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Abstract. In this paper, we propose new developments of the MUIti-path Stochastic Equalization
techniques (MUSE). The MUSE technique is based on an enriched model of speech, composed
of both a classical model of clean speech with HMM and equalization functions. This technique
is able to reduce the recognition error rate due to a mismatch between the training and testing
conditions. In order to track long-term variation of this mismatch, the introduction of a priori
statistics on the equalization function is studied. In the case of Bias Removal, this approach has
been implemented in HTK and tested on the Numbers95 database. Experiments show that the
convergence of the bias computation is fast enough and limits the effect of the a priori values.
However, both the fast convergence property and the proposed framework open research directions
towards more complex equalization functions.
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1 Introduction

Recent advances made it possible to integrate speech recognition techniques in commercial products
and applications. However, the performance of the recognisers still highly rely on the conditions in
which they are used. If the recognition takes place in an environment which is close to the environment
the recogniser has been designed for, high recognition scores can be achieved. But as soon as there is
a mismatch between the training and testing environments, performance drops rapidly.

Many equalization scheme have been developed to reduce this mismatch both in the spectral [2][6]
or in the cepstral [1][7] domain. However, the equalization process has always been separated from
the recognition process.

The first attempt to combine an equalization scheme with HMM modeling during recognition was
proposed by Ephraim [4]. Then, the Stochastic Matching technique [9] has been proposed : this
technique uses a Maximum Likelihood approach to compute the parameters of a mapping function in
order to reduce the mismatch between the observed utterance and the speech models during recog-
nition. In this case, both the mapping function and the state sequence are optimized using the EM
(Expectation-Maximisation) algorithm.

Recently, a Multi-path Stochastic Equalization (MUSE) technique has been developed [8]. MUSE
provides an enriched model of speech signals. By combining usual HMM models and equalization
functions, MUSE can model both the variations of the speech signals and the variations of the envi-
ronment. In the case of bias removal, MUSE has already shown its ability to track local variation of
the bias. In this paper, we introduce a method to learn and integrate long-term characteristics of the
bias. The implementation of MUSE and of the proposed extension into a classical decoder, namely
HTK][10], is also presented.

This article is organized as follow. The theoretical framework behind MUSE is recalled in Section
2. A particular application of MUSE to bias removal is developed in Section 3. In this section, the
introduction of a priori statistics on the bias is also presented. Recognition experiments designed to
assess this approach are presented and analyzed in Section 4. Finally, conclusions is given in Section
d.

2 Theoretical Framework

The basic idea behind MUSE is to associate an equalization function to every possible state sequence
hypothesized during the decoding. The parameters of the equalization function are computed using
either a Maximum Likelihood or a Maximum A Posteriori criterion, as developed in [8]. In this
section, we recall the the theoretical development of the technique using a Maximum A Posteriori
(MAP) criterion.

We denote by ¥V = 17'1,17'2, e ,Y:} a sequence of T speech frames observed at the output of a
transmission channel and by A the parameter set of the HMM modeling clean speech. We suppose
that we can obtain an estimate of the clean speech X from the observed sequence Y using an equalizing
function Ty(.) :

}:t = Ty(Y;) (1)

For a given path s; in the HMM model, we can derive the optimal values for the equalizing function
parameter with a Maximum A Posteriori criterion :

a(St) = argmgx[py(ﬁ,...,}7;|9(5t),5t7/\)
P(O(s)[s1, V)] )
01 Toisy (Y1), - s To(s) (Vi A
0(s1) = argmax{px( )00 Tt ()l )
’ HT:tO ||J(YT)||

-p(e(smst,m] 3)
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where ||J(Y;)]| is the absolute value of the Jacobian associated to the change of variable. With certain
types of function Ty(.), Equation 3 can be solved analytically to find the values of the equalization
parameters . If we assume, as it is generally the case in HMM, that the distribution of the state i is
Gaussian with a mean vector /7; and a covariance matrix ¥;, then 6(s;) is the solution of the following
equation :

t

S ) - ) 552 [T ()
g 08 IO} = - 06 Bk, ) = 01 (@)

