
A Comparison of Mixture Models for Density EstimationPerry MoerlandIDIAP, CP 592, Martigny, SwitzerlandE-mail: Perry.Moerland�idiap.hAbstrat. Gaussian mixture models (GMMs)are a popular tool for density estimation. How-ever, these models are limited by the fat thatthey either impose strong onstraints on the o-variane matries of the omponent densities orno onstraints at all. This paper presents anexperimental omparison of GMMs and the re-ently introdued mixtures of linear latent vari-able models. It is shown that the latter modelsare a more exible alternative for GMMs andoften lead to improved results.1 IntrodutionDensity estimation is an important issue inmahine learning with appliations to datavisualization, modelling of lass-onditionaldensities, and initialization of radial basisfuntion networks. In this paper, we fouson semi-parametri density estimationbased on mixture distributions. A well-known approah is the use of Gaussianmixture models (GMMs, for example [1℄).The use of a GMM with full ovarianematries leads to a huge number of pa-rameters for a high-dimensional inputspae and presents the risk of over-�tting.Therefore, the ovariane matries areoften onstrained to be spherial, with asingle parameter for the whole ovarianestruture, or diagonal. The latter onstraintleads to a model in whih the axes of theGaussians are aligned with the data axesand whih does not apture orrelationamongst the variables. Thus, eah of theseparameterizations has its disadvantages. Aompromise between these extremes an befound in the reently introdued mixtureof latent variable models [5, 11℄ whihform a mixture of onstrained Gaussians.The advantage of using mixtures of latentvariable models is that one an avoid theonstraint of aligned axes (thus apturingorrelations) without needing a full ovari-ane matrix. This an be done by using thefreedom we have in hoosing the dimension

of the so-alled latent spae: the ovarianematries of the Gaussians are spei�edand ontrolled through a mapping fromthis latent spae to the data spae. GMMsand mixtures of latent variable models aredesribed in setion 2.The ontribution of this paper, is an ex-perimental omparison of GMMs and mix-tures of latent variable models for densityestimation on two arti�ial and eight real-world data sets, in setion 3. This is the on-densed version of a more elaborate tehnialreport [7℄.2 Mixture ModelsA mixture model is de�ned as a linear om-bination of m omponent densities pj(x):p(x) = mXj=1 �jpj(x); (1)where the �j are the mixing oeÆientswhih are non-negative and sum to one.2.1 Gaussian Mixture ModelsGaussian mixture models are a standardtool for density estimation and are desribedin many textbooks (for example, [1℄). AGMM is de�ned as a mixture model (1) withomponent distributions that are Gaussianwith a ovariane matrix �j that is hosento be full, diagonal or spherial (as stated inthe introdution) and mean �j :pj(x) � N (�j ;�j);The parameters of a GMM an be deter-mined in a maximum likelihood frameworkby the EM algorithm of whih we give ashort outline here in the ase of a full ovari-ane matrix. The negative log-likelihood ofa GMM for a data set fxng is:E = �Xn ln mXj=1 �jpj(xn);
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Figure 1: A generative model from a latent spae of dimension 2 to a data spae of dimension 3.whih is the error funtion that needs to beminimized. The values for the parameters�j , �j , and �j an be found by iterativelyperforming the two steps of the EM algo-rithm whih guarantees onvergene to a lo-al minimum [1℄:1. E-step ! Estimation of the posteriors:hj(xn) = �jpj(xn)mPi=1�ipi(xn) :2. M-step ! Re-estimation of the param-eters of the GMM (new estimations aredenoted with a prime):�0j = 1NXn hj(xn)�0j = Pn hj(xn)xnPn hj(xn)�0j = Pn hj(xn)(xn � �0j)(xn � �0j)TPn hj(xn) :With full ovariane matries, eah EM steprequires O(md2n) operations, where