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Abstract

Latent variable decomposition permits factorisation of posterior probability based, or likelihood

based, speech unit discriminant functions into a composition of simpler functions which can be

analysed separately and evaluated more accurately in the presence of band-limited noise, or other

source of data mismatch. See [2,7] for a more self contained introduction to this subject. In this

report we present the essential theoretical issues, and implementation details, for the key points

concerning this approach to multiband ASR. In particular, we show that the posteriors and

likelihood based multiband decompositions are very closely linked.
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1. Introduction

When working with subband ASR (Automatic Speech Recognition) it is important to be aware of the core ideas

underlying this approach to noise robustness. It is also important to make note of the different advantages of

likelihood (HMM, Hidden Markov Model) and posteriors (HMM/ANN, HMM/Artificial Neural Network) based

subband ASR models. In MB (Multi-Band) ASR it is required to combine the outputs from a number of separate

subband experts into a single expert “opinion” or quantitative measure of some kind. In most cases the experts are

combined for each data frame. With posteriors based experts the discriminant function to be evaluated for each data

frame , and phoneme , is . These posteriors are usually modelled by an MLP neural network, training

uses the LMSE, Least Mean Square Error, criterion, which has been shown to maximise the probability of correct

classification and therefore makes use of state priors . With likelihood based experts the discriminant function

to be evaluated for each frame is . In this case training is ML (Maximum Likelihood) based, and uses prior

information only indirectly as state-transition probabilities.

As with the simple missing data (MD) based approach to noise robust ASR [6], one of the main aims of multiband

ASR (MB) is to achieve robust recognition in the presence of band limited noise by exploiting spectral data
redundancy. The key difference between the MB and MD approaches is that the MB approach uses a reliability

weighted sum over many (if not all possible) positions of unreliable data, while the simple MD approach makes a

hard decision about which data is reliable - data is either treated as 100% clean, or else it is ignored completely.

Another very important advantage of MB over MD arises from the fact that competitive performance in clean speech

requires that data features used in recognition are near-orthogonal. The data subset presented to each MB expert can

be orthogonalised, because a separate expert is trained for every possible position of unreliable data. With MD

orthogonalisation is not possible, because only one fullband expert is trained, and fullband orthogonalisation would

mix all data components together, after which separation of reliable from unreliable data would no longer be possible.

Both the MD and MB approaches to robust ASR have the advantage that they require no knowledge of the noise.

Models trained on clean speech can be used to recognise noisy speech, provided only that some parts of the signal
remain clean, and these parts can be identified. Early experiments with MB combined one expert trained on each

subband. Different combination functions were tested, some linear (linear weighted sum), and others nonlinear

(geometrically weighted product, or MLP combination). However, these early models were disadvantaged by the fact

that each narrow-band expert has a greatly reduced performance compared to the fullband expert in clean
speech, so that the optimal combined narrow-band expert performance was very limited.

The aim of latent variable decomposition here is to theoretically factorise the posterior or likelihood based fullband

discriminant function into a composition of simpler functions which can be analysed separately and evaluated more

accurately in the presence of band-limited data mismatch. In the case of multiband ASR, the fullband data likelihood

(or posterior) can be decomposed into a weighted sum of clean-data likelihoods (or posteriors) for each subset of

data subbands, in which weights represent the probability that each data subset has negligible data mismatch.

In Section 2 we show how both the posteriors and likelihood based fullband discriminant functions can decomposed

into a sum of terms, one for each subband combination, comprising: a subband-combination discriminant function,

(which is conditioned on the data in this subband combination being free from data mismatch), and a corresponding

mismatch sensitive weighting factor. In Section 3 we show how data mismatch and relative utility can be further

decomposed into separate factors. In Section 4 we summarise a number of different approaches to weighting

estimation. In Section 5 we expand on some of the technical considerations needed for implementing these methods.

x
n

qk P qk x( )

P qk( )
p x qk( )
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2. Latent variable decomposition

Providing we consider all possible subband combinations (including the empty set) the events1 are exhaustive, so

that . As only one subband combination can be that largest clean set, are also mutually exclusive, so

that when , and = Note that when manipulating probabilities it is

essential that the “events” for which probabilities are being calculated have a precise formal definition.

