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Abstract. This report presents the integration of several noise reduction methods into the front-
end for speech recognition developed at IDIAP. The chosen methods are : Spectral Subtraction,
Cepstral Mean Subtraction and Blind Equalization. These different methods are studied from a
theoretical point of view. Their implementation is described and they are tested on the Num-
bers95 speech database. A good noise robustness is obtained by combining two of these methods,
like Spectral Subtraction with Cepstral Mean Subtraction or Spectral Subtraction with Blind
Equalization. The later combination is found to be more appropriate for real recognition systems
since it is frame synchronous. A comparison with Jah-RASTA-PLP is also given.
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1 Introduction

Since the early ages of speech recognition, researchers have faced the problem of the degradation
of speech recognition system performance when those are used in adverse conditions. This problem
is encountered each time a system is used in real-word applications, facing a great diversity of real
conditions : background noise, channel interference, microphone distortions, etc. Many solutions have
been developed to deal with each problem separately. Classically, these solutions have been classified
into two main areas : speech enhancement and models adaptation.

Methods from the first category usually try to remove an estimate of the distortion from the noisy
features. For Spectral Subtraction [Bol79], an estimate of the noise spectrum is subtracted from the
spectrum of the noisy speech. Similarly, a cepstral bias, like long term cepstral mean, can be computed
and subtracted from the cepstral coefficients [Ata74]. In [HMBK92], a high-pass filtering of cepstral
coefficients is proposed to remove the effect of the convolutional noise introduced by the channel.
Methods based on auditory modeling [Ghi86] have also been proposed in the hope to gain robustness
by imitating the naturally robust human perceptual system. All these methods aim at reducing the
mismatch between training and testing conditions in the feature space (see Figure 1).

Another approach consists in adapting the recogniser’s statistical models to take into account the
noise. A combination of two models, one for the speech and another one for the noise was proposed
by Varga and Moore [VM90]. In [LLJ91], a Bayesian learning procedure is applied to adapt the
parameters of the models. It is worth noting that these approaches have been proven to be superior
to speech enhancement approaches [Mok92].

In this report, we describe three speech enhancement methods implemented into the front-end
developed at IDIAP for speech recognition. The three methods belong to the first category. They
are linear Spectral Subtraction, Cepstral Mean Subtraction and Blind Equalization. They have been
chosen for their simplicity and their shown good performance. In the first part of this report, we present
the theoretical framework for the three methods. In the second part, we present their performance on
the Numbers95 speech database under different noise conditions.

Feature Space Model Space
Training Conditions X M(X)
Speech Enhancement Model Adaptation
Testing Conditions Y M(Y)

Figure 1: Mismatch in training and testing conditions
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Speech X(t) Distorted
Channel H Speech Y (t)

Noise N(t)
Figure 2: Schematic view of telephone network distortions

2 Noise Reduction Techniques

In this section, we describe the noise reduction techniques we have tested : Spectral Subtraction,
Cepstral Mean Subtraction and Blind Equalization. Both the theory underlying each method and the
practical aspects of the implementation are given.

2.1 Spectral Subtraction
2.1.1 Method

Let us consider a speech signal s(t) degraded by uncorrelated additive noise n(t). The resulting signal
is then

y(t) = s(t) + n(t) (1)

If we consider Y (w), S(w) and N(w) the respective Fourier transforms of y(t), s(t) and n(t), we obtain

| Y() P =] SW) P+ NW) |+ Sw)  N*(w) + N(w) - $*(w) (2)

where N*(w) and S*(w) are the complex conjugates of N(w) and S(w).

We want to obtain an estimate of | S(w) |> which is the short-time energy of clean speech. In
Equation 2, only | Y (w) |” can be directly derived from the observed data. However | N(w) |*, S(w) -
N*(w) and N (w)-S*(w) can be approximated respectively by E[| N (w) [*], E[S(w)-N*(w)] and E[N (w)-
S*(w)], where E[.] denote the ensemble average. With the hypothesis that the noise n(t) is uncorrelated
with speech s(t), we have E[S(w) - N*(w)] and E[N(w) - S*(w)] equal to zero and we can thus derive
an estimate | §(w) | of | S(w) | :

3 2 2 2
| SW) | =1Y(w)[" - E[| Nw) |'] (3)
E[| N(w) |?] is estimated on signal, during non-speech periods. Note that Eq. 3 corresponds to the
Power Spectral Subtraction and is equivalent to a Wiener filter.