Once @ is computed for each path, the most likely state sequence can be found by :

5= argr@x[p(stm,...,1,9(80,»]
_ {pxm(st)( 1), ot (V) s, 8(s0), )
= argmax =
g IT,- t0||J<YT>||

D) (5)

3 Introduction of long-term statistics for Bias Removal

The approach presented in the previous section can be applied to a simple equalization function like
a bias removal function in the form Tp(Y;) = Y; — b. In this case, in Equation 4, we have :

0 R
8—0tT9t (Y;)=-1,

log ||J(Y;)|| = 0

where I, is the p-dimensional identity matrix. In order to introduce a priori statistics on bias, we
suppose that having a bias b: at time t is equivalent to having 51 =..= 5t,1 = i)}. We also suppose
that the a priori distribution of the bias is Gaussian with mean fipriori and variance Z‘”’a# The
form of this distribution is based on the fact that the importance of the a priori distribution of the
bias is high at the beginning of the decoding, and decreases with the time. The probability of a bias
b; at time ¢t given its a priori distribution is expressed as :

t

~ - o Ea Ti0T
p(bt|3t, A) = H N(bt;l//apriori; Zét ) (6)

T=to

Then, In Equation 4, we have

] : -
80 10gp<1>(0t|3t, ) - Z at((bt - /J/apriorz) Eaplmorz (7)

T:tg
By solving Equation 4, we can derive an analytical formula to compute the bias :

t 7 - _ Jn _
6’ — I:ET:tg [YT - //Ls.,]# ’ E ! + atp’a#priorizaplriori]
I:ET to (Es‘r + atzaplrwm)]
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With this bias value, the log likelihood of a sequence Y of observation vectors Y, (of dimension n)
given the states S; is now given by :

_ ntlog(2m)

log(px (Tp, (Y)|Se, b, X)) = 2

1< . _ .
_5 Z {lo.g(HESTH) + (Y‘r - UST)#ZSTI(YT - lffs.,)}

T=to
t t
I I e
DS RIUE T D IR (9)
T:tg T:tg

In this equation, one can recognize the classical formula for the likelihood computation (first and
second line) plus two terms associated with the bias (third line).

4 Experiments

4.1 Experimental Setups

The speech database chosen for the experiments is the Numbers’95 database [3] from the Center
for Spoken Language Understanding (CSLU). This database contains digits sequences continuously
spoken over the telephone. We used the 3590 sentences of the training set for the training of our
models and we tested them on the 1206 sentences of the development-test set.

We used the front-end developed at IDTAP to extract the feature vectors from the speech files. We
computed 26 mel-scaled filter bank coefficients, over a 32 ms hamming window, with a 10 ms shift.
Then 13 mel-cepstral coefficients were derived together with their first and second order derivatives
(for a total of 39 coefficients).

The recognition system was based on Gaussian mixture HMMs. It was trained with HTK [10].
The system was composed of 81 triphones modeled by 3 states HMMs; each state had a 10 Gaussian
mixture pdf and a diagonal covariance matrix. No language model was used. The recognition has
been done with a modified version of HTK in which has been implemented the MUSE technique.

4.2 Implementation issues

4.2.1 Bias computation with a priori statistics

In order to compute the bias, we used two accumulators fft and Et defined as :
At = At—l + (Y;f - ﬁSt)#Zs_tl + atAapriori : Bapriori
B = B+ Zs_tl + atBapriori

These two accumulators are updated with each new frame and with a priori values of the bias. We
have computed /fawiori and Eapriori, using the first and second order statistics of the bias,on the
training database. The multiplicative factor a! exponentially decreases with time (0 < a < 1), and
allows to give more importance to the a priori estimation of the bias at the beginning of the utterance.
Several values have been tested for the parameter . Results are shown in t}le Section4.3. For each
frame, once the two accumulators are updated, the bias is then computed as b = fft . B‘[ L