2.1 Posteriors decomposition

For a posteriors based system the function to be evaluated for each  is . As  is exhaustive:

(1)

and as  are mutually exclusive:

(2)

Therefore, using Bayes’ rule:

(3)

The original quantity to be evaluated, , is now decomposed into weighting terms , and subband

combination posteriors . Unlike the original fullband posterior, the terms are conditioned
on the data in the subband subset being clean, and the data not in this subset being not clean. Evaluation of the

weighting terms is discussed in Section 4.

While it is “intuitively clear” that , formulas based on intuition are not always correct, and in

Section 2.1.1 we show under what conditions this is true.

2.1.1 Optimal estimate of incomplete data posterior

Here we borrow some terminology from MFT (missing feature theory) and refer to clean (no mismatch) data as

“certain” data, and unclean data as “uncertain data”. When the unclean data is to be ignored completely, we will refer

it as “missing data”. The “clean” or “certain” data components in the subset of will be denoted by (dropping

the subscript ), and uncertain components by . Note here that is a vector of given scalar values, while is a

vector of random variables, whose range of possible values is constrained only knowledge , which can be

represented by a pdf.

The condition gives us the partition of into certain and uncertain parts . If nothing is known about the

uncertain data, then this data is simply missing, or “not given”, so that:

, so that, from. Eq. 3, (4)

(5)

1. See Appendix A: "Notation", page 21 for definition of “  clean”, , , etc.

ci

x ci si

P ci
i

∪( ) 1= ci

P ci c j∩( ) 0= i j≠ P ci c j∪( ) P ci( ) P c j( )+

x qk,( ) P qk x( ) ci
i

∪
P qk x( ) P qk ci

i
∪∩ x( )=

ci

P qk ci
i

∪∩ x( ) P qk ci∩ x( )
i

∑=

P qk x( ) P ci x( )P qk ci x∩( )
i

∑=

P qk x( ) P ci x( )
P qk ci x∩( ) P qk ci x∩( )

P qk ci x∩( ) P qk si( )≅

si x xc

i xu xc xu

κ u

ci x xc xu,( )

P qk ci x∩( ) P qk xc κ u,( ) P qk xc( ) P qk si( )= = =

P̂ qk x κ,( ) P ci x( )P qk si( )
i

∑=
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Clean subband posteriors, , can be obtained by training a separate posteriors based classifier on data from

each subband combination. This classifier used is commonly an MLP, but could also be implemented by training a

likelihood based classifier for each combination, then using Bayes’ rule, plus class priors, to convert to posteriors1.

So far we have assumed that the uncertain data is completely unconstrained, and therefore effectively missing.

However, it is often the case that some knowledge constraining the uncertain data is available, and we should try to

make as much use of this knowledge as possible. If the knowledge which we have about is a partition into certain

and uncertain parts , plus some further knowledge constraining, but not fully specifying, , then what is

the optimal estimate for ?

In the general field of function approximation, when the value of is uncertain (i.e. when is a random variable), the

estimate for any function of which minimises the “expected quadratic error” (the most common

criterion used in the estimation of continuous statistics) is given by 2, or, in the case where the pdf for

is conditioned by knowledge , by: .

 can be estimated as its conditional expected value as follows:

(6)

(7)

If nothing is known about then , so the optimal estimate is the “marginal posterior” ,

as in Eq. 4. However, if the uncertain data is constrained in some way (see Section 5.3) then use of the second term in

Eq. 7 can strongly improve recognition performance, especially when a large proportion of data is uncertain [Eq. 6].

2.2 Likelihood decomposition

For a likelihood based system the function to be evaluated for each is . Decomposing as with

posteriors, we obtain:

(8)

This decomposition as it stands presents two problems:

2.2.1 Problem 1: Optimal estimate of incomplete data likelihood

It is not true that . Intuitively speaking, this is because and the reduced

dimension of with respect to that of guarantees that is much smaller or larger than , depending

on whether each term in the product is less or greater than 1 (they are most often less than 1).

1. This later system is sometimes known as a Gaussian Radial Basis Function classifier.

2. This is well known, but can be shown simply by differentiating the quadratic error w.r.t. and equating the result to zero.