It is important to note that Eq. 3 does not guarantee that | S (w) |2 is positive. Negative value
of E[| N(w) |’] should be set to zero or better to a constant non-zero minimum value. The main
drawback of this method is that it introduces non-linearities in the spectrum , known as musical
noise, which are very harmful for speech recognition.

A generalization of the formula 3 was proposed by Berouti et al. [BSM79]. In this approach, the
spectrum is raised to a power a. Then if we define T'(w) as

2a

T(w) =] Y(w) [* = a(SNR) x| N(w)| (4)

where a(SNR) is an SNR-dependent noise overestimation factor, the estimate of clean speech is given

by :
2 { Tw)/* if T(w)"/* > | N(w) (5)

ISl = Bl N(w)|* otherwise
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The overestimation factor is supposed to reduce the musical noise introduced by the subtraction and
[ defines the minimum spectral value after subtraction.

Another enhancement of this technique has been developed by Lockwood and Boudy [LB91][LB92].
The basic idea of this approach is to subtract a minimum of noise at high SNR and to remove
a maximum of noise at low SNR. The subtracted factor not only depends on the estimated noise
E[| N(w) |] but also on the estimated SNR and on a frequency dependent factor a(w). Eq. 3
becomes : ~ )

15w) " = | Y(w) > = #(SNR, a(w), E[| N(w) ) (6)

Several functions ® are proposed in [LB92], for example :
®(w) = a(w) — sigmoid(SNR(w)) (a(w) ~ E[| N(w) |2]) (7)

However, since this function needs a lot of parameter tuning, we decided not to develop this
approach.

2.1.2 Implementation

The spectral subtraction needs an estimate of the noise power spectrum. This estimate is generally
computed during non-speech periods. To determine non-speech periods, a statistical distance is com-
puted for each frame between the spectrum of the signal and the distribution of the noise [MMK™*97].
This distance is compared with a threshold to decide whether or not this frame corresponds to a non-
speech period. If the spectrum corresponds to a non-speech period, the noise characteristics (mean
and variance) are updated with a first order adaptive process, with factors & and 1—a. A typical value
for v is 0.99, which corresponds to an adaptation over 100 frames, that is 1 second. The initialization
of the noise estimate is done on the first 10 frames (this makes the assumption that the first 10 frames
contain only noise).

The problem of non-linearities introduced by the flooring in the spectral subtraction is one of the
major problem of this method. To deal with this problem, Boll [Bol79] proposed to replace | ¥ (w) |2
in formula 3 by an average over 3 frames, | Y (w) |>. We chose to smooth the subtracted spectrum

a2
| S(w) | with a low-pass filtering in order to remove the non-linearities induced by the flooring. We
obtain a smoothed estimate of the clean speech spectrum | S;(w) |* with :

2

| Se(w) [P = v %] Se-1(w) I+ (1 =) #| Si(w) | 8)

Several values have been tested for v and the best recognition results have been obtained with v = 0.5.

2.2 Cepstral Mean Subtraction
2.2.1 Method

Cepstral Mean Subtraction is one of the earliest and the simplest methods used to remove channel
distortion from signal. The principle behind this method is that a convolutional distortion in the time
domain, such as a channel distortion, corresponds to an additive distortion in the cepstral domain. If
we denote by s(t) a speech signal, by w(t) the channel impulse response and by y(t) the speech signal
transmitted through the channel we have the following equivalence :

y(t) = s(t) @ w(t) & Cy (i) = Cs(i) + Cu(7) (9)

where ® is the convolution operator and Cy (i), Cs(i) and Cy (i) are the cepstrum of respectively the
transmitted signal, the speech signal and the channel . Now if we apply the expectation operator to
the right side of the equivalence, we have :

Cy(i) = Cs(i) + Cu (i) (10)
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Speech

Figure 3: Blind equalization in the cepstral domain (after Mauuary [Mau98])

With the hypothesis that the channel characteristics are constant and that the expectation of the
speech cepstrum is null (except for the Oth coefficient), we obtain

Cy(i) = Cu (11)

Now by computing the long time average of the cepstrum of the transmitted speech, we have :

1L
Co = % Z; Cy(4) (12)

It is now possible to subtract C,, from the observed cepstral vectors Cy(i) in order to remove the
channel effect.

