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Abstract. This paper presents a cursive character recognizer embedded in an off-line cursive script
recognition system. The recognizer is composed of two modules: the first one is a feature extractor,
the second one an LVQ. The selected feature set was compared to Zernike polynomials using the
same classifier. Experiments are reported on a database of about 49000 isolated characters.
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1 Introduction

Off-line Cursive Script Recognition (CSR) has several industrial applications such as the reading of
postal addresses and the automatic processing of forms, checks and faxes. Among other CSR ap-
proaches (Senior and Robinson, 1998)(Kim and Govindaraju, 1997) one attempts to segment words
into letters (Steinherz et al., 1999). Since such a task is difficult and error prone, words are usually
oversegmented, i.e. the fragments isolated by the segmentation (primitives) are expected to be not
only characters, but also parts of characters. In order to obtain a letter, it is often necessary to ag-
gregate several primitives. The best complete bipartite match between blocks of primitives and word
letters is usually found by applying Dynamic Programming techniques (Bellman and Dreyfus, 1962).
Given a word, the matching with the handwritten data is obtained by averaging over the costs due to
classifying each aggregation of primitives as one of its letters. The word with the best match, i.e. the
lowest, cost, is selected as the interpretation of the handwritten sample.

A crucial role is then played by the cursive character recognizer. This takes as input a pattern com-
posed of one or more aggregated primitives and gives as output a cost for classifying it as any possible
letter.

The Learning Vector Quantizer (LV(Q)) was selected as neural classifier because, being a vector quan-
tizer, it yields for each pattern the cost ! of assigning a pattern to a given letter class.

This paper is organized as follows: in Section 2 the method for extracting features for character repre-
sentation is presented; a review of LVQ is provided in Section 3; in Section 4 reports some experimental
results; in Section 5 some conclusions are drawn.

2 Feature Extraction

Most character recognizers do not work on the raw image, but on a suitable compact representation
of the image by means of a vector of features. Since cursive characters present high variability in
shapes, a feature extractor should have negligible sensitivity to local shifts and distortions. Therefore
feature extractors that perform local averaging are more appropriate than others that yield an exact
reconstruction of the pattern (e.g. Zernike polynomials, moments). The feature extraction process
used in our recognizer is similar to the one presented in (Pedrazzi and Colla, 1995) and applied to
digit and handprinted character recognition. The feature extractor, fed with the binary image of an
isolated cursive character, generates local and global features. The local features are extracted from

Figure 1: Global features. The dashed line is the baseline, the fraction of h below is used as first
global feature. The second global feature is the ratio w/h.

subimages (cells) arranged in a regular grid 2 covering the whole image. A fixed set of operators is
applied to each cell. The first operator is a counter that computes the percentage of foreground pixels
in the cell (gray feature) with respect to the total number of foreground pixels in the character image.
If n; is the number of foreground pixels in cell ¢ and M is the total number of foreground pixels in

li.e. the distance from the closest prototype of the class.
2Small translations of the input patterns can significantly change the distribution of the pixels across the cells. In
order to smooth this effect, the cells are partially overlapped.
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the pattern, then the gray feature related to cell i is 77.

The other operators try to estimate to which extent the black pixels in the cell are aligned along some
directions. For each direction of interest, a set of IV, equally spaced, straight lines are defined, that
span the whole cell and that are parallel to the chosen direction. Along each line j € [1, N] the number
n; of black pixels is computed and the sum Efv n? is then obtained for each direction. The difference
between the sums related to orthogonal directions is used as feature. In our case the directions of
interest were 0° and 90°.

We enriched the local feature set with two global features giving information about the overall shape
of the cursive character and about its position with respect to the baseline of the cursive word. As
shown in figure 1, the baseline is the line on which a writer implicitly aligns the word in the absence of
rulers. The first global feature measures the fraction of the character below the baseline and detects
eventual descenders. The second feature is the width/height ratio.