P qk xc( )

κ x

xc xu,( ) κ u xu

P qk x κ,( )

x x

θ x( ) x E θ x–( )2[ ]
θ̂ x( ) E θ( )= x

θ

κ θ̂ x( ) E θ x( ) κ[ ]=

P qk x κ,( )

P̂ qk x κ,( ) P̂ qk xc κ u,( ) E P qk xc κ u,( ) xc κ u,[ ] E
p xc κ u, qk( )P qk( )

p xc κ u,( )
-------------------------------------------- xc κ u,= = =

E
p xc qk( )P κ u xc qk,( )P qk( )

p xc( )P κ u xc( )
------------------------------------------------------------------ xc κ u,= P qk xc( )

P κ u xc qk,( )
P κ u xc( )

------------------------------=

xu P κ u anything( ) 1= P qk xc( )

x qk,( ) p x qk( )

p x qk( ) p x ci∩ qk( )
i

∑ P ci qk( ) p x ci qk∩( )
i

∑= =

p x ci qk∩( ) p si qk( )≅ p x qk( ) p x j qk( )
j∏≅

si x p si qk( ) p x qk( )
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This problem can be solved without much difficulty using the same method as in Section 2.1.1 for posteriors. The

knowledge we have in the present case about is the knowledge we had in the posteriors case, plus the knowledge

that  is from class . The appropriate estimate for  is therefore obtained as follows:

(9)

For diagonal covariance GM, both the marginal and the integral in Eq. 9 are evaluated in terms of available

quantities in Section 5.

2.2.2 Problem 2: Obtaining weights which are sensitive to data mismatch

The decomposed likelihood terms are conditioned on the data being clean, which is what we need for

making use of experts trained on clean data. However, the weighting terms in Eq. 8 are conditioned only on

the speech unit identity. Different phonemes are likely to be affected differently by noise in different channels, so

phoneme identity may carry a certain amount of information on whether the data in each subband combination should

be considered as clean or not. However, weights conditioned on phoneme identity alone clearly have far less potential

for selecting the most appropriate subband combination in the presence of strong band limited noise. There is no

alternative decomposition of the data likelihood to give weights conditioned on . The only way out of this problem
is therefore to make use of the posteriors decomposition, in which noise-conditioned weights arise naturally.

One way to do this would be to simply abandon likelihood based models in favour of posteriors based models, such as

the HMM/ANN. However, likelihoods can have some advantages over posteriors (see Section 6), so a more

constructive alternative, would be to use the link between “scaled likelihoods” and “scaled posteriors” given by

Bayes’ rule, together with Eq. 5 (or Eq. 7, if it is required to apply the bounds constraint), to give:

(10)

Providing that is evaluated for all (this would preclude the use of beam search), in Eq. 10 can be

obtained directly using .

If required, on the left side of Eq. 10 could also be obtained similarly after has been evaluated for all .

However, as is independent of , and so is , so this factor can apparently be ignored

However, if a language model is used, then the LM scaling factor would now be proportional to , which could

vary greatly between utterances, so in this case it may be better if  is not ignored.

Note here that if Eq. 10 is used in place of Eq. 8 then the complex scaling factors given in Eq. 9 which are required

for estimating the incomplete data likelihoods in Eq. 8 are no longer needed.

xu

x qk p x ci qk∩( )

p̂ x ci qk∩( ) E p x ci qk,( ) ci qk,[ ] E p xc xu, κu qk,( ) xc κ, u qk,[ ]= =

E p xc κ u qk,( ) p xu xc κ u qk, ,( ) xc κ, u qk,[ ]= p xc qk( )E p xu xc κ u qk, ,( ) xc κ, u qk,[ ]=

p xc qk( ) p xu xc κ u qk, ,( ) p xu xc κ u qk, ,( ) xud
Ru

∫=

p x qk( )

p x ci qk∩( )
P ci qk( )

x

p x qk( )
p x( )

-------------------
P qk x( )
P qk( )

-------------------

P ci x( )P qk si( )
i

∑
P qk( )

----------------------------------------------≅ P ci x( )
p si qk( )

p si( )
--------------------

i
∑= =

p si qk( ) k p si( )
p si( ) P qk( ) p si qk( )

k
∑=

p x( ) p x qk( ) k

p x( ) qk p X( ) p x
n( )

n 1=
N∏=

p x( )log

p x( )
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3. Decomposition with two latent variables

It is possible to perform decomposition using separate latent variables to specify which bands have reliable data and

which bands are most effective for distinguishing speech units. This is desirable because (presence of data mismatch)

and (utility of a particular set of clean subbands for distinguishing speech units) are different properties of the signal

which it may be best to detect separately.