4.2.2 On-line estimation of a priori statistics

We have also introduced an on-line process to estimate the a priori estimation of the bias. At the
end of each utterance, the a priori means and variances of the bias are updated recursively with the
current value of the bias with parameter § and 1 — 8. This allows to track the long-term variation of
the bias, and therefore to adapt on-line the a priori statistics of the bias.
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4.3 Results

We first present the results of an adaptation to a mismatch between training and testing conditions
using MUSE. The best recognition results we obtained so far on the Numbers95 database was obtained
by pre-processing the data with a Cepstral Mean Subtraction (CMS) scheme [5]. However, this
preprocessing is not frame synchronous, and thus can not be used in real systems. Using classical
MFCC feature vectors with the models trained on data pre-processed with CMS yields a decrease in
recognition results. As shown on table 1, the recognition word error rate increase from 5.33% to 11.16%
when using MFCC feature vectors with models trained with CMS. This bias can be significantly reduce
by using MUSE. Indeed, using MUSE reduces the WER from 11.16% to 6.10% and almost recovers
the WER obtained in matching conditions. It is also important to note that using MUSE in mismatch
conditions (MFCC features with CMS based models) outperforms the baseline system, based on both
MFCC features and models

baseline | CMS/CMS | MFCC/CMS | MUSE
WER 7.07 5.33 11.16 6.10

Table 1: Recognition error rate on the Numbers95 database in matching conditions (CMS/CMS),
mismatch conditions (MFCC/CMS) and mismatch condition with MUSE (MUSE).

The second set of results concerns the introduction of a priori statistics on the equalization function
parameters in the MUSE technique. These a priori statistics have been computed on the train set and
consist in the mean bias and its variance for each cepstral coefficient. The data are then used in the
MUSE decoding process as described in the previous section.

Table 2 presents the variation of the recognition Word Error Rate according to the value of the
factor a. First, when « increases, the recognition score decreases. This is due to the fact that the a
priori statistics should be used only at the beginning of the recognition. Therefore, a should be small
enough not to hinder the convergence of the estimated bias. Second, even with a small value for «,
we get no improvement of the recognition results.

Two reason might explain why the introduction of a priori statistics on the bias does not improve
the recognition scores. The first one is illustrated in Figure 1. This figure shows the convergence of
the estimated bias compared to the real bias computed by a forced Viterbi alignment. We can see
that the convergence of the estimated bias is quite fast. This means that, in the case of bias removal,
the estimation of the parameters of the equalization function is simple enough not to need many
frames to converge. The introduction of the a priori values for the bias is therefore of no help for the
convergence. Secondly, when looking at the a priori values of the bias computed on the training set,
we see that these values present a very large variance. The effect of these values in the computation
of the bias is thus very limited.

However, these results give us some perspective for the future work. Firstly, the fast converge of
the MUSE algorithm allows to consider more complex equalization functions. Secondly, the MAP
approach to MUSE allows to introduce equalization functions which depend on phonemes. In these
two cases, the introduction of a priori statistics on the parameter of the equalization functions , as
proposed in this paper, will be necessary.

05| 07 | 0.8 | 09
WER | 6.17 | 6.17 | 6.21 | 6.47

Table 2: Recognition error rate on the Numbers95 database in mismatch condition with MUSE for
different values of the factor a.
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Figure 1: Convergence of the estimated bias compared to the real bias for the three first cepstral
coefficients

5 Conclusion

In this paper, we have proposed a development of the MUSE technique towards the introduction of a
priori statistics on equalization functions, in the case of Bias Removal. The experiments on the Num-
bers95 database have shown that in the case of Bias Removal, the convergence of the MUSE algorithm
is quite fast. Therefore, the introduction of the a priori statistics does not improve the recognition
score. However, the proposed framework for the introduction of adaptative a priori statistics and the
good convergence properties of MUSE open research directions towards more complex equalization
functions.
newpage
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