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ON THE CONVERGENCE OF SVMTorch, AN ALGORITHM
FOR LARGE-SCALE REGRESSION PROBLEMS

Ronan Collobert Samy Bengio

AucgusTt 17, 2000

Abstract. Recently, many researchers have proposed decomposition algorithms for SVM regres-
sion problems (see for instance [11, 3, 6, 10]). In a previous paper [1], we also proposed such an
algorithm, named SVMTorch. In this paper, we show that while there is actually no convergence
proof for any other decomposition algorithm for SVM regression problems to our knowledge, such
a proof does exist for SVMTorch for the particular case where no shrinking is used and the size of
the working set is equal to 2, which is the size that gave the fastest results on most experiments
we have done. This convergence proof is in fact mainly based on the convergence proof given by
Keerthi and Gilbert [4] for their SVM classification algorithm.
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1 Introduction

Vapnik has proposed in [12] a method to solve regression problems using Support Vector Machines
(SVMs). It has yielded excellent performances on many regression and time series prediction problems
(see for instance [7, 2]). Recently, we have proposed a fast decomposition algorithm for large-scale
regression problems [1] using SVMs. Unlike other decomposition algorithms for regression problems
(see for instance [11, 3, 6, 10]), there exists a convergence proof for our algorithm, and the goal of this
paper is to show such a proof. Let us first recall the general problem of SVM for regression and our
method to solve it.

Given a training set of I ezamples (x;, y;) with x; € E and y; € R, where E is an Euclidean space
with a scalar product denoted ( - ), we want to estimate the following linear regression:

f@)=(w-z)+0b
(with b € R) with a precision e. For this, we minimize

l

1

Ll + 03 by~ Flal,
i=1

where ||wl|? is a regularization factor, C' is a fixed constant, and |.|. is the e-insensitive loss function
defined by Vapnik:
|z|e = max{0, |z| — €}.

Written as a constrained optimization problem, it amounts to minimizing

l
r(w, & €)= 2wl + 03 (6 + &)

i=1
subject to
(w-oi) +b) —yi <e+§ (1)
yi — (w ;) +b) <e+ & (2)

To generalize to non-linear regression, we replace the dot product with a kernel ! k(-). Then,

introducing Lagrange multipliers o and a*, the optimization problem can be stated as:
Minimize the function

W(a, o) = %(a* —o) K@ —a)—(a*—a) y+ea*+a)' 1 (3)
subject to
(a—a*)'1=0 (4)
and
0<af, ; <C, i=1.1 (5)

where K is the matrix with coefficients K;; = k(x;, ;). The estimate of the regression function at a

given point is then
!

*
flz) = E (af — a;)k(xi, ©) + b
i=1
Inote that this kernel needs to verify the Mercer’s conditions in order for convergence proofs to work.
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where b is computed using the fact that (1) becomes an equality with & = 0if 0 < a; < C and (2)
becomes an equality with f =0if 0 < af < C.
Let us denote

and

as well as

W(B) =58 KB~ B"b (6)
subject to
B'1=0 (7)
and
0<6;8<C, i=1.2 (8)

where §; =1 for 1 <i<land d; =—-1forl+1<i<2l.

Solving this optimization problem with a decomposition method (as proposed for instance by Osuna
et al [8]) consists in an iterative procedure where at each iteration, one selects a set of variables in
{B1, ..., Bu} and then minimizes (6) with respect to the selected variables. Note that this selection
scheme is particular to SVMTorch, while all the other decomposition algorithms we have seen for
regression problems select pairs of variables (a;,af). This apparently small difference enables us to
show a convergence proof for our algorithm.

In the particular case where the number of selected variables at each iteration is fixed to 2, one can
then use a analytical method to solve the subproblem, as we have shown in [1] and was also proposed
for the SMO algorithm [9].

Going back to our method proposed in [1], in the case where no shrinking® is done and with the
number of selected variables set to 2, our algorithm can then be written as:

Algorithm 1 Given a T > 0,
1. Set B =0.

2. Select variables B;, and B;, where ig and i1 verify

6i0W£0 (a, a*) = maX;ec A, (5ZWZI(Q, a*) (9)
0u Wi (o, @*) = minje 4, 5;Wj(a, a¥)

where again §; =1 for 1 <i <l and §; = —1 forl+1<i <2, and
Ay ={i : 0<B; <C fori<l}uU{i : 0<§;6; <C fori>1I}
Ay={i : 0<B; <C fori<Il}U{i : 0<§;8; <C fori>1I}.

3. Solve analytically the optimization problem (6) with respect to these two variables. Update B
with respect to the obtained solution.

2Shrinking is a heuristic used to eliminate variables that tend to be stuck at bounds 0 or C for many iterations.



4 IDIAP-RR 00-24

4. Verify the optimality conditions

fori such that 0 < 8; 3; < C: A4 —1 < —6iW;(a, a*) < Aed 4

for i such that 8; =0 : W; (a, @) + SiAeT > —1 (10)
for i such that 6;3; = C : Wl’ (a, @) + ;A1 < 7
where
AP = ; * 11
|AUB| (sz+la a ;WZ(CM,CM)> ( )
with

A={i, 0<a; <C}, B={i, 0<a} <C}.
When all optimality conditions are verified, stop the algorithm; otherwise, go back to step 2.