We start as for the decomposition with one latent variable, except here we have two independent latent variables, so

we need a double sum to sum over all possible combinations. For posteriors we have:

(11)

(12)

If we assume that adds little new information about which combination is best when is known, then

. These fixed weights, are estimated as in Section 4.2. In the third term in Eq. 12 we can

assume that the best set is a subset of the largest set of clean subbands, so , and the last term in Eq. 12

can be ignored, unless . In the remaining cases  is conditionally independent of . Therefore:

(13)

For likelihoods, we have:

(14)

(15)

In Eq. 15 is unlikely to be dependent on , so . If nothing is known about the noise then

are unknown, but may be estimated using Eq. 24 with the assumption that each subband is equally likely to be noisy1.

The second term is like the second term in Eq. 13, but is further conditioned on the speech unit whose likelihood we

are estimating. This could be a distinct advantage, because different speech units are sure to have different

distinguishing features in different subbands. In the third term in Eq. 15 we can drop the dependence on for the

same reason that it was dropped in Eq. 13. Therefore:

(16)

Eq. 16 presents the same problems that were discussed in Section 2.2, but the static weights in the two LV case will be

more accurate. Alternatively, we could take the approach of Section 2.2.2 and use:

1. Note that  will not be all equal in this case unless .

P qk x( ) P qk bi
i

∪ c j
j

∪∩ ∩ x( )≅ P qk bi c j∩ ∩ x( )
j

∑
i

∑=

P c j x( )P bi c j x∩( )P qk bi c j x∩ ∩( )
j

∑
i

∑=

x c j
P bi c j x∩( ) P bi c j( )≅ bij=

P bi c j( ) 0=

si s j⊆ qk c j

P qk x( ) P qk si( ) P c j x( )P bi c j( )
j

∑
i

∑≅

P x qk( ) P x bi
i

∪ c j
j

∪∩ ∩ qk( )≅ P x bi c j∩ ∩ qk( )
j

∑
i

∑=

P c j qk( )P bi c j qk∩( )P x bi c j qk∩ ∩( )
j

∑
i

∑=

c j qk P c j qk( ) P c j( )≅ P c j( )

P c j( ) d 2=

c j

P x qk( ) P c j( )P bi c j qk∩( )P x bi qk∩( )
j

∑
i

∑=
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(17)

4. Weight estimation

If the latent variable in Eq. Eq. 5 is not an indicator for each subband combination being the largest clean

combination, then we are no longer justified in assuming that . On the other hand, if we can

assume that the data is clean, and we are interested in exploiting the possibility that data in some subbands should

carry more weight than data in others, then we can replace by the latent variable , which indicates whether each

subband combination is “the best” or most useful. As are also mutually exclusive and exhaustive, the same

working used to derive Eq. Eq. 5 also gives us:

(18)

Although the weights in Eq. 18 depend on , if we are interested in using fixed weights, then we must ignore

 and assume that . In the dual decomposition of Section 3, the fixed weighting factors are .

For a likelihood based system the same argument gives us:

(19)

or, in the case of the dual decomposition of Section 3, the fixed weighting factors are

If the data is clean then the weights are static and can be estimated from the training data set. We describe here a

number of approaches to both fixed and adaptive weighting.

4.1 Fixed weight estimation using linear & non-linear LMSE

Fixed weights , or , , , can be estimated using the (supervised) LMSE

(least mean square error) criterion:

(20)

where is the estimated combined posterior for at frame , and are the target posteriors,

if target class for frame  is class , else . For linear LMSE:

In this case the resulting LMSE “normal equations” are linear and can be solved directly, but in this case the weights

cannot be constrained to be positive or sum to 1 across all experts. For non linear LMSE, when an MLP is trained

using “back error propagation” (a particular case of gradient descent), weights can be constrained to sum to 1, if

required, by using the softmax activation function in the output layer.

p x qk( )
p x( )