n is thenumber of vetors in data spae and d is thedimension of the data spae. Spherial ordiagonal ovariane matries are often usedto limit the omputational omplexity toO(mdn) and to restrit the amount of dataneeded for reliable estimation.In the experiments with a full ovarianematrix desribed in setion 3, Bayesian reg-ularization is used to avoid singular matriesas proposed by Ormoneit and Tresp [8℄. Thisrequires only some additional fators in theM-step update of the ovariane matrix andis numerially more stable.2.2 Latent Variable ModelsA latent variable model relates a d-dimensional observed data vetor x to al-dimensional (l < d) latent vetor z byde�ning a noise model and a prior on the

distribution of the latent variables. In thispaper, we are interested in linear latentvariable models:x =Wz+ �+ ": (2)The idea behind the model is illustrated in�gure 1. The prior distribution of the la-tent variables is a simple Gaussian distribu-tion z � N (0; I) (left-hand part of �gure 1)over the latent spae. The �rst two terms onthe right-hand side of (2) are the mean �,and the (d � l) generative matrix W, thatmaps the latent spae into the data spae.Their e�et is to streth, rotate, and trans-late the Gaussian ball into the data spaeresulting in a sort of l-dimensional panakein d-dimensional spae (right-hand part of�gure 1) . This panake is then onvolvedin data spae with a Gaussian distribution"�N (0;R) with a restrited ovariane ma-trix R. Depending on the spei� hoie forR we have:� R = �2I: the latent variable modelis alled probabilisti prinipal ompo-nent analysis [11℄ or sensible prinipalomponent analysis [9℄. This terminol-ogy has been hosen while with �2 ! 0onventional PCA is reovered.� R � diagonal matrix: the latent vari-able model is standard fator analysis[10℄.The advantage of suh linear latent variablemodels is that the distribution of the ob-served data vetors is also Gaussian (and allmarginal and onditional distributions forthat matter):x � N (�;R+WWT ):This means in spei�, that the modelan be viewed as a way of apturing theovariane struture R + WWT of thed-dimensional observed data using only(l + dl) parameters. Modelling the full



Data set # attr. # lasses # examples # attr. (after missingpre-proessing) dataDermatology 34 6 366 34 �Glass 9 6 214 9Letter 16 26 20,000 16Optial 64 10 3,823 64Pen 16 10 7,494 16Soybean 35 19 683 134 �Twos 256 10 1,948 256Vowel 10 11 990 10Waveform 21 3 600 21Waveform-noise 40 3 600 40Table 1: Properties of the data sets used in the experiments.ovariane matrix in the observed dataspae requires (d(d+1)=2) parameters. Theparameters W, R, and �, of these linearlatent variable models an be estimated bythe EM algorithm [9, 10, 11℄ in whih eahstep requires O(ldn) operations.Sine these linear latent variable modelsde�ne a proper probability model, they anbe extended to mixture models whih analso be trained eÆiently with the EM algo-rithm [5, 11℄. The mixture model (1) is thena linear ombination of linear latent variableomponent distributions:pj(x) � N (�j ;Rj +WjWTj ):With Rj isotropi, the model is alled amixture of prinipal omponent analysers(MPCA) [11℄ and with Rj diagonal, itis alled a mixture of fator analysers(MFA) [5℄. Having less onstraints on itsnoise model, a MFA is therefore a moreexpressive model than a MPCA. Thesemixtures an be interpreted as a mixture ofonstrained Gaussians in whih the numberof parameters an be ontrolled throughthe dimension of the latent spae (andhene, the size of W) without putting toostrong onstraints on the exibility of themodel, that is, the form of the ovarianematrix. Eah step of the EM algorithm fora mixture of latent variable models requiresO(mldn) operations. This means that bothin terms of the number of parameters and ofomputational omplexity, MPCAs/MFAssmoothly over the range between diagonal(l=1) and full (l=d�1) ovariane matriesin a GMM.In the reent literature, mixtures of latentvariable models have been used suessfullyon some isolated density estimation prob-lems. Tipping and Bishop ompared MP-CAs and GMMs on a 3-dimensional syn-theti data set [11℄. Both MPCAs and MFAs

