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Abstract. In human perception, the availability of context enhances recognition and renders
it more robust to noise. Even if not all phonemes in a word (or words in a sentence etc.) are
correctly perceived, humans can fill in missing parts with the help of cues from the surrounding
speech parts. This was proven in studies on human speech perception where recognition of words
in sentences under noise was shown to outperform recognition of words in isolation or, even more
drastically, of nonsense syllables under noise.

A new model for quantifying the influence of contextual information on human recognition perfor-
mance was recently proposed. Although the authors state that it is not a model for the recognition
process itself, we will see how the ideas behind this model can be used in automatic speech recog-
nition to extend our formerly introduced multi-band recognition systems to incorporate frequency
contextual information. We will compare the new set-up to our former models such as the full
combination subband approach and its approximation.

Acknowledgements: This work was supported by the Swiss Federal Office for Education and
Science (OFES) in the framework of both the EC/OFES SPHEAR (SPeech, HEAring and Recogni-
tion) project and the EC/OFES RESPITE project (REcognition of Speech by Partial Information
TEchniques).
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1 Introduction

Several approaches to render automatic speech recognizers more robust against corruptions by noise
exist. One of the most promising approaches is the use of contextual information which can account for
local errors introduced by the noise. In automatic speech recognition (ASR) systems, contextual infor-
mation over time is, thus, usually included (up to a certain degree) through the use of larger time-scale
information which is incorporated e.g. by a long input window in the case of MLP recognizers and/or
by the use of delta and possibly delta-delta features. Another (additional) approach to render speech
recognizers more noise robust is multi-band processing. In multi-band based recognizers, the frequency
domain is split into several frequency subbands which are processed separately for feature extraction
and probability estimation before the estimates from all subbands are recombined for decoding. For
this reason, multi-band systems can miss important correlation over frequency. An approach which
tries to overcome this limitation explicitly models all possible combinations of subbands [3, 5] and has
shown improved noise robustness as compared to original multi-band processing.

We will see in the following, how this “full combination” (FC) approach to subband processing can
be further improved by introducing an additional processing step inspired from a “model for context
effects in human speech recognition” described in [1]. In Section 2, we will briefly discuss this model as
proposed by [1]* and show the similarity of its formalism to the FC approach and its approximation.
The approximation to FC (AFC) is employed when a high number of subbands is to be used and the
training of one recognizer for every possible combination of subbands, as it is done in FC, becomes
unfeasible. We will then show how the two multi-band approaches (FC and AFC) can be enriched
through application of the human model to automatic processing. In Section 5, the experiments which
were carried out in the framework of HMM/ANN (Hidden Markov Model/Multilayer Perceptron)
hybrid systems on clean and noise-corrupted data will be presented.

2 The Models for Context Effects

In this section, we briefly introduce the two-stage model of human perception as proposed by
Bronkhorst, Bosman and Smoorenburg [1] and show how it could be interpreted in the framework of
a multi-band recognizer for ASR.

2.1 A two-stage model of human perception

Bronkhorst et al.’s [1] model is based on a description of human perception as a two-stage process:
A listener first tries to identify the stimulus by using sensory information only. Then, in the second
part, he/she increases the accuracy of the perceived stimulus by filling in the missing parts of (an
incompletely perceived) stimulus by the use of contextual information.

2.1.1 Measure of sensory information

The probability of occurrence of a (possibly incomplete) stimulus is calculated from the probabilities of
correct recognition of the n elements in the stimulus, which are denoted by p;, ¢ =1..n. For recognition
of an element and, thus, the calculation of p;, only the (‘sensory’) information contained in the element
itself is used. Thus, it is implicitly assumed that the recognition probabilities of the elements are
independent at this stage, and that the probability of identifying the whole stimulus can be described
as the product of the element recognition probabilities. As each element can either be recognized
correctly p; or incorrectly 1 — p;, the overall recognition probability for the whole stimulus is described
by all possible combinations @; (i = 0..n) of (n—1i) correctly and i erroneously identified element

I This model describes the use of context information over time. We will see how its strategy can also easily be used
over frequency.
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probabilities, i.e.:

Qo = pip2...Pn,
Q1 = (1—=p)p2epn+ ... + 010011 —pn)
Qn = (1=p1)(1—=p2)...(1—=pyp)

where each (Q; consists of (’:) terms which represent all possible permutations of ¢ missing elements
in the set of n elements. (For all Q; together, there are N =2" terms, i.e. combinations of present and
missing elements.) @; is referred to as a ‘percept’.