------------------- P ci x( )
p si qk( )

p si( )
-------------------- P bi c j( )

j
∑

i
∑≅

c

P qk si( ) P̂ qk si Θi;( )≅

c b

bi

P qk x( ) P bi x( )P̂ qk si Θi;( )
i

∑≅

P bi x( ) x

x P̂ bi x( ) P̂ bi( )≅ P bi c j( )

p x qk( ) P bi qk( ) p̂ x bi qk∩( )
i

∑≅

P bi c j qk∩( )

wi P bi( )= wik P bi qk( )= i 1…2
d

= k 1…K=

w minarg w yk
n

w( ) tk
n

–( )
2

k 1=

2d

∑
n 1=

N

∑=

yk
n

w( ) qk n tk
n

P qk x
n( )= 1=

n qk 0=

yk
n

w( ) P qk x
n Θ; w,( ) wikP qk si

n Θi;( )
i 1=

2d

∑= =
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4.2 Fixed weight estimation using maximum likelihood

The fixed weights , or can be estimated using (supervised) relative-

frequencies (relative frequency is the ML estimate for a Bernoulli probability) as follows:

, , (21)

where:

•  is the number of frames of training data.

•  is the number of frames for which the target phoneme  occurs.

• is the number of frames of training data for which expert has the largest posterior, across all experts for

subsets of , for the target phoneme - and therefore has the smallest KL distance from the target probability

distribution.

• is the number of frames of training data for which expert has the largest posterior, across all experts for

subsets of , for the target phoneme.

• is the number of frames of training data for which expert has the largest posterior, across all experts for

subsets of , when the target phoneme is , .

Note that the number of occurrences of some may be too small for the variance in this estimate to be acceptably

small. In this case, variance can be reduced by using the m-estimate, , where is

some reasonable prior estimate for this probability, and m is the minimum value of which gives acceptable

confidence in the probability estimate.

4.3 Adaptive weighting using maximum likelihood

It would be possible to estimate the weights in Section 4.1 using unsupervised ML, with the same EM

update equations as are usually used for estimating the Gaussian mixture weights in the context where all of the other

Gaussian parameters are fixed, i.e. assign some suitable initial values to these weights, and then iterate as follows:

(22)

with (23)

Notice here that . Evaluation of requires making use of the results in Section 5.2.

Initial training of the combination weights in this way could make use of the full training data set, but as this training

is unsupervised, these initial weights could be adapted to changing noise levels by combining them in a weighted sum

(factor ) with similar weights which are estimated locally, over a window of data samples spanning a short time

interval (factor ) of perhaps just a few hundred ms. To date this method has not been tested, but on-line ML based

adaptation has been applied elsewhere with some success1.

wi P bi( )= wij P bi c j( )= wijk P bi c j qk∩( )=
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4.4 Adaptive weighting using estimated local SNR

We can obtain the adaptive weights, in Eq. 5, Eq. 10 and Eq. 13 from direct measures of local data mismatch

in each subband, such as SNR, or other measures of likeness to speech data, such as harmonicity [1]. The weight

 is the probability that combination  is the largest set of clean subbands.

If we assume that for each subband there is a fixed threshold SNR below which recognition should improve if

subband is ignored1 (for the current data frame) [6], then . SNR thresholds can

be estimated by obtaining fullband recognition scores with different noise levels in band , and comparing these

with the recognition score when band  is ignored.

If we assume that subband combination reliability can reasonably be estimated from the reliability of each of its

component subbands, and that subband reliabilities are independent, then, by definition of :

=> (24)

4.5 Adaptive weighting using clean-data likelihood

While the likelihood based decomposition was shown to require access to class posteriors, for the purpose of

estimation of the combination weights, in Eq. 3 and Eq. 8, it is particularly interesting to have access to data

likelihoods. This is because data likelihood carries considerable information about noise level. Intuitively, data which

is not from the clean data population pdf should appear highly unlikely. Fig.1 shows that this is true for spectral
data, but not for data in which clean and noisy data has been mixed by orthogonalisation. However, in both

cases it can be seen that SNR level is strongly associated with a characteristic behaviour of data likelihood. If a pdf

is trained for clean data, and histograms are obtained for clean and noisy data log likelihoods for

each subband , then reliability weights could be estimated on-line for  of as:

(25)

Example: If the subband histograms for are as in Fig. Eq. 1 b (for MFCC data), and , then the

probability that this subband is locally free from data mismatch would be estimated as:

.

The tendency for orthogonalised data to have higher rather than lower likelihood may not be a bad thing. While there

is a large overlap between the histograms in Fig Eq. 1 for clean and noisy orthogonalised data, as lower likelihood

implies higher information capacity, information carried should be higher for data with lower likelihood, which is

1. ...though I can’t think of any references right now!