have also been applied to handwritten digitreognition, by �tting a mixture to eahlass and lassifying digits aording to themost likely model [6, 11℄. The next se-tion provides a more extensive omparisonof GMMs and mixtures of latent variablemodels on a large and varied set of benh-marks problems.3 Experiments3.1 Experimental Set-UpThe experiments were done with variousdata sets out of the Irvine repository [3℄and a subset of twos out of the NIST spe-ial database 3 of handwritten digits. Welimited ourselves to lassi�ation problemssine that was our fous in the experimentsin [7℄. Of ourse, for the urrent experimentsonly the input spae of the data sets plays arole. An overview of the main harateristisof the di�erent data sets is given in table 1.As an be seen from this table, the benh-marks largely di�er in input dimension andnumber of patterns.The raw data has been pre-proessed invarious ways. First of all, the ordinal inputshave been normalized to have zero meanand unit standard deviation on the train-ing data. For the \soybean" data set partof the inputs are ategorial and these aremapped to a 1-of- oding, thus inreasingthe number of attributes (see the �fth ol-umn of Table 1). Finally, for the data setsindiated with a �, some of the inputs aremissing for some patterns. For ordinal in-puts, the missing value has been replaedby zero (the mean value after normaliza-tion) and for ategorial inputs, an extra bitwas added to the 1-of- oding to enode thepresene of a missing value.The training of the models onsisted ofan initialization phase followed by 10 itera-



Mixture train test 5�2vFull 22.4(0.18) 26.1(0.34)Spherial 25.4(0.08) 25.7(0.28)Diagonal 24.9(0.10) 25.3(0.26) <MPCA-1 24.6(0.14) 25.2(0.31)MPCA-3 24.0(0.15) 25.1(0.27)MFA-3 23.5(0.17) 24.4(0.24) <MFA-1 23.8(0.19) 24.3(0.25) <Table 2: Input density modelling on thewaveform data with 3 mixture omponents.Sores are in average negative log likelihood.tions of the EM algorithm. The initializationof all mixture models used k-means luster-ing to determine the means. The mixing o-eÆients �j were omputed from the pro-portion of examples belonging to eah lus-ter. Covariane matries of the GMMs werealulated as the sample ovariane of thepoints assoiated with (that is, losest to)the orresponding entres. Generative ma-tries Wj of the mixtures of latent vari-able models were initialized using a PCA onthe points assoiated with the orrespond-ing entres. The noise models Rj were ini-tialized using the variane lost in the PCAprojetions found for eah luster. The num-ber of iterations of the EM algorithm washosen to be 10 beause this turned out tobe suÆient for maximizing the likelihoodon the training set without additional over-�tting.The 5�2v test (a paired t-test) [4℄ wasused on all data sets for testing the statisti-ally signi�ant di�erene. In this test, �verepliations of two-fold ross-validation areperformed. The entries in the tables are theaverages of the negative log-likelihood perdata point over 10 simulations; the standarddeviation is given between parentheses. A<-sign in the tables with results, indiateswhether the sore on the test set is signif-iantly better (95%) than the one on theprevious row. MFA-l and MPCA-l denotea mixture of latent variable models with lfators (that is, dimension of latent spael ). The number of mixture omponents wasvaried for eah benhmark, but only one rep-resentative hoie is shown in this paper.Full details an be found in [7℄.3.2 Arti�ial DataAs a �rst test, experiments were performedon two often used arti�ial lassi�ationproblems with ode for generating the dataat the Irvine repository [3℄: the waveform