2.1.2 Measure of contextual information

It is assumed that a listener has the chance ¢; of correctly guessing ezactly one of i missing elements in
a stimulus, excluding the possibility that more than one element is corrected at a time. The elements
which are correctly guessed are then assumed to correspond to correctly perceived elements from
the first stage, i.e. a corrected element is regarded as if it had not been wrongly perceived in the
first place. Thus, a listener correctly perceiving (n—i) elements has, each time, a chance c;c;_...c;
of correctly guessing the missing elements: ¢; for correcting the i*” element, ¢; ; for correcting the
(i — 1)t" element, and so forth. The parameter ¢; therefore describes the influence of context in the
recognition process.

There are different possibilities for estimating the context parameters ¢;. In word recognition, e.g.,
for each number 7 of missed phonemes the alternative words are counted in the lexicon. These numbers
together with the total number of words in the dictionary can then be used to calculate each ¢;.

An estimate of the average correct recognition probability p(w) of the whole stimulus can then
be established by multiplying the probability of occurrence of a certain percept @; by the chance of
guessing the stimulus, and adding over all possible percepts:

p(w) = Qo +c1Q1 + c12Q2 + ... + c1..cnQy (1)

If all ¢; were assumed equal to ¢ (i.e. ¢! = H;Zl ¢; with ¢j=c), (1) can be written in a closed form:

pw) = S dQ; (2)
=0

Testing the model with different kinds of (non-equal) estimates of ¢;, Bronkhorst et al. showed that
recognition scores of consonant-vowel-consonant (CVC) words in auditory or orthographic presentation
could be well predicted with this model.

2.2 Application to Subband-based ASR

In the following, we discuss how to use and extend the above formalism to subband-based ASR and,
thus, to introduce frequency contextual information. The probability of correct recognition of an
element now corresponds to the probability of correct recognition of a reliable time-frequency block,
and the probability of erroneous recognition of an element corresponds to the probability of incorrect
recognition of an unreliable block (unreliable due to corruption by noise).

2.2.1 Measure of local information

In subband-based ASR, elements are now interpreted as regions in the frequency domain belonging
to one time frame, i.e. as time-frequency blocks. An element probability p; = P(qg|x;) of correctly
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recognizing an element, thus, corresponds to the (posterior) probability of correct recognition of that
frequency block (for phoneme ¢, (k = 1..K)) by the subband recognizer which was trained on this
frequency region i (z; = frequency subband ¢ of x, i = 1..n, for one time frame). The probability of
incorrect recognition is therefore 1—p;=1—P(qg|z;).

A certain recognition event (‘percept’) can be described as a combination of well-recognized r;
and/or missed and thus, unreliable elements u; = 7;, and the probability of occurrence of such an
event is calculated from the probabilities of occurrence of the elements. Following [1], where it is
implicitly assumed that the elements are statistically independent, a recognition event ; can be
expressed by the product of correct element recognition probabilities p;’s with i €r; and element error
probabilities (1—p;)’s with i € u;, describing this event.

The parameter ); signifies, in our model, the probability that 7 time-frequency blocks were correctly
recognized (by i recognizers, each of them only using the information from the element at its input,
i.e. only ’sensory’ information) and that (n—i) blocks were missed. This includes for each @; all
permutations of 7 elements, so that we can write for a multi-band system of n subbands (with p; =
P(qy|z;) for x; the it" frequency element):

Qo = Plaklr1)P(grlz2)...P(grlzn),
Q1 = (1—P(grlz1))P(qk|z2)...P(qk|Tn) + ... +
P(gr|z1)...P(qr|zn-1)(1 — P(qr|zn))

Qn = (L= P(grlz1))(1 = P(gr|z2))-.-(1 = P(gk|2n))

2.2.2 Measure of contextual information

Let us now come to the question of how to model the context parameters ¢; in the case of multi-band
ASR using n frequency subbands. If an automatic recognizer is “asked” to make a guess at an element
it previously mis-classified, the probability of correct classification would remain equal to the phoneme
prior probability. This would be the same for each missed element, thus, ¢; =c= P(qy).

Following (1), we now multiply the probability of occurrence of each recognition event @); by the
chance ¢’ of guessing the i =|u;| missed parts, and explicitly sum over all possible events j=1..N (n=
number of frequency subbands and N = 2"), obtaining the recognition probability of the combined
multi-band system of n subbands for phoneme ¢;, as

n

P(qk|£l§) ~ Z CiQi

= g: 11 P(ar|z:) [T (1—=P(q|z;)) ¢l

j=0i€r; lEu;

with r; denoting the correctly recognized (reliable) elements and u; the erroneously recognized (un-
reliable) elements of event j (j=1..N). For a certain combination j, the weight amounts to ¢/%i! with
|uj| the number of mis-classified elements in combination j.
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3 FC Subband Processing

In our earlier work on multi-band processing, we proposed the FC model which also considers all
possible combinations of (reliable) subband classifiers, combining them in a weighted sum [5]. One
strategy to implement such a system in the framework of HMM/MLP hybrid systems, is by training
a separate MLP expert on each combination j of subbands, which results in the FC formula :

Il
.MZ

.
Il
o

P(qk|) P(rj|z) P(qk|r;, =)

R
M=

w; P(gile.,) (5)

<.
Il
=}

with w; the reliability weight for expert j, and z,, the combination j of subbands i € (z,; = Uier; ;).