1. This assumption is not accurate, because as the proportion of noisy subbands increases, the penalty for ignoring further
subbands increases. A more accurate model would use a different SNR threshold for each number of other subbands which
it has already been decided to ignore, with bands considered in order of increasing SNR.
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more likely to be identified here as clean. This form of weighting also gives a direct measure of data mismatch, while

methods based on SNR estimation, for example, do not. If training data was noisy then high SNR does not necessarily

imply large data mismatch. Also, SNR based weights for low noise levels in near silent periods will tend indicate very

low SNR, while mismatch is small, so data reliability should be high.

To date this direct use of data likelihood in mismatch estimation has not been tested. However, several methods for

noise robust ASR have recently been reported which are essentially based on this same idea [5,9].

5. Some implementation details

5.1 Within-stream orthogonalisation

For both practical and theoretical1 reasons it is highly desirable that the data presented to each combination expert

should be othogonalised in some way, rather than having neighbouring coefficients highly correlated, as they are with

spectral data. As the motivation behind any “missing feature theory” based model is to separate clean from noisy

(mismatching) data, it is not possible to apply an othogonalisation transform (such as the principal components, or

discrete cosine transform) to the full data vector, because this would mix all the clean and noisy data together before

it could be separated. Instead it is necessary to apply orthogonalisation separately within every subband combination.

This unfortunately means that subband combination likelihoods cannot be obtained by marginalisation of the full data

pdfs, so for both posteriors and likelihood based models, a separate expert must be trained on the locally
orthogonalised data for each subband combination. Furthermore, until a way is found over this problem, no

information can be used which is based directly on spectral data. This means that the spectral-bounds constraint
discussed in Section 5.2 cannot be used in practical ASR. And use of the harmonicity mismatch measure discussed

in Section 4.4 would require access to the spectral data before it was orthogonalised.

5.2 Evaluation of incomplete data likelihood for diagonal covariance GMs

From Eq. 9 we have that the estimate for  which minimises the expected quadratic loss is:

(26)

In the present context we are mainly interested in Gaussian mixture (GM) models:

(27)

The left hand term in Eq. 26 is simply the marginal with respect to the subcomponents of in . This can

be evaluated directly from the GM for , using Eq. 38 with the class pdfs that were trained on clean data.

1. The practical reason for data orthogonalisation is that full covariance matrices for high dimensional data vectors are very
expensive in terms of storage and computation. The theoretical reason is that the large number of free parameters these
require makes the amount of training data necessary to achieve satisfactory generalisation prohibitive.
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Figure 1: Plots show pdf histograms for [log p(x)] values over test sets with different levels of added car noise,

where p(x) is the data pdf trained on the clean training set for the Number95 spoken numbers database. In the

top figure (for spectral data) likelihood decreases as noise level increases. However, in the other figures, for

orthogonalised data (MFCC & J-Rasta-PLP), likelihood increases with noise level.
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The integral in Eq. 26 combines a scaling factor with the bounds constraint. Evaluation of this integral for GMs is

always possible in closed form and little computational cost, except that the bounds constraint term (see Section 5.3)

cannot be evaluated in closed form with full covariance. Unlike single Gaussians, diagonal covariance GMs can

model dependence between data components. In the following working we will assume that covariance is diagonal.

Dropping reference to the class index, , the conditional pdf  can be obtained as:

Knowledge, , of bounds on the uncertain data gives:

/  for , else =

If no bounds constraint is used, then . Eq. 40 to Eq. 44 give  as:

, where

The integral in Eq. 26 can now be evaluated as follows:

(28)

(29)

The product of Gaussians is scaled Gaussian. If we write:

then  can be obtained from  using Eq. 45 and Eq. 46, so that:

(30)

If there is no bounds constraint (or, equivalently, if all constraints on the uncertain data are to be ignored) the integral

in Eq. 30 is 1, so that: . Otherwise, if we wish to evaluate the integral in Eq. 30, and each GM

component has diagonal covariance, then we can integrate over the interval  as follows,1,2 :

(31)

1. In Eq. 32, denotes the cdf for the standard univariate Gaussian pdf (mean 0 and variance 1). This can be evaluated
(indirectly) using the standard C function erf().