2.2.2 Implementation

The Cepstral Mean Subtraction is a noise reduction technique very simple to implement. The long-
time average of the cepstral coefficients is computed off-line and subtracted from each coefficient. This
subtraction is done for all coefficients except the coefficient corresponding to the energy.

2.3 Blind Equalization
2.3.1 Method

The blind equalization is a filtering technique which has been studied in digital communication in
order to remove the channel effect through the sole observation of the output of the channel. An error
criterion based on known statistics of the transmitted signal is used to compute the parameters of
the filter. This can be implemented with an adaptive filter [Shy92], as it was proposed by Mokbel et
al. [MJIM96]. This technique can be applied either in the spectral domain [Mau96] or in the cepstral
domain [Mau98].
If we consider a speech signal z(¢) transmitted over a channel with impulse response w(t), the
resulting signal y(t) is given by :
y(t) = z(t) © w(t) (13)
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where ® is the convolution operator. The basic idea is to apply a filter h(t) to the observed signal
y(t) in order to obtain an estimate of the original speech signal, Z(t) :

&(t) = y(t) ® h(t) (14)
Eq. 13 can be written in the frequency domain:
Ly(f) = Te(HW(f) (15)
so that Eq. 14 becomes :
La(f) = Do (HW2(H)H?(f) (16)

where I';(f) and I';(f) are the spectral densities of Z(¢) and x(t) respectively , and where W(f) and
H(f) are the transfer function of the channel and of the adaptive filter impulse response respectively.
Similarly, Eq. 14 can be derived in the cepstral domain to obtain:

Ci(i) = Co(i) + Cw (i) + Cu (i) (17)

where C; (i) and C, (i) are the cepstrum of the equalized speech and the original speech respectively
and where Cy (i) and Cp (i) are the cepstrum of the channel and of the adaptive filter respectively.

The parameters of the filter are adapted using some knowledge about the signal. This knowledge
can be either the value of the long-term average of speech spectrum for an adaptation in the spectral
domain or the value of the long-term average of speech cepstrum for an adaptation in the cepstral
domain. In the following, we present the adaptation of the filter parameters only in the cepstral
domain. This adaptation is similar in the spectral domain.

The error between the long-term average of speech cepstrum R(i) and the equalized speech Cj(7)
is

error(i) = R(i) — (Cz (i) + Cw (i) + Cu(4)) (18)

We can use an minimum mean square error criterion (MMSE) to determine the optimal value for Cp.
The mean square error is :

Elerror®(i)] = E[(R(i) = (Cz(i) + Cw (i) + Cu())*] (19)
which can be minimized to obtain the optimal filter:
E[Cu(i)] = R(i) — E[Ce(i)] — Cw (i) (20)

If we consider that R(i) — E[C,(7)] is equal to zero, which means that the long-time average of the
initial speech is really equal to the expected long-time average, we obtain the optimal values for the
filter parameters which remove the channel effect.

