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Abstract

Neural networks have shown their reliability
and robustness for the face detection task (Row-
ley, Baluja and Kanade, 1995). However, the
time consuming process needed by neural networks
has prevented them from being a practical tool.

We propose a new technique that significantly
speeds up the time needed by a trained network
(MLP in our case) to detect a face in a large
mmage. We reformulate neural activities in the
hidden layer of the MLP in terms of filter convo-
lution, enabling the use of the Fourier transform
for an efficient computation of the neural activit-
ies. The method was applied to face detection in
still images as well as on live video sequences.

1 Introduction

Face detection is a fundamental step before the
recognition or identification procedure. Its reliab-
ility and time-response have a major influence on
the performance and usability of a face recogni-
tion system.

The large variability of human faces causes ma-
jor difficulties in the design of a model that can
encompasses all possible faces [2]. Appearance-
based approaches as well as learning-based ap-
proaches seem to be best suited for this task. In
either case, a set of representative faces is neces-
sary to find an implicit model.

Eigenfaces [10] were used to model the distri-
bution of faces in some large input space (typ-
ically the input space is R" where n is the size
of the image). The main assumption of this ap-
proach is that the set of faces are located in a
sub-space that can be approximated (using the
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KL-transform) through a training set. The "fa-
ceness” of an input image is determined by its
distance to the face sub-space.

A similar approach was proposed by Sung and
Poggio [9] where the sub-space was approxim-
ated by 6 gaussian distributions. The distances
between a given input image and the 6 sub-
spaces generated a vector that was used by a
perceptron to separate the face space from the
non-face space.

The use of neural-networks appears to be one
of the most promising methods for face detection
[11]. However, the time consuming processing [6,
3] needed by the neural networks has prevented
them from being a practical tool.

A neural network based face detector was pro-
posed in [7], and has shown good results. A feed-
forward neural network was designed to detect
faces using a 20 x 20 input window. The neural
network architecture was optimally designed with
receptive fields to specialize a set of neurons to
detect eyes, mouth and nose. The negative ex-
amples (i.e. non-face images) for the training
set were generated using a bootstrap technique.
The system has demonstrated excellent detection
rates, but it suffers from time consuming compu-
tations yielding ”slow” responses. Most of the
computation time is spent in exploring all the
possible sub-images. Some strategies were used
to reduce the time complexity, but with the draw-
back of a lower system performance.

We present an approach that speeds-up the
processing time by considering a MLP (Multi
Layer Perceptron) as a bank of filters, and by re-
formulating the processing steps in terms of con-
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Figure 1: MLP architecture for object detection

volutions. Performing the convolution in the fre-
quency domain is less time consuming. The char-
acteristic of this approach is that it considerably
reduces the computation time while maintaining
This method enables a
fast computation of the MLP neuron activities,

identical performance.

but does not reduce the recognition performance
of a MLP based detector. The method has been
validated for face detection in still images as well
as in live video sequences.

2 The FFT-Multi Layer Perceptron

We consider a 3-layer feed-forward neural net-
work or MLP (see Figure 1) trained with the
classical back-propagation algorithm. The input
layer is a vector, and the output layer is a single
neuron for the sake of simplicity'. Let I be the in-
put layer vector, H the hidden layer vector and O
the output. We consider nxn pixel input images
transformed into a column-vector to feed the in-
put layer constituted by n? units or neurons. The
hidden layer has m neurons, and the output layer
is a single neuron which is triggered to 1 if the
learned pattern is present and 0 otherwise.

This architecture can be used to detect differ-
ent objects. Changing the learning set generates
a new object detector. The modular property of
this architecture makes it very flexible and handy.
The activity of a particular neuron ¢ in the hidden

'Extension to an output with multiple neurons is
straightforward.
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layer H can be written as:

b= (WG @) ()

Where W1y, is the set of weights of neuron ¢ and
b1(7) is the threshold. Similarly, the output layer
activity is:

O =g(Y_ Wajh; +bs)

J=1

Where Ws; are the output weights and by the
output threshold.

The training algorithm is based on the back-
propagation of the error which is now a well-
known technique [8]. An example is picked from
the training set, the output is computed. The
error is computed as the difference between the
actual and the desired output. It is minimized by
back-propagating it and by adjusting the weights.

During the recognition step of the classical
MLP, a sub-image of size nxn is extracted from
the test image of size Nx/NV, and fed to the neural
network. This operation must be iterated on all
possible different sub-images of the input image.
This is the major drawback in the use of neural
networks for object recognition. Typically, for an
N XN test image, from which all nxn sub-images
are extracted to compute the activities of m neur-
ons in the hidden layer, O(N?n?m) computation
steps are required.

To reduce the computational burden, we pro-
pose to efficiently calculate the activity of hidden
units using the Fourier transform. The activity
of hidden neuron 2z, with weight matrix ®;, over
the whole image 7 can be formulated as a cross-
correlation operation?:

Hi=g(Z® P+ By) (2)

where By (k,l) = by (i) V(k,l) € [1..n]%. The mat-
rix H; is the activity matrix of the hidden unit
i. From equation (2), we can state that #;(j, k)
is the activity (or output) of the hidden unit ¢

2The cross-correlation operation is represented by ®



when the observation window is located at posi-
tion (j, k) in the input image Z. The final output
activity matrix of the neural network can then be
expressed as a linear combination of the hidden
units activity:

0= g(i W2, H; + bz) (3)

=1

Here again, O(j, k) is the output of the neural
network when the observation window is located
at (j, k) in the input image Z.