The number of local features can be arbitrarily determined by changing the number of cells or direc-
tions examined in each cell. Since classifier reliability can be hard when the number of features is high
(curse of dimensionality, (Bellman, 1961)), we use simple techniques for feature selection in order to
keep the feature number as low as possible. Directional features corresponding to different directions
were applied and the one having the maximal variance was retained. Therefore the feature set was
tested changing the number of cells and the grid giving the best results (4 x 4) was selected.

In the reported experiments we used a feature vector of 34 elements. Two features are global (baseline
and width/height ratio) while the remaining 32 are generated from 16 cells, placed on a regular 4 x 4
grid; from each cell, the gray feature and one directional feature are extracted.

3 Learning Vector Quantization

Learning Vector Quantization (LVQ) is a supervised version of vector quantization and generates
codevectors to produce "near-optimal decision boundaries” (Kohonen, 1997).
LVQ consists of the application of three consecutive different learning techniques, i.e. LVQ1, LVQ2,
LVQ3 % . LVQL1 uses for classification the nearest-neighbour decision rule; it chooses the class of the
nearest codebook vector.
LVQ1 learning is performed in the following way: if m¢ * is the nearest codevector to the input vector
Z, then

mg, = mf{+ ;[T —mg] if T is classified correctly

mg, ., =mi — oy[T —mg] if T is classified incorrectly (1)

My, = My i #c
where oy is the learning rate at time t.
In our experiments, we used a particular version of LVQ1, that is Optimized Learning Vector Quanti-
zation (OLVQ1) ((Kohonen, 1997)), a version of the model that provides a different learning rate for
each codebook vector. Since LVQ1 tends to push codevectors away from the decision surfaces of the
Bayes rule, it is necessary to apply to the codebook generated a successive learning technique called
LVQ2.
LVQ2 tries harder to approximate the Bayes rule by pairwise adjustments of codevectors belonging
to adjacent classes. If m® and mP are nearest neighbours of different classes and the input vector Z,
belonging to the m?® class, is closer to mP and falls into a zone of values called window ® , the following
rule is applied:

Mmiy = mi + [T —mj]
My = mi — a2 —mi]

(2)

Since the application of LVQ2 tends to overcorrect the class boundaries, it is necessary to include
additional corrections that ensure that the codebook continues approximating the class distributions.

3LVQ2 and LVQ3 were proposed, on empirical basis, in order to improve LVQ1 algorithm.
4ﬁz§ stands for the value of m¢ at time ¢.
5The window is defined around the midplane of m* and m?.
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In order to assure that, it is necessary to apply a further algorithm (LVQ3).
If m* and m’ are the two closest codevectors to input z and Z falls in the window, the following rule
is applied®:

My =My if C(mf) #C(Z) A C(m{) # C(z)

My =My - ifom') #C@)AC(M) # C(2)

My =My — o[ —my] - if C(m*) # C(2) AC(m) = C(z)

My =My + [z —my] if C(m') # C(z) AC(m!) = C(7) 3)
My = my + o[z —my] if C(mf) =C(z) A C(m{) # C(z)

My =my — gy —mi] if C(m') = C(z) ANC(m?) # C()

My = my +eaq[Te —my]  if C(mf) = C(m{) =C(z)

mi . =m] + e[y —my] if C(m*) =C(m!) = C(z)

where € € [0,1] is a fixed parameter.
LVQ3 is self-stabilizing, i.e. the optimal placement of the codebook does not change while continuing
learning.

4 Experimental Results

The feature set was tested on a database of cursive characters in conjunction with the LVQ classifier.
The database contains isolated characters extracted from handwritten words coming from two sources:
the first is the database of handwritten words produced by the Center of Excellence for Document
Analysis and Recognition (CEDAR) 7 at the State University of New York (SUNY) at Buffalo ((Hull,
1994)).The second is a database of handwritten postal addresses digitalized by the USPS (United
States Postal Service). Word images from which the characters were extracted were all preprocessed
according to a scheme that includes morphologic filtering, deslanting and deskewing ((Nicchiotti and
Scagliola, 1999)). The character database contains both uppercase and lowercase letters. Uppercase
and lowercase versions of the same letter were joined in a single class.