As such a system demands a lot of training and parameters, an approximation (AFC) was devel-
oped [3] (assuming conditional independence of the one-band streams) which only employs the MLP
experts trained on the one-band streams, the outputs of which are then used during recognition to
approximate all other combination probabilities P, (qx|z) as follows:

P(qele) ~ kP il(g) T Plaxle) (6)

LET;

with ©; a normalization factor. We then write for the AFC formula :

N
Plale) = 30 w; @ (@) [T Plaslers) (7
j=0 i€r;
Yy e ) @

Wi —x
j=0 Ek':1 P""j (Qk’ |55)

with w; = P(rj|z) reliability weight for approximation j. For correct approximation of the combi-
nation probabilities by the single-stream probabilities, the factor P'~I"il(q.) is essential. In (8) each
approximated combination P, (gx|z) is then normalized over the set of all phonemes &k (k = 1..K).
For derivation of this approach, see [3, 2].

4 Comparing AFC and FC to the new model for error correc-
tion

In this section, we compare the new formalism (4) which we obtained from the interpretation of
Bronkhorst et al.’s model to the two multi-band approaches AFC and FC. We will see how (4) can be
used to extend, first, the AFC model, which bases on a similar assumption of independence between the
element probabilities. We can then apply this extension, which takes account of the error probabilities
from the unreliable bands together with a correction factor, also to the FC model. In this case, the
assumption of independence is no longer needed.

4.1 AFC with Error Correction (AFC-ECPC)

Comparing the AFC formula (7) to the recombination formula which we obtained by application
of Bronkhorst et al.’s model (4), we can see the similarity between the two approaches. The main
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differences are that in Bronkhorst et al.’s model the error probabilities of the supposedly unreliable
bands are included by the second term in (4) and that in the AFC model the factors P'~I"il(g;)
and O have to be considered. Moreover, the weighting factors are interpreted differently: in (4),
the weights ¢; are interpreted as context information which is used to correct the wrongly identified
elements u; = T;, whereas in our former system (7) the weights w; indicated the reliability of the
correctly recognized elements r;.

We therefore decided to combine both approaches in a joint model. This can be realized by ex-
tending the AFC approach to also admit the respective error probability in the calculation of each
combination probability and by adapting the interpretation of the weights. The new AFC approach
with “error correction in posterior combination” AFC-ECPC formula simply results in:

N HiEr- P(qklxi) ‘ ‘
Plgelr) > 3 Or—ri=r—— 1 (1 = Plgklr)) ¢
j=0 (@) jey;
(9)
N P
& 1 (1 = P(qk|a1)) clusl
j=0 Ek’ o Prj (@ ]2) lEu;
with ¢ €r; denoting the correctly recognized elements ¢, [ € u; the wrongly identified elements [, and
P, (qr|z) as in (6).

J

4.2 FC with Error Correction (FC-ECPC)

To overcome the assumption of independence between the elements, which is for an automatic speech
recognizer a strong restriction, we substitute the approximated combinations by one recognizer each,
returning to the FC approach. As we saw above, the application of Bronkhorst et al.’s model resulted
in a context model for the AFC approach which we denoted as AFC-ECPC. If we now apply it to FC,
we obtain the FC-ECPC formula? as:

N
Plglz) = Y Plaklar,)(1 = Plgi|zy,)) ¢! (10)
7=0

For each position of reliable data z,, (j=1..IV), the error of the unreliable part z,,; is not discarded
but, each time, multiplied as an error probability to the posterior probability of the reliable data. This
error is then accounted for through the multiplication by the respective power of ¢ = P(q) (which is
an initial, very rough model for the context information as described in Section 2.2.2 above).

5 Experiments

Experiments were carried out on a test set of 200 utterances from the Numbers95 database of connected
numbers recorded over the telephone line. For tests on noise-corrupted data, real-environmental car
noise (from an in-house database of car noise by Daimler Chrysler) and factory noise (from the
Noisex92 database) were added at signal-to-noise ratio (SNR) values of 12 and 0 dB to the clean test
data.