In equation (2), the activity is expressed in
terms of a cross-correlation between a bank of
filters (®;)ie1...n and the input image Z. The
advantage in this reformulation is that cross-
correlation can be performed efficiently in fre-
quency domain using the following relation:

IT@®=F YF(T) e F (d))

The 2D fast Fourier transform (2D FFT) of
a N x N test image Z requires O(N?LogN?)
computation steps. The 2D FT of the filters
(®i)ie1..m can be computed off-line since they
are constant parameters of the network independ-
ent from the image. A 2D FT of the test image
has to be computed, therefore the total number
of FT to compute is m 4 1, yielding a total of
O((m + 1)N?LogN?) computation steps. The
speed-up factor is Mﬁ.
ments we used 25 hidden units (i,e. m=25) and
25 X 25 pixels sub-images (i.e. n=25). The curve
giving the speed-up factor with respect to image
size is shown in Figure (2).

In our experi-
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Figure 2: Speed-up curve with respect to N (Im-
age size N x N)

3 Face detection using MLP.

We applied the reformulation of MLP in terms
of Fourier transform to the face detection task.
The training images are 25 X 25 pixels large
and represent human faces and non-face patterns.
The examples were taken from the M2VTS [5]
database which contains frontal views of 37 dif-
ferent persons. The negative examples were gen-
erated from images without faces (mostly texture
images) and also by using a bootstrap procedure
[7]. The MLP was trained on 1500 face examples
and 4000 non-face examples.

The faces in the training set have slightly dif-
ferent scales. There are also some shifted faces
(1 to 4 pixels off center). Face images often lead
to multiple detections (see Figure 3 (a)), whereas
non-face images mainly lead to single detections
in the case of false detection. This information
was used to remove a large number of false detec-
tions.

Figure 3: Example of multiple detections

3.1 Grey-level normalization

In order to achieve a detection robust toward
illumination changes, we transform the images of
the learning set into zero-mean normalized vec-
tors. If {X;,¢ € [1..L]}? is the set of images,
the following holds for the transformed images

(X)iep..ny:
| X; ||=1 and mean(X;) =0, Vi € [1..L]

In the recognition step, the data must be also nor-
malized and have zero-mean. A problem arises

7L is the size of the training set



here: the normalization and the centering® if ap-
plied on the whole image will not be guaranteed
locally in the sub-windows.

The normalization and centering must be ap-
plied on the extracted sub-image and not on the
whole input image and this is not straightforward
since Fourier-based convolution is a global pro-
cessing. The reformulation of the local normaliz-
ation and centering of the data in the FT frame-
work in [1] shows that convolving a centered im-
age I with a filter ¢ is equivalent to convolving
the non-centered image I with the centered filter
qB. The centered filter can be computed off-line
and thus does not generate extra computation.

4 Multiscale face detection.

Multi-scale face detection is achieved by build-
ing a set of multi-resolution images. The face
detector is then applied at each resolution and
the final output is a combination of the different
levels.

Note that the F'T of the lower resolution images
is not computed due to the scaling property of the
FT.If f(,y) is the original image and F'(u, v) its
Fourier transform and ¢(z,y) is the sub-sampled
(by a factor a in each direction) image then we
have the following property:

1 U v

Figure 4 (a) displays the detections at all levels
of resolution (the level of resolution is given by
the size of the square). The final output is given
in Figure 4 (b). It takes into account the number
of times a region was detected as face (for more

details see [4]).
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Figure 4: Multiscale face detection

* Centered image stands for zero-mean image

5 Experimental Results
5.1 Still images

Testing was performed on realistic and com-
plex images extracted from the CMU database®.
Experiments were performed on test set A (40
images) from CMU database. The achieved de-
tection rate using a single MLP (30 neurons in
hidden layer) is in the range 70% to 75% of faces
detected (see Figure 5 (a)-(i)). The system pro-
posed by Rowley achieves a detection rate ranging
from 69% to 85% depending on the used heur-
istic. Our approach generates more false alarms
that could be reduced by combining multiple net-
works and by increasing the size of the training
database. The higher performance obtained by
Rowley [7] is likely to be due to a much larger
training set and due to a combination of multiple
modular networks.

5.2 Video Sequences

This algorithm was also applied to face detec-
tion in live video sequences using a camera and
a video-board. The algorithm runs on an Ul-
traSparc 30 with an Osprey 1500 video board.
The processed frames are 192 x 144 pixels large.
The face detector was tested in an office environ-
ment with different illumination conditions and
different backgrounds. Each frame is processed
in about 0.7 seconds without using any temporal
or spatial information: the face detection is per-
formed over the whole frame at each step. We ex-
pect to reduce the processing time by introducing
temporal knowledge. The system showed good
performance even if multiple faces were present
in the frame. It was tested with different people
(visitors from outside the institute). Some MPEG
movies of face detections are available on the

WWWS6

6 Conclusion

We proposed a simple and flexible MLP archi-
tecture for fast object detection, (face detection
for example). The main contribution of the pa-
per was to describe a method which reduces dra-
matically the computation time of a MLP based

http:/ /www.cs.cmu.edu/ har
Chttp://www.idiap.ch/vision/facerecognition.html



detector without altering the performances. The
reformulation of MLP in terms of filter convolu-
tions enabled us to speed-up significantly the pro-
cessing time. Classical approaches have to pre-
process the data during run-time for normaliz-
ation purpose, in our case no pre-processing is
needed since the normalization is incorporated
directly in the weights of the network (i.e. coeffi-
cients of the filters). The same algorithm can be
used to detect other features (eyes, mouth, nose
etc...) separately by changing the learning set.
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Figure 5: Face detection results on static images and video sequences.