Mixture train test 5�2vFull 45.4(0.27) 60.1(0.69)MPCA-3 51.5(0.14) 53.7(0.50) <Spherial 52.8(0.10) 53.4(0.48) <MPCA-1 52.3(0.12) 53.4(0.48)Diagonal 51.5(0.13) 52.4(0.48) <MFA-3 50.0(0.19) 51.9(0.50) <MFA-1 50.7(0.19) 51.7(0.51) <Table 3: Input density modelling on thewaveform-noise data with three mixtureomponents. Sores are in average negativelog likelihood.and the waveform-noise data (the last tworows of Table 1). The waveform data isgenerated aording to:xi = uh1(i) + (1� u)h2 + "i Class 1xi = uh1(i) + (1� u)h3 + "i Class 2xi = uh2(i) + (1� u)h3 + "i Class 3;where i=1; 2; : : : 21, u is uniform on (0; 1),"i � N (0; I), and the hi are shifted tri-angular waveforms: h1(i) = max(6 � ji �11j; 0); h2(i)=h1(i�4), and h3(i)=h1(i+4).For the waveform-noise data, the 19 addi-tional attributes are all noise attributes withmean 0 and variane 1.The results on the waveform andwaveform-noise data are in tables 2 and 3.The GMM with a full ovariane matrixobtains the best likelihood on the trainingset but the worst sore on the test set:the model is over-�tting the data due toits many parameters. For all the othermodels the sore on the test is only slightlyworse than the sore on the training setwhih suggests the absene of over-�tting.On the waveform data (table 2), the bestresults are obtained with the mixturesof latent variable models. It is espeiallyworth noting that the MFA model withonly one fator, performs muh betterthan the GMM with a diagonal ovarianematrix whih has about the same numberof free parameters. This shows that theaxial alignment onstraint of the diagonalmodel is not appropriate in this ase. Onthe waveform-noise data (table 3), the bestresults are again obtained with MFAs butMPCAs are not performing that good. Thisis most likely due to the fat that the 19additional inputs for this data set are justwhite noise and MFAs an separately modelorrelations and variane (Rj is diagonal)whereas MPCAs annot (Rj is isotropi).
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Figure 2: Comparison of a GMM with di-agonal ovariane matries and a MFA onthe waveform-noise data: the number of pa-rameters versus the average negative log-likelihood on the test set.We have also investigated the inueneof the number of parameters of the mix-ture model on the results. Figure 2 illus-trates that for a �xed number of parame-ters, GMMs with diagonal ovariane matri-es (varying the number of mixture ompo-nents from 2 to 10) are always outperformedby MFAs (varying the number of fators andmixture omponents) on the waveform-noisedata.3.3 Real-World DataDo the good results for mixtures of latentvariable models on both arti�ial data sets,arry over to real-world data? To answer thisquestion, experiments have been performedon the other databases listed in Table 1. Theresults are shown in Table 4, where the bestmethod and the ones that are not signi�-antly worse (95% with the 5�2v test) areset in bold fae. This has not been done forthe glass data, where only the GMM withspherial ovariane matries performs sig-ni�antly worse than the one with the low-est average (GMM with diagonal ovarianematries). The training set for the glass dataonsists of only 107 examples and this leadsto highly variable results.A quik inspetion of the bold fae resultsin Table 4 shows that the results are notuniform. However, a few general onlusionsan still be drawn. Firstly, a GMM withspherial ovariane matries is, in general,too onstrained to model the data. Only ifthe number of examples is small and the di-mension of the data is high (soybean and op-tial data sets), it an outperform the other