The number of LVQ codevectors, assigned to each class, was proportional to the a-priori class prob-
ability. In our experiments all three learning techniques (i.e. LVQ1, LVQ2 and LVQ3) were applied.

%

10

abcdefghijkl mnopgrstuvwxyz
Figure 2: Letter distribution in the test set.
We trained several LVQ nets by specifying different combinations of learning parameters (different

learning rates for LVQ1, LVQ2 and LVQ3, and various total number of codevectors). The best LVQ
net was selected by means of cross-validation ® ((Stone, 1974)).

6C(g) stands for the class of g.

7All images belonging to directories train/cities and train/states were used.

8This technique consists of dividing the training set into two disjoint sets. On the first set are trained different nets.
The second set (validation set) is used to select the net with the best performance. Since this procedure can lead some
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Figure 3: Confusion Matrix for LVQ1+LVQ2+LVQ3 on the test set.

As a comparison Zernike Polynomials ((Khotanzad and Hong, 1990)), in conjunction with LVQ classi-
fier were tried in order to verify the hypothesis that our 34-feature set is more appropriate for cursive
character recognition than others that yield a reconstruction of the pattern. Finally experiments were
performed using a feature set formed by Zernike Polynomials and 34 features. The experiments were
carried out on a training and a test set of 32426 and 16213 characters respectively. Figure 2 shows the
percentage distribution of letters in the test set. Since the data is extracted from a database collected
by USPS in a real postal plant (Hull, 1994), our database distribution reflects the prior distribution
of that site. For this reason some letters are less represented than others or almost absent. In table
1, for different feature sets, the performances on the test set, measured in terms of recognition rate in
absence of rejection, are reported. Our best result in terms of recognition rate is 81.72%. The only

| model | 34 features | zernike | zernike + 34 features |
kNN 62.14% 22.63% 55.65%
LvQ1 77.10% 24.18% 74.67%
LVQ1+LVQ2 81.09% 31.15% 80.25%
LVQI1+LVQ3 81.35% 29.68% 79.55%
LVQI+LVQ2+LVQ3 81.72% 31.38% 80.64%

Table 1: Recognition rates on the Test Set, in absence of rejection, for several feature sets.

other result we know ((Yamada and Nakano, 1996)) is (approximately 75%) .

In figure 3, the confusion matrix of 34-feature set with the LVQ1+LVQ2+LVQ3 classifier, on the test
set, is shown. Figure 4 shows the probability distribution of correct classification for LVQ1+LVQ2+LVQ3
classifier. The probabilities of classification of a character correctly in top, top three, top twelve are
respectively 81.72%, 94.10% and 98.99%.

In our opinion, there are two fundamental sources of misclassification for our classifier are two. The
first one (for the most rare letters) is the low number of available samples. The second is the intrinsic
ambiguity in cursive characters. In fact, some couples of letters (e.g. e/l or a/o) are difficult to be
distinguished. This is confirmed by the confusion matrix and by the high recogniton rate in the top
three positions.

overfitting on the validation set, the performance of the selected net has to be confirmed on the test set.
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Figure 4: Cumulative probability function of the correct classification of LVQ1+LVQ2+LVQ3 classi-
fier.

5 Conclusion

We have presented a cursive character recognizer embedded in a offline CSR system. The recognizer
is formed by a feature extractor, that performs local averaging, and a LVQ classifier. The feature
extractor performed better than Zernike polynomials when tested using the same classifier. Besides,
the cursive character recognizer yielded better recognition results than others previously reported in
literature, ever though they were obtained on a smaller test set.
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