2.3.2 Implementation

The filter parameter values can be computed with a simple adaptive formula [Mau98] :

O (i) = C (i) + p(R(i) — (C (i) + Cy (i) (21)

where p is the adaptation coefficient and the upper script n denotes the frame number. The conver-
gence of CF (i) is strongly dependent on p : ¢ must be large enough to ensure a quick convergence but
small enough to avoid the disturbance of short-time variations of speech cepstrum values. We used
= 0.005, which was the best value found in [Mau98]. Some improvements of the convergence can be
obtained by giving more importance to high energy frames compared to low energy frames [MJM96].
For this purpose, we used a piecewise linear function to adapt the value of p according to the frame
energy E(n):

0.5 if 0 < E(n) < 350
w(En)) =< 0.2x(E(n) —350)+ 0.5 if 350 < E(n) < 350 (22)
2.5 if 450 < E(n)

The parameters of this piecewise linear function where computed on the training database.
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3 Evaluation of the performance

3.1 Database

The speech database chosen for the experiments is the Numbers’95 database [CNLD95] from the Center
for Spoken Language Understanding (CSLU). This database contains digits sequences continuously
spoken over the telephone. The database consists of 10.5 hours of speech and has been separated
into 3 sets : the training set, the development-test set and the test set. We used the 3590 sentences
of the training set for the training of our models and we tested them on the 1206 sentences of the
development-test set.

3.2 Feature Extraction

We used the front-end developed at IDIAP to extract the feature vectors from the speech files. We
computed 26 mel-scaled filter bank coefficients, over a 32 ms hamming window, with a 10 ms shift.
Then 13 mel-cepstral coefficients were derived together with their first and second order derivatives
(for a total of 39 coefficients).

3.3 Models

The recognition system was based on Gaussian mixture HMMs. It was trained with HTK [You97].
The system was composed of 81 triphones modeled by 3 states HMMs; each state had a 10 Gaussian
mixture pdf and a diagonal covariance matrix. No language model was used. The training sequence
started with 1 Gaussian monophones initialized with the segmented training set (HINIT), followed by
gaussian splitting and embedded models re-estimation (HEREST) up to 10 Gaussian triphones. At
this point, the Word Entrance Penalty (WEP) parameter was tuned. Several recognitions experiments
were done on the standard development-test set with different WEP values and the value leading to
the best recognition score was kept.
Note that we trained a different system for each speech enhancement methods that we tested.

3.4 Experiments Setup

For the testing, the task was to recognize the 1206 sentences from the Numbers95 database development-
test under different simulated noise conditions. We used three kinds of recorded noise from the NOI-
SEX92 database [VSTJ92]: car noise, factory noise,and lynx helicopter noise. The noise was added to
the clean speech at different SNR levels (18 db, 12 db, 6db, 0db). In the following results, the clean
speech is presented at 30 dB. The SNR was computed excluding silence, at utterance level.

Since the Spectral Subtraction relies on an estimate of the noise spectrum, it is possible to evaluate
the performance of the subtraction scheme independently from the noise estimate by using the a priori
spectrum of the noise. This spectrum is computed directly on the noise signal, before it is added to
the speech signal. The recognition results using the a priori values of the noise spectrum are also
presented.

The recognition results are given in percent of word error rate (WER). The confidence interval
was computed for a given WER p with the standard formula :

p * (100 — p)

N (23)

i:dQ*

with in our case do = 1.96 (for a confidence interval at 95%) and N = 4670 % 13 (the number of words
in the development-test set times the number of noise conditions).
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) Car noise ) Factory noise ) Lynx noise
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Figure 4: Results with Spectral Subtraction

3.5 Recognition Results
3.5.1 Spectral Subtraction

The evaluation of the Spectral Subtraction performance under the three noise conditions is shown in
Figure 4 and is summarized in the following table (see also Appendix A):

Mean WER. | Confidence interval at 95%
MFCC 19.57 19.25 - 19.89
MFCC Spectral Subtraction 15.14 14.85 - 15.42
MFCC Spectral Subtraction A Priori 13.43 13.16 - 13.70