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Figure 3: Comparison of GMMs and MP-CAs on the letter data: the number of ex-amples in the training set versus the averagenegative log-likelihood on the test set.GMMs. Seondly, as expeted, a GMM withfull ovariane matries is highly sensitive toover-�tting if the number of parameters tobe estimated is big ompared to the numberof examples. This is the ase for the �rst �vedata sets in Table 4. However, for the otherthree benhmarks (letter, pen, and vowel),the number of examples is suÆient and afull GMM is amongst the best models. Inthis ase, the model is not over-�tting thetraining data as an be seen from the fatthat the errors on the test set (as given inTable 4) are lose to the training errors fora GMM with full ovariane matries on let-ter: 13.1, on pen: 4.6, and on vowel: 8.4.Thirdly, on two data sets (soybean and opti-al) MFAs learly outperform MPCAs but,in general, the results are quite similar.Most importantly, for almost all data sets,an appropriate number of fators an befound suh that the results are as good as orbetter than the best results obtained with aGMM. Quite surprisingly, diagonal GMMssometimes outperform MFA-1 and MPCA-1 (whih have a omparable number of pa-rameters). This is most striking for derma-tology, but this might be due to the repre-sentation of the data that seems to mathvery well the axial alignment onstraint ofthe diagonal GMM. When rotating the o-ordinate system, the performane for a di-agonal GMM is similar to the performanewith MFA-1. Of ourse, if a full GMM per-forms well, hoosing a high number of fa-tors improves the results for a mixture oflatent variable models.Finally, we have also investigated in somemore detail the dependene on the number



Data GMM: ovariane matrix MFA: # fators MPCA: # fatorsSpher. Diag. Full l = 1 l = 5 l = 1 l = 5Dermatology (4) 39.4(0.7) 13.0(4.8) 33.6(5.4) 30.8(1.3) 31.7(7.9) 38.1(0.6) 37.7(0.5)Glass (4) 9.7(1.3) 4.9(1.4) 15.8(8.6) 12.8(5.3) 16.0(8.2) 10.1(2.7) 14.9(7.2)Optial (20) 67.6(1.1) 80.8(0.7) 82.4(3.9) 39.4(2.7) 6.1(6.3) 61.4(1.1) 50.3(1.7)Soybean (4) 22.3(0.9) 25.9(3.3) 148.8(9.5) -61.4(5.6) -102.8(27.5) 9.4(1.0) -15.5(1.5)l = 10 l = 10Twos (5) 324.9(5.3) 251.6(5.9) 348.5(6.1) 168.6(4.4) 160.1(6.5) 300.5(3.4) 163.2(4.2)l = 15 l = 15Letter (10) 19.6(0.1) 17.7(0.3) 13.3(0.2) 18.5(0.1) 14.7(0.1) 18.3(0.1) 13.8(0.2)Pen (10) 16.1(0.3) 10.0(1.3) 5.2(0.5) 13.3(0.2) 7.3(0.2) 13.5(0.3) 6.6(0.2)l = 8 l = 8Vowel (11) 12.3(0.1) 12.1(0.2) 10.7(0.4) 11.0(0.3) 10.8(0.3) 11.7(0.2) 10.8(0.4)Table 4: Input density modelling with GMMs, MFAs, and MPCAs. The number of mixtureomponents is indiated between parentheses after the name of eah data set. Sores are inaverage negative log likelihood on the test set. The best sores are set in bold.of training patterns. Figure 3, illustrates onthe letter data that simple models (diagonalGMM and MPCA-1) perform best when thenumber of training patterns is small. Whenadding more patterns, these are graduallyoutperformed by more omplex models.4 ConlusionsMixtures of latent variable models are aexible alternative for standard Gaussianmixture models, the omplexity of whihan be tuned by varying the dimensionof the latent spae. They are expetedto be espeially useful when modellinghigh-dimensional data while having onlya small number of examples. The hoieof the number of mixture omponentsand fators an be dealt with by standardtehniques for model seletion, suh asross-validation, an issue not dealt with inthis paper. A reent Bayesian treatment ofPCA [2℄ in whih the appropriate numberof fators an be determined automatially,looks espeially promising.AknowledgementsThe author gratefully aknowledgesthe Swiss National Siene Foundation(FN:21-45621.95) for their support of thisresearh. Matlab ode for MPCAs wasbased on Mihael Tipping's PhiVis ode(www.nrg.aston.a.uk/PhiVis).Referenes[1℄ C. M. Bishop. Neural Networks for Pat-tern Reognition. Oxford University Press,Oxford, 1995.[2℄ C.M. Bishop. Bayesian PCA. In M. S.Kearns, S. A. Solla, and D. A. Cohn, edi-
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