The HMM/MLP hybrid systems, using j-rasta features, were trained on the (clean) Numbers95
training part. Our multi-band system consists of 4 frequency subbands, so that the FC and FC-ECPC
systems comprise 16 MLP experts (trained on each combination of subbands), whereas the AFC and
AFC-ECPC systems only use the 4 MLPs trained on one frequency subband each.

5.1 Experiments with AFC-ECPC

As the application of Bronkhorst et al.’s model to ASR rather resembles the AFC than the FC
approach, we started by testing the former (although this model usually results in lower recognition

2ECPC=Error Correction in Posterior Combination.
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Rule Car Factory Clean
OdB|12dB 0dB|12dB 45 dB

AFC . 47.0 | 164 | 46.6 | 16.9 12.5

equal weights

AFC 48.0 | 17.2 | 470 | 17.2 12.1

proposed wghts

AFC_EC.PC 46.1 | 16.1 | 46.0 | 16.8 12.2

equal weights

AFC_ECPC 471 | 179 | 51.1 | 179 13.9

priors as wghts

Table 1: Word error rates (WER) for the approzimated full combination (AFC) system and its extended
version (AFC-ECPC) using error correction as proposed by [1], conducted on clean data and two noise
cases (car and factory noise) at 0 and 12 dB SNR. For description of the weights see text.

rates except for band-limited noise [3]). In order to see the difference resulting from including the error
probabilities, we first tested both systems on the same weights which is only possible if the weights
are chosen as ¢ = P(rj|z) = cl*! = 1. Results in Table 1 (1% and 3" line) show that both systems
result in similar performance in clean and noise, with a slight gain for AFC-ECPC.

In the next set of experiments, each system was tested with its proposed weights, i.e. P(r;|z) = 2{r;]
for AFC (which is increasing for the number of (reliable) bands in an approximated combination, thus
for each subband in a combination we simply multiplied by the factor 2) and ¢l%i| = Pluil(¢;,) =0.0371%1
for AFC-ECPC assuming equal priors of the 27 phonemes in the database (2"¢ and 4" line in Table 1).
Here, both systems suffered a slight deterioration (except for AFC on clean). (In former experiments,
we had also found that AFC performs best on equal weights.)

5.2 Experiments with FC-ECPC

In order to release the assumption of independence among frequency subbands, we turn to the FC
systems. Again, we first tested the original FC system and the extended version FC-ECPC setting the
weights to ¢ = 1. No significant difference in the results of both systems were observed (cf. Table 2,
1%t and 377 line).

Rule Car Factory Clean
0dB|12dB 0dB|12dB 45 dB

FC . 39.9 | 10.6 | 40.9 | 11.8 8.6

equal weights

FC 35.1 | 10.1 | 36.8 | 10.0 8.0

RF weights ) ) ’ ’ ’

FC-ECPC 30.0 | 10.8 | 41.1 | 11.9 || 84

equal weights

FC-ECPC 31.2 | 11.1 | 33.8 | 12.0 8.6

priors as wghts

Table 2: WER for the full combination (FC) system and its extended version (FC-ECPC) using error
correction as proposed by [1], conducted on clean data and two noise cases (car and factory noise) at
0 and 12 dB SNR. For description of the weights see text.

In the next set of experiments, we chose for the FC system our (so far) best non-adaptive weights,
which are relative frequency (RF) weights calculated on the training data [4]. This was compared
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to FC-ECPC using error correcting weights as described above (cf. Table 2, 2"? and 4t* line). Both
systems improved significantly in high levels of noise when the appropriate weights were used, whereas
performance stayed (almost) the same for low level noise and clean speech. The new FC-ECPC system
resulted in especially good performance at 0 dB SNR. Therefore, we conclude that the gain of the
ECPC system does not stem alone from the inclusion of the error probabilities from the non-reliable
bands, but to a high degree depends on the correct choice of error correction by an appropriate
selection of the correction factor ¢!,

6 Conclusion

In this article, we proposed a new approach to multi-band ASR which was derived from a “model for
context effects in human speech recognition” proposed by [1]. The similarities between the new models,
FC-ECPC and AFC-ECPC, and former multi-band systems were discussed. The performance of the
error correction mechanism in the new models for automatic speech recognition depends to a large
extend on the appropriate choice of weights. An initial interpretation of the weights was proposed and
showed very promising results for FC-ECPC in noise corrupted speech. Just as in the case of AFC, the
approximated system, AFC-ECPC, cannot compete with the FC-ECPC system when tested on wide-
band noise [3]. We are planning on investigating other weighting strategies to improve the performance
of the new error correcting multi-band models also in higher SNR and clean speech.
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