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Abstract: In this paper, the concept of Wavelet-domain Hidden Markov Trees (WHMT) is introduced to Automatic
Speech Recognition. WHMT are a convenient means to model the structure of wavelet feature vectors, as wavelet
coefficients can be interpreted as nodes in a binary tree. By the introduction of hidden states in each node, non-
Gaussian statistics inherent in wavelet features can be modeled. At the same time, correlations between neighboring
coefficients in the time-frequency plane are accommodated. Phoneme probabilities obtained using the WHMT and
wavelet features are then combined at the state level with those obtained by Gaussian distributions in conjunction with
MFCCs, and fed into conventional Hidden Markov Models. Preliminary experiments show the potential advantages of
this novel approach.
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1 INTRODUCTION

In recent ASR research, it has been shown that supplementary information obtained on different timescales or
resolution levels could improve recognition accuracy (e.g., [6][7][9]). As features with inherent multiresolu-
tion characteristics, wavelet coefficients offer an implicit way to exploit information on multiple timescales,
since the timescale of the analysis varies with frequency. At the same time as they provide a higher temporal
resolution for higher frequencies, a good frequency resolution for lower frequencies is obtained. However, the
wavelet transformation as it is does not provide much information on a timescale large enough to capture the
long-term dynamics of speech.

Wavelet coefficients have successfully been applied, e.g., in the field of image processing. Recent advances

take advantage of inter-coefficient dependencies1 by modeling wavelet feature vectors with a special kind of
HMM: the Wavelet-domain Hidden Markov Model [4].

While the wavelet transformation is expected to decorrelate a signal, there still remain some major statisti-
cal dependencies. Particularly, adjacent coefficients in the time-frequency plane show a similar behavior, as
can be seen from a speech sample in Figure 1. It becomes obvious that coefficients are correlated across time
(horizontal axis) as well as scale (vertical axis). Those correlations are important properties of the wavelet
transform, called clustering and persistency respectively.

Crouse et al. [4] introduce three types of Wavelet-domain Hidden Markov Models taking account of differ-
ent correlations: Independent Mixtures treating each coefficient as statistically independent of all others (in
this case, no correlations are considered), Markov Chains regarding only correlations across time, and Markov
Trees. This article focuses on the latter model, thereby being mainly concerned with exploiting the dependen-
cies across scale. On the basis of [2][4], Wavelet-domain Hidden Markov Trees (WHMT) are developed for
application to ASR, and integrated into a system combining the conventional HMM approach with this new
technology.

1. Exploiting correlations within and between feature vectors has recently shown some success in ASR, see, e.g., [1].

Figure 1: Wavelet data obtained from N95 database: The words pronounced are “one two seven three”.
Dark/light regions correspond to high/low energy coefficients.
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2 WAVELET TRANSFORMATION
The wavelet transformation is calculated using shifted versions of a low-pass scaling function Φ(t) and shifted
and dilated versions of a bandpass wavelet function Ψ(t). These functions, if chosen reasonably, form an
orthonormal basis, as, e.g., those proposed by Daubechies [5].

A way of interpreting wavelet coefficients is to regard their position in the time-frequency plane, where
they are precisely localized. The width of the filterbanks increases with frequency, as does the number of the
coefficients. At the same time, the length of the filters decreases in the same order. Thus, the highest resolution
level L, spanning the upper half of the entire frequency band, consists of 2L-1 coefficients which each describes
a well-defined timeslot within the analysis window. Those coefficients provide the most detail about the signal,
while the lower resolution levels are the signal’s subsequent approximations. The lowest resolution level does
account for only one coefficient in a very low and narrow frequency band. From this, two major properties of
the wavelet transform are apparent: locality (given the precise position of a coefficient in the time-frequency
plane) and multiresolution (given the varying window size and different number of coefficients per resolution
level). These characteristics make them attractive features in the area of speech recognition.

3 WAVELET-DOMAIN HIDDEN MARKOV TREES

3.1 General Concepts

Starting from the notion of a binary tree, we can model quite well wavelet coefficients using multiple Gaussian
distributions within the nodes. A mixture of two Gaussians will accommodate the fact that wavelet data (for
image processing) usually consist of a low number of high coefficients and a high number of low coefficients.
However, this model does not consider dependencies between coefficients.

