A comparison of mixture models for density estimation

Gaussian mixture models (GMMs) are a popular tool for density estimation. However, these models are limited by the fact that they either impose strong constraints on the covariance matrices of the component densities or no constraints at all. This paper presents an experimental comparison of GMMs and the recently introduced mixtures of linear latent variable models. It is shown that the latter models are a more flexible alternative for GMMs and often lead to improved results.


Publié dans:
Proceedings of the International Conference on Artificial Neural Networks (ICANN'99), 1, 25-30
Présenté à:
Proceedings of the International Conference on Artificial Neural Networks (ICANN'99)
Année
1999
Publisher:
London: IEE
Mots-clefs:
Note:
(IDIAP-RR 98-14)
Laboratoires:




 Notice créée le 2006-03-10, modifiée le 2018-12-03

n/a:
Télécharger le documentPDF
Liens externes:
Télécharger le documentURL
Télécharger le documentRelated documents
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)