The aim of this paper is to show that such an algorithm converges. In section 2, we expose a
recent convergence theorem from Keerthi and Gilbert [4] while in section 3 we show how it applies to
our algorithm.

2 The Convergence Theorem of Keerthi and Gilbert
In a recent paper, Keerthi and Gilbert [4] showed a convergence theorem for a modified version of

SMO given by Keerthi et al [5] for SVM classification problems. In fact, in their paper, Keerthi and
Gilbert talk about the general case where one wants to minimize

fm) = %nTQn +p'n (12)

subject to
a; <1n; <b; Vi and szi =c
i

where @) is symmetric positive semi-definite, a; < b; Vi and z; # 0 Vi. They call F the feasible set of
the quadratic problem. They suppose F non-empty, and f bounded below on F. They denote

Fi(n) = ([Qn]; + pi)/z

and define the sets

Iy(n) = {i:a; < <bi}
Ii(n) = {i:z;>0, ni=a;}
L(n) = {i:2:<0, g =0b;}
I3s(m) = {i:z; >0, n; =0by}
Lim) = {i:z<0, n;=a;}
Lp(m) = Io(n)Uli(n)UILx(n)
liow(n) = Io(n) UIz(n) U Li(n)

Moreover, they define (i, j) as being a violating pair if one of the following conditions is verified:

_ielup(n)a j_EIlow(n) and Fz(TI) <Fj(77)—T
i € Low(n), J€ILy(m) and Fi(n) > Fj(n)+7

They then prove that the following algorithm stops after a finite number of iterations :
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Algorithm 2 (GSMO) Given a 7> 0
1. Choose some n € F.
2. If n satisfies

min Fj(n) > max F(n)—71 13
i€y () (n)_ieIsz(n) () )

then stop.

3. Choose (jo, j1) a T-violating pair. Minimize f on F while varying only n;, and n;,. Set n to
the point thus obtained. Go to step 2.

3 Convergence of our Algorithm
Using the previous notation, let p =3, p=—b, Q = K, z; = 1 Vi, ¢ = 0, and

a; =0, b=C for0<i<lI
a;=-C, b;=0 for(I1+1)<i<2l.

Our optimization problem (6) is then totally equivalent to the one from Keerthi and Gilbert (12).
Moreover, it is easy to see that the hypothesis needed by Keerthi and Gilbert are verified: the initial
solution B = 0 is in F, K is positive semi-definite for a kernel k verifying Mercer’s conditions, and a
fortiori K is also positive semi-definite. Moreover z; # 0 Vi, F is clearly non-empty and compact. f
is thus bounded below.

Let us now show that our stopping conditions (10) are weaker than those from Keerthi and Gilbert

(13). Tt is easy to see that
Fi(n) = 0W; (e, o)

and thus one can easily deduce that the conditions (10) are equivalent to

VieIp(n): A9 —7<—Fy(n) <X 471
Vie I (T]) : Fl(’l’]) > -\ —7 (14)
Vi € I3(n) : Fi(n) < =X + 1.

Hence if n verifies the stopping conditions (13), and taking into account the fact that

— max Fi(n) <A< — min Fi(n)

i€110w (1) ie[up("l)
then ) .
Vi€ Liow(n) Fi(n) < min;er, , (n) Fim)+r
< X4 T
and

Vi€ Lp(m) —Fin) < —maxiep,,@ Filn)+71
< XN+ T

which implies the conditions (14). In other words, our stopping conditions are weaker than those from
Keerthi and Gilbert.
Finally, noting that in our selected variables (9) one has®

Ay =Io(n) U I3(n) = Liow(n)

Ay =Io(n) UIi(n) = Lyp(n)

3Tndeed, one can see that in our case, one has always z; > 0 and thus I2(n) and I4(n) are empty sets.
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one can see that we selected 3;, and f;, such that

Fi,(n) = max Fi(n)
iellow("l)

Fi,(n) = in Fi(n).

Moreover, if our algorithm has not stopped yet, in other words if our stopping conditions have not

been verified yet, then since our stopping conditions are weaker than those from Keerthi and Gilbert,
the latter are not verified either. Hence one then have

min F; < max F; -7
nin i(m) e i(m)

and thus

Fil(TI) <Fi0(77)_T

and (ig, i1) is a violating pair (in fact it is the worst violating pair).

Our algorithm is thus a special case of the general algorithm proposed by Keerthi and Gilbert.

It verifies all their hypothesis, excepted that our stopping criterion is weaker. Thus, our algorithm
converges.

4

Conclusion

In this paper, we have shown that SVMTorch, a decomposition algorithm proposed to solve large-scale
regression problems using support vectors machines [1], converges when the size of the subproblem
is set to 2 and no shrinking is done. We showed this convergence using a general theorem recently
given by Keerthi and Gilbert [4]. Finally, even if there is no proven convergence when using shrinking,
empirical experiments [1] showed that it does speed up a lot convergence times.
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