To introduce those dependencies, we assign to each node of the tree two states with one Gaussian distribu-
tion each. For a given data, we only observe its probability and not its state assignment, so the state distribu-
tion remains hidden. Each state is connected by an arc to its two possible parent states and to all of its child
states (see Figure 2). These arcs model first order dependencies. We thereby obtain a Hidden Markov Tree for

wavelet data with the following model parameters λ: the probability mass distribution of the two states in the
root node (equivalent to the initial probabilities in a classical HMM) denoted πi, the transition probabilities
between states of adjacent resolution levels:

Figure 2: Part of a WHMT, showing the 3 coarsest resolution levels. The circles of different colors
correspond to the different states (named H and L respectively). Full arcs show connections between similar
states, dashed ones transitions between H and L or vice versa.
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as well as means and variances of the Gaussian of each state:

Given an observed wavelet data W, the question arises of how to determine the likelihood of a known
WHMT model. This can not be done directly since we do not observe the hidden states. Thus, to compute the
likelihood we should develop the sum over all the possible paths S (expectation):

(1)

An explicit application of Eq. 1 is very costly. Thus, decoding is done using the forward-backward algo-
rithm, similar to the one used in classical HMMs. However, the forward algorithm in this case is not straight-
forward. For a node in the WHMT and a state in that node, the forward variable represents the probability of
observing the whole data from the root except the part of the data relative to the subtree started at that node.
We define the subtree Tn relative to a node n as the set of possible nodes k such that k = 2ln+i, i = 0,..,2l-1. The
forward variable can be written for node n and state k:

(2)

The second part of the algorithm is much simpler since the backward variable of a given couple node/state
designates the probability of emitting the data of the subtree attached to that node given that state:

(3)

Starting from the leaves of the tree, the backward variables can be determined recursively. Even if they are
sufficient to compute the likelihood, we might need the forward variables (e.g., for training) which can be
computed given the backward variables.

The WHMT models are trained using an adapted version of the Expectation Maximization (EM) algorithm
since a training population does not form a sufficient statistic to estimate the WHMT parameters. The EM is
an iterative algorithm that ensures a likelihood increase with each iteration, thus converging to a local opti-
mum. Every iteration consists of two steps: “Expectation” (E) and “Maximization” (M). During the E step, the
forward and backward variables are computed for every single example of the training population given the
preceding set of parameters. Then, in the M step the WHMT parameters can be reestimated. The computation
of the likelihood involves the multiplication of 2L likelihoods and 2L probabilities. This might result in some
numerical problems which can be avoided by the use of scaling factors. However, as these factors depend on
the WHMT, the likelihoods become incomparable. We propose to compensate this scaling in the logarithmic
domain after the decoding. Please refer to [4] for more details on this problem as well as on the reestimation
functions of the forward and backward variables.

As one tree as described above might not be able to account for all potential variability in the pronunciation
of a phoneme, some mechanism equivalent to having multiple Gaussians per state in a conventional HMM
should be introduced. There are two obvious choices: we can either augment the number of states in each node
or employ several WHMTs per phoneme in parallel. In our recent work, the multiple tree approach was used.
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3.2 Combination with Conventional Systems

The WHMT models work on top of the HMMs as usually applied in ASR. In this framework HMM system,
each phoneme is modeled by 3 states, for which the phoneme likelihood calculation is performed by the same

WHMT1. Apart from the average phoneme durations (reflected by the HMM transition probabilities), only
information present in the wavelet representation is used.

Unfortunately, with this rather simplistic approach we are not able to incorporate the long-term dynamics of
the speech signal. As the well-established HMMs using MFCCs as feature vectors are at hand, our first choice
was to use them as a parallel system to supply additional information. We combined likelihoods calculated by
our WHMT models on wavelet data with those obtained from single-Gaussian HMMs on MFCCs at the frame
level. They were then fed to the framework HMM system (see Figure 3). The EM algorithm might also be
used to estimate the parameters of the combined HMM-WHMT. Starting from an initial set of parameters, the
measured wavelet coefficients are first assigned statistically to the hidden states of the HMM and the hidden
states of the WHMT during the E step. Based on this assignment, new values for the parameters of the com-
bined HMM-WHMT model can be computed during the M step. This is continued iteratively until conver-
gence.

4 PRELIMINARY EXPERIMENTS
To run preliminary experiments, we developed a software implementing the WHMT models (on the basis of
[2]) as well as a tool to combine probabilities of different streams. A modified version of the HTK toolkit [10]
was used for the decoding part of the experiments. As database, Numbers95 [3] with its standard train and
development test sets was used throughout. Feature extraction was performed using a front-end developed at
IDIAP. Wavelet coefficients were calculated on 32ms windows of speech, shifted by 10ms, yielding large fea-
ture vectors of 256 components. Monophone WHMT models were trained separately for each phoneme on the
base of the hand-segmented Numbers95 training data. For the second testing phase, 13 MFCC coefficients
(including energy, calculated on the same signal windows) were used to train single Gaussians.

1. In some way, this is similar to the probability calculation by ANNs as employed by hybrid systems.

framework HMM

MFCC-HMM

WHMT

Figure 3: Combination of WHMTs and conventional HMMs (taking as features wavelet coefficients and
MFCCs respectively), and integration into framework HMM system.
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First test determined which kind of wavelet transformation was to be used. Table 1 shows the error rates on
frame and segment level of the Daubechies wavelet transformation of different degrees.