2. In practice Gaussian probabilities are handled as log probabilities. Some care must be taken in evaluating log cdf values
because the standard erf function is highly inaccurate for arguments with absolute value greater than about 6. This
problem can easily be solved through use of an asymptotic limit for this cdf.
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(32)

With , Eq. 46 gives:

(33)

(34)

Example: In the case where all constraints on the uncertain data are ignored, and is one mix spherical

covariance Gaussian, with variance , Eq. 34 gives , so that, from Eq. 26:

(35)

The scale of the optimal incomplete likelihood estimate is therefore strongly dependent on and . Even

if the number of coefficients in each subband combination was the same, the variances in different subbands would

differ. This factor is therefore far from being constant across subband combination experts, and cannot be ignored.

5.3 Optimal estimate of data posterior when uncertain data is constrained

In the present context we might assume that the main reason for data mismatch is interference from other sound

sources. If the data vector consists of spectral parameters taken over a short term window of order 10 ms, then the

effect of any interference will always be approximately additive. In this case the unknown clean value is bounded

above by the noisy observed value. Furthermore, spectral energies are usually constrained to be positive (even after

log compression, which can result in negative values). This means that the clean value is also bounded below by zero.

It has been shown that this bounds constraint can considerably improve recognition performance, especially in the

common situation that a large proportion of the original data is uncertain [3,4,6].

We can therefore obtain the optimal estimate for by first establishing what knowledge we have, and then

evaluating the resulting conditional expectation. In the present case the knowledge we have1 is the partition of into

, plus the bounds on each component of , , where are the observed noisy

upper bounds on . We can now evaluate the optimum posteriors estimate given by Eq. 7 as follows. The term

is independent of choice of class , so can be ignored2 if posteriors are subsequently normalised to sum to

1. The term  can be evaluated as:

1. It is important to note here that we do not know that is from class . If we did, then we would know that the posterior
probability value was exactly 1.

2. Normalising to sum to 1 is equivalent to using .
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(36)

where is the conditional pdf for , which can be obtained from the clean data pdf, . If

likelihoods are available then this probability can be easily evaluated for GM pdfs provided that each mix component

has diagonal covariance. For full details, see Section 5.2.

6. Conclusion

The rational for subband-combination decomposition, for both posteriors and likelihood based models, has been

presented. It has been shown that decomposition for likelihood based models is not as straightforward as with

posteriors based models, but is still computationally feasible. In particular, it has been shown that:

• estimation of incomplete data likelihoods requires evaluation of an important scaling factor for each
expert, which involves an integral of the square of the conditional missing data likelihood (Eq. Eq. 9).

• to obtain a likelihood decomposition in terms of functions trained on clean data, and with corresponding
weights sensitive to noise, it is necessary to convert data likelihoods into posteriors (Eqs. Eq. 10, Eq. 17).
This does not introduce much extra computation, and avoids the need for the scaling factors mentioned above.

The decomposition of both posteriors and likelihood based discriminant functions was derived. In both cases the

fullband discriminant function (or expert) was decomposed into a weighted sum of clean-data experts for each

subband combination. It was also shown that decomposition with two latent variables can be used to separate terms

involving substream data mismatch and substream data relevance to a particular speech unit. MFT [6] was used to

show that when uncertain data can be constrained, the estimates for the incomplete data likelihood or posterior could

theoretically be improved. However, the need to orthogonalise data within each subband subset (discussed in Section

5.1) means that it is not possible to make direct use of spectral data models in high performance ASR. For this reason:

• subband combination likelihoods cannot be obtained by marginalisation of the full data likelihood - as
they were in [Eq. 4,Eq. 6]. For both posteriors and likelihood based models, a separate expert must be
trained on the locally orthogonalised data for each subband combination.

• the spectral-bounds constraint discussed in Section 5.3 cannot be used in practical ASR (unless the
spectral bounds are transmitted to the orthogonalised data, where they are diffused and unlikely to be
effective).

Likelihood based models have a number of advantages over posteriors based models. One is that posteriors can

always be obtained from likelihoods via Bayes’ rule, but the reverse is not true. Another is that likelihood based ASR

systems are more commonly used, so packages for building and tuning them (such as HTK) are more highly

developed. With likelihood based systems unsupervised training with hidden states is possible, but with posteriors

based models training must normally be supervised, with one model per phoneme. The theory for dealing with

missing-features and on-line noise (and speaker) adaptation has also been developed primarily for likelihood based

ASR. In Section 4.5 it was also shown that data likelihoods can be used directly for weighting subband-combination

experts according to data reliability.

