the
main Automatic Speech Processing (ASP) technologies (such as speech coding, speech/speaker
recognition, speech synthesis, speech enhancement etc.). Hence, the production-based analysis
methods that we have developed create a new gateway for the integration of speech production
constraints into the main classical ASP applications. To assess the benefits that they introduce,
we have proposed multiple ways to exploit the NUT and ReALiSM systems in various branches
of the ASP domain. In particular, we have obtained and discussed encouraging preliminary
speech recognition results. Due to the necessarily limited time span of a thesis, we have been

obliged to leave the rest of the applicative evaluation for future developments.

Finally, our new systems open a way towards the development of innovative analytic and
real-time acoustico-articulatory inversion systems. A more in-depth verification of their true
acoustico-articulatory inversion capabilities calls for additional developments in a context in-

volving more focus on some purely phonetic aspects.
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APPENDIX A

The University of Wisconsin speech

and X-Ray Microbeam database

A.1 Specifications

For a complete reference document, see [Westbury, 1994].

A.2 Overall characteristics

e Language: English

Number of speakers: 48 speakers, 22 males, 26 females

Speech volume :

— time: approx. 17 minutes per speaker

— phonemes: approx. 6600 phonemes per speaker with the DARPABET phone set

Nature of the utterances: prompted text,

40% sentences

— 33% unconnected words and sounds
— 13% prose (connected speech, long texts)
— 8% oral motor tasks

— 6% numbers
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A.3 Audio

e Sampling Freq.: 21739 Hz
e Format: SPHERE, “shorten” type compression

e Quality: microphone speech, thin band of machine noise around 5435 Hz, some operator

speech during silences, some background white noise.

A.4 Articulation

e Sampling Freq.: 146.6 Hz, 6.866 ms period
e Format: ASCII, differential coding

e Quality: some mistracks marked by a stamp value

A.5 Transcription

e Orthographic transcription: prompts given as unformatted ASCII, no time alignment

e Vocabulary: whole database — 440 words, unconnected words (“citations” task) — 106

words

e Phonetic transcription: none

A.6 Resource management

Database preprocessing

It has been discovered that many audio files were not corresponding to their theoretical ortho-

graphic transcription. Inadequacies were of several kinds:

e missing words at the end of the utterances
e cut words at the end of the utterances
e extra words or sentences

e stuttering.
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This matching problem has been corrected by implementing an annotation interface suited to the
review of the audio and text files, and using it to correct the transcriptions and/or cut adequately
the audio files. This correction task has been applied to 75% of the database, comprising the
isolated word lists, the sentence lists and the number lists. The remaining 25%, made of long
paragraphs, oral motor tasks and sounds, have been considered inappropriate for the training
and testing of recognition systems. Leaving these utterances aside brought the advantage of

reducing the vocabulary size to 281 words.

Phonetic alignment

A phonetic labelling has been automatically generated through forced alignment of hidden
Markov phoneme models. The HMMs have been trained through flat start 4+ embedded training,

according to the training procedure described below.

e Base software platform: HTK [Young et al., 1999].

e Phone set: DARPABET, 39 phonemes (same as DARPA Resource Management phone

set), plus beep, silence, preamble and short pause (total 43 models).

o
e HMMs type: monophones, left-right, 3 emitting states. @/\8/\@/\*8/\@

e HMM Emission PDF type: multi-Gaussians, 5 Gaussian components, diagonal covari-

ances.

e Training set: 42 speakers, 51240 words (isolated words 11760, numbers 4116, sentences
35364).

e Test set: 6 speakers, 7320 words (isolated words 1680, numbers 588, sentences 5052).
e Lexicon: CMU version 0.4.

e Feature type: MFCCs + energy + A + AA.

o Waveform Preprocessing: notch filtering around 5435Hz with a 20Hz bandwidth.

e Training procedure : flat start + embedded training with Gaussian splitting:

1. flat start, i.e. initialization of means and variances of mono-Gaussian pdf models
with the mean/variance of the whole training data

4 epochs of embedded training;

splitting of the mono-Gaussian pdfs into 3 components mixtures;

4 epochs of embedded training;

AT el o B o

splitting of the 3 Gaussians mixtures pdfs into 5 components mixtures;
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6. 4 epochs of embedded training;

7. additional epochs of embedded training without further splitting, until convergence

is reached.

e Quality of the models: best word error rates observed for recognition on the test set were
7.8% WER on isolated words and 33.2% WER. on the full test set (including continuous
speech). These results are average with respect to a pure speech recognition application,

but they indicate that the models should be good enough for a forced alignment.

e Forced alignment assessment: visual inspection of the forced alignment versus the speech

waveform revealed no significant problems.

Speech recognition

See section 5.1.3. Note that the training and test set used in the recognition experiments

described in section 5.1.3 differ from those used for the alignment.
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Documentation of the experimental

software
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§°0 10 LINY4IQ dUTFop#

gD0dNos
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