The first point to note is that using the Spectral Subtraction can decrease the performance on
clean or slightly noisy speech . Even if the difference is not significant ( 7.30% WER with Spectral
Subtraction compared to 7.07% without with a confidence interval of 0.74%), it is worth noting that
even in some noisy conditions using the Spectral Subtraction significantly decreases the performance.
For example until 6 dB of SNR for car noise, using Spectral Subtraction increases the WER. This
is due to the non-linearities induced by the Spectral Subtraction technique. This effect occurs since
the Numbers95 database is a real telephone speech database : even if there is no noise added to
the speech, the noise estimated on the first milliseconds of signal is not null, due to the recording
conditions. Second, the positive effect of the noise subtraction can be seen as from 18 dB of SNR, for
factory and lynx noise. On average, for the three noise condition, using Spectral Subtraction yields a
relative decrease of error rate of 22.6%. Finally, the importance of the noise estimate can be seen by
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Figure 5: Results with Cepstral Mean Subtraction

comparing the results between the Spectral Subtraction and the a priori Spectral Subtraction. When
the noise level is high, having a good estimate of the noise spectrum is more important : with the
lynx noise at 0 dB of SNR the error rate is reduced from 29.79% to 21.48% with the a priori noise
spectrum. This effect is even more important when the noise is unstationnary, like factory noise : at
0 dB of SNR, the error rate is reduced from 52.10% to 33.43%.

3.5.2 Cepstral Mean Subtraction

The evaluation of the Cepstral Mean Subtraction performance under the three noise conditions is
shown in Figure 5 and is summarized in the following table (see also Appendix A):

Mean WER | Confidence interval at 95%
MFCC 19.57 19.25 - 19.89
MFCC CMS 19.17 18.87 - 19.49
MFCC Spectral Subtraction + CMS 13.99 13.72 - 14.27
MFCC A Priori Spectral Subtraction + CMS 9.24 9.01 - 9.47

First, the Cepstral Mean Subtraction significantly reduce the error rate on clean speech from
7.07% to 5.33 % (24.6% reduction). This result was expected since Numbers95 is a telephone speech
database and since the Cepstral Mean Subtraction removes the convolutional channel noise. Second,
the combination of both Spectral Subtraction and Cepstral Mean Subtraction also gives significant
improvement in noise conditions. These two methods combined decrease the error rate for the three
noise condition and at all SNR level. On average, for the three noise conditions, using both Spectral
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Figure 6: Results with Blind Equalization

Subtraction and Cepstral Mean Subtraction yields a relative decrease of error rate of 28.5 % (from
19.57% to 13.99%). Finally, the importance of the noise estimate can be evaluated by using the a
priori noise spectrum. Using both Spectral Subtraction and Cepstral Mean Subtraction with the a
priori known noise spectrum reduces the error rate on average for the three noises from 52.8%. This
very good result reveals the potential of the combination of these two methods. Indeed, we could
improve the recognition results obtained with the current techniques with better noise estimates.

3.5.3 Blind Equalization

The evaluation of the Blind Equalization performance under the three noise conditions is shown in
Figure 6 and summarized in the following table (see also Appendix A) :

Mean WER | Confidence interval at 95%
MFCC 19.57 19.25 - 19.89
MFCC Blind Eq. 20.88 21.21 - 20.56
MFCC Spectral Subtraction + Blind Eq. 14.71 14.43 - 14.99
J-RASTA-PLP 15.29 15.00 - 15.57

The first conclusion is that the Blind Equalization reduces the recognition error rate on clean
speech. From 7.07% error rate on clean speech with the baseline system, using Blind Equalization
lowers the error rate to 5.67% which represents 20% of error rate reduction. This reduction is due to
the fact that the Numbers95 database is a telephone speech database, and that the Blind Equalization
removes the convolutional channel noise. Secondly, when combined with the Spectral Subtraction, the
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Blind Equalization provides a good robustness to additive noise. On average for all noise conditions,
using both Spectral Subtraction and Blind Equalization reduces the recognition error rate of 27.4%.
This reduction should be compared to the reduction obtained with Cepstral Mean Subtraction. Even
if Cepstral Mean Subtraction seems to yield more error rate reduction (28.5%), the main advantage
of the Blind Equalization is that it is frame synchronous, and then suitable for real systems.

Blind equalization has been compared with J-RASTA-PLP features. Indeed, J-RASTA-PLP are
robust features which are designed to remove both additive noise and convolutional noise [HM94]. 12
J-RASTA coefficients were computed with the following parameters : a window length equals to 25
ms, a window shift equals to 12.5 ms, the LPC analysis order equals to 10. The results in the previous
table show that using Blind Equalization with Spectral Subtraction yields better results than using
J-RASTA-PLP. On average for the three noises, using Blind Equalization with Spectral Subtraction
reduces the error rate from 27.4% whereas using J-RASTA-PLP only reduces the error rate from
21.9%.