Latent variable decomposition of probabilities requires that the set of events used for decomposition are exhaustive,

so that when applied to subband ASR this means that a separate expert must be used not only for each subband, but

for every possible subband combination. As the number of subbands used increases, the number of subband

P κ u xc qk,( ) P xu Ru∈ xc qk,( ) p xu xc qk,( ) xud
Ru

∫= =

p xu xc qk,( ) xu p x qk( )
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combination experts which it is necessary to train can soon become impractical. In some contexts it may be possible

to use a-priori knowledge to set the weights for all but a small number of these combinations to zero. Otherwise an

approximation to the  expert functions can be obtained from the  subband experts alone [2].2
d

d
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Appendix A: Notation

probability of “event x” occurring. The event x must be clearly defined.

probability density at x of a continuous value :

probability of events ‘a’ and ‘b’ occurring (same as )

probability of events ‘a’ or ‘b’ occurring

speech unit whose presence at time t is being estimated. For a posteriors based system this will

typically be a phoneme, while for a likelihood based system it is usually a hidden state for some

phoneme or whole word model.

vector for a data window at time t. This will typically consist of a number of appended frames for a

posteriors based system, or a single frame with appended smoothed first and second time

differences for a likelihood based system.

 clean  is from the same data population that was used in model training (i.e.  has no data mismatch)

number if spectral subbands

ith subband of , for

partition of  into ith subband combination, , and its complement, , for

partition of  into subbands which are clean (or “certain”), , and unclean,  (or “uncertain”)

ith component of

event that subband combination  is the largest clean subset of

event that  is the best subset of  for estimating speech unit posteriors

event that  is the best subset of  for estimating speech unit posteriors when true unit is

standard Gaussian cdf

standard Gaussian pdf

Gaussian pdf for  with mean vector  and covariance matrix

subvector of uncertain components of  corresponding to uncertain components of

submatrix of uncertain components of  corresponding to uncertain components of

ith component of  for jth Gaussian mixture component

ith variance in diagonal covariance matrix  for jth Gaussian mixture component

vector of sub-band expert weights
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Appendix B: Properties of the Gaussian and Gaussian mixture pdf

Any joint pdf can be factored into its marginal and conditional pdfs: . If certain and uncertain

data components are collected together, then .

Of multivariate pdfs, the Gaussian has a particularly convenient marginal and conditional form.

(37)

(38)

(39)

where  and (40)

The marginal and conditional pdfs for the Gaussian mixture pdf are also of a convenient form:

(41)

(42)

(43)

where (44)

The product of Gaussians is Gaussian: , where

, , and (45)

(46)

When Gaussians are univariate, ,  and  simplify as follows:

, , and (47)

(48)

p a b,( ) p a( ) p b a( )=

p x( ) p xc xu,( ) p xc( ) p xc xu( )= =
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xu

µc Cc

µu CuCuc
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uncertain data

certain data

x µ C
Figure 2: definition of various certain /

uncertain sub-vectors and sub-matrices used in

formulas for marginal and conditional pdfs.
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Appendix C: Accurate evaluation of the Gaussian cdf

The standard Gaussian cdf (cumulative distribution function):

can be evaluated using the C standard erf function (whose definition differs from the common definition):

However, this accuracy of the C standard erf implementation (a polynomial approximation) falls off very rapidly as

the absolute value of increases beyond about 5. This instability can be avoided by making use of a result known as

Mill’s ratio concerning the asymptotic behaviour of the Gaussian cdf as x tends to infinity:

(49)

C code using this limit is given below:

#include <math.h>

#define MAXSDS 5
#define sqrtTPI 2.5066283
#define sqrt2 1.414235719
#define standard_gauss_pdf(x) (exp(-x*x/2e0)/sqrtTPI)

double erf(double x);

double standard_gauss_cdf(double x) {
double result;
if (x < 0e0) result = (1e0 - standard_gauss_cdf(-x));
else if (x < MAXSDS) result = (1e0 + erf(x/sqrt2))/2e0;
else result = 1e0 - standard_gauss_pdf(x)/x;
return result;

}
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