Clearly, the Daubechies transform with 4 coefficients performs best. Thus, and as the number of training
iterations was comparable for all cases, the Daubechies-4 transformation was chosen for all following experi-
ments. Looking at the confusion matrices of the above tests, a high percentage of errors can be stated for diph-
tons with resembling parts. For instance, “ey” was very often mistaken as “ay” or “iy”. This suggests that the
employed models cannot handle the variations within one diphton over time. By the introduction of several
parallel WHMTs per phoneme we hoped to circumvent this problem. Table 2 compares the error rates
obtained on different numbers of parallel trees.

Looking again at the confusion matrices, we can state that systems with different numbers of trees misrec-
ognized different phonemes. In perspective, a sensible combination of these systems could be able to increase
recognition performance. So we achieved some improvement in combining the 2-tree and the 6-tree systems,
simply choosing a model on a per-phoneme bases as a function of the number of training examples. However,
as defining suitable selection criteria is not a trivial task, we choose the 4-tree system for further experiments.

As our system is still in its infancy, we could not expect breathtaking recognition results. However, when
combining the WHMT system with a basic conventional HMM system, we gained some improvement com-
pared to either system working separately. After only the initialization step (thus, no EM training was per-
formed yet within the framework HMM), we achieved a word accuracy of 49.70, which compares to 32.25 on
the WHMT and 48.05 on the HMM system separately.

5 FUTURE RESEARCH DIRECTIONS
We would again like to emphasize that WHMTs have been developed only very recently, and even more so
their application to speech recognition. Therefore, currently they do not compare by far to state-of-the-art
speech recognition technology. However, they leave a lot of possibilities for further improvement. Some prom-
ising directions for future research are outlined below.

At the feature extraction level, data from rather low frequencies are used, which usually are, in the case of
telephone speech, disturbed by line effects [8]. In our case, the 4 lower levels of the wavelet data contain only

Error Rate Train Set
(frame)

Train Set
(segment)

Dev. Test
(frame)

Dev. Test
(segment)

20 coeff. 73.6 68.4 73.4 68.5

12 coeff. 72.7 68.4 73.0 69.1

4 coeff. 71.1 67.8 71.0 67.8

Table 1: Frame and segment level error rates for
Daubechies wavelet transform of different degrees.

Error Rate Train Set
(frame)

Train Set
(segment)

Dev. Test
(frame)

Dev. Test
(segment)

1 tree 71.1 67.8 71.0 67.8

2 trees 74.3 65.3 74.5 66.1

3 trees 70.1 59.3 70.9 60.8

4 trees 69.8 56.9 70.5 58.8

6 trees 70.0 55.1 71.2 58.6

Table 2: Frame and segment level error rates for
Daubechies-4 wavelet transform employing several
WHMTs in parallel.
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information from frequencies below 250Hz, which might influence the recognition results in a negative way.
This also causes the problem that there is no trustworthy information on analysis windows longer than 2ms, a
problem which is aggravated by the fact that derivatives are not yet integrated. Furthermore, there is no appro-
priate energy measure and no normalization. With an ameliorated signal processing, wavelet data more
adapted to the characteristics of (telephone) speech can be generated.

At the wavelet feature modeling level, some problems described above are reflected. Obviously, the system
relies heavily on the 4 lowest resolution levels. Furthermore, a mechanism has to be introduced to incorporate
derivatives into our system. This could be done by derivative WHMTs which are connected to the others to
reflect dependencies between wavelet data and their derivatives. Some improvement might also be gained be
extending the model to allow different numbers of parallel WHMTs or Gaussian mixture distributions. More-
over, the WHMT model might be rendered more flexible by introducing loops into the nodes/states, which,
among other potential advantages, would allow to move the phoneme duration modeling from conventional
HMMs directly to the WHMT models.

As for conventional HMMs to process MFCCs, so far a rather basic system has been applied which could
be replaced by a state-of-the art one. Certainly, the probability combination mechanism could be improved
with an appropriate weighting scheme. However, the motivation of introducing such a parallel system has been
the present drawbacks of our WHMT system which should be investigated first. Nevertheless, having a second
stream of information remains an interesting future research area also in the case of WHMTs. Furthermore,
the framework HMM system could be improved by, e.g., introducing triphones and/or more emitting states per
phoneme.

More generally, the idea of modeling features by means of special Markov models working on top of the
conventional HMM mechanism can be extended to features other than wavelets. For example, filterbank coef-
ficients or even MFCCs could be modeled by double Markov chains with cross-connected hidden states. Also
in this case, considering the residual correlations between adjacent coefficients of a feature vector after signal
processing seems a promising research direction.

6 CONCLUSIONS
In this article, Wavelet-domain Hidden Markov Trees are introduced to ASR. They exploit inherent properties
of wavelet data, in particular the correlations between coefficients. Preliminary experiments in conjunction
with conventional Hidden Markov Models show some potential of this novel approach. As shown in Chapter
5, there are still a lot of possibilities for improvement. Therefore, we see much more potential in the WHMT
approach.
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