4 Conclusion

In this report, we described several noise reduction techniques implemented and tested at IDIAP :
Spectral Subtraction, Cepstral Mean Subtraction and Blind Equalization. Both additive and convo-
lutional noise can be removed by these techniques : Spectral Subtraction removes additive noise and
Cepstral Mean Subtraction and Blind Equalization removes convolutional noise. On the Numbers95
database under three noise conditions, we obtained a robustness to noise by combining two of these
methods like Spectral Subtraction and Cepstral mean Subtraction or Spectral Subtraction and Blind
Equalization. However, the combination of Spectral Subtraction and Blind Equalization has the main
advantage of being frame synchronous. The experiments also showed that the methods we developed
are better than another equivalent noise reduction techniques, namely J-RASTA-PLP.
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A.1 Recognition error rate on Numbers95 with added car noise for differ-
ent noise reduction techniques

SNR 0 | SNR 6 | SNR 12 | SNR 18 | Clean
MFCC 9.21 7.32 6.62 6.57 7.07
MFCC SpeSub 8.65 7.69 7.32 7.28 7.30
MFCC SpeSub Apriori 8.99 8.67 8.61 8.82 -
MFCC CMS 6.64 5.55 5.25 5.12 5.33
MFCC SpeSub CMS 6.57 5.95 5.63 5.67 5.63
MFCC SpeSub CMS apriori 5.61 5.29 5.12 5.16 -
MFCC Blind Eq. 7.37 6.36 6.02 5.74 5.67
MFCC SpeSub Blind Eq. 8.24 6.81 6.49 6.79 6.75
MFCC SpeSub Blind Eq. apriori | 6.75 6.36 6.60 6.60 -
J-RASTA 7.71 7.28 7.47 7.52 7.43

A.2 Recognition error rate on Numbers95 with added factory noise for

different noise reduction techniques

SNR O | SNR 6 | SNR 12 | SNR 18 | Clean
MFCC 83.47 | 34.60 14.86 9.46 7.07
MFCC SpeSub 52.10 | 23.92 12.61 8.65 7.30
MFCC SpeSub Apriori 33.43 17.39 11.82 9.51 -
MFCC CMS 76.68 | 36.00 15.33 8.78 5.33
MFCC SpeSub CMS 53.51 | 24.58 11.80 7.34 5.63
MFCC SpeSub CMS apriori 26.60 | 12.36 7.73 6.75 -
MFCC Blind Eq. 87.64 | 44.60 17.49 9.51 5.67
MFCC SpeSub Blind Eq. 52.55 | 24.26 12.21 8.44 6.75
MFCC SpeSub Blind Eq. apriori | 28.52 13.75 8.69 7.17 -
J-RASTA 50.43 | 24.05 12.85 8.93 7.43

A.3 Recognition error rate on Numbers95 with added lynx noise for dif-
ferent noise reduction techniques

SNR 0 | SNR 6 | SNR 12 | SNR 18 | Clean
MFCC 38.80 | 18.14 10.47 7.82 7.07
MFCC SpeSub 29.79 | 14.69 9.27 7.54 7.30
MFCC SpeSub Apriori 21.48 | 13.34 10.24 8.89 -
MFCC CMS 49.44 | 18.84 9.66 6.70 5.33
MFCC SpeSub CMS 27.64 | 13.30 7.86 6.42 5.63
MFCC SpeSub CMS apriori 14.88 8.76 6.81 5.78 -
MFCC Blind Eq. 44.05 | 18.92 10.58 7.54 5.67
MFCC SpeSub Blind Eq. 28.57 | 14.07 8.84 7.24 6.75
MFCC SpeSub Blind Eq. apriori | 14.50 9.40 7.56 6.66 -
J-RASTA 31.35 | 15.95 9.85 7.97 7.43




