IDIAP

Martigny - Valais - Suisse

REPORT

DATA BINARIZATION BY
DISCRIMINANT ELIMINATION

Miguel Moreira ! Alain Hertz ?
Eddy Mayoraz *

IDIAP-RR 99-04

JANUARY 1999

IDIAP RESEARCH

REVISED IN MAY 99

PUBLISHED IN
Proceedings of the ICML-99 Workshop: From Machine Learning to
Knowledge Discovery in Databases

Dalle Molle Institute
for Perceptual Artificial
Intelligence o P.O.Box 592 e
Martigny e Valais @ Switzerland

phone +41 —27—-721 77 11
fax 441 —27— 721 77 12 L IDIAP—Dalle Molle Institute of Perceptual Artificial Intelligence, P.O. Box 592,
CH-1920 Martigny, Switzerland

2 Département de mathématiques, EPFL, CH-1015 Lausanne, Switzerland

e-mail secretariat@idiap.ch

internet http://www.idiap.ch

IDIAP Research Report 99-04

DATA BINARIZATION BY DISCRIMINANT ELIMINATION

Miguel Moreira Alain Hertz Eddy Mayoraz

JANUARY 1999
REVISED IN MAY 99

PUBLISHED IN
Proceedings of the ICML-99 Workshop: From Machine Learning to Knowledge Discovery in
Databases

Abstract. This paper is concerned with the problem of constructing a mapping from an arbitrary
input space Q into a binary output space {0, 1}d, based on a given data set X C (2 partitioned into
classes. The aim is to reduce the total amount of information, while keeping the most relevant
of it to the class partitioning. An additional constraint to our problem is that the mapping must
have a simple interpretation. Thus, each of the d discriminants is related to one original attribute
(e.g. linear combinations of original attributes are not admitted). Besides data compression, the
targeted application is the preprocessing for classification techniques that require Boolean input
data. While other existing techniques for this problem are constructive (increasing d iteratively,
such as decision trees), the method proposed here proceeds by starting with a very large dimension
d, and by reducing it iteratively.

Keywords: Data binarization, classification, logical analysis of data, data compression.

Acknowledgements: The support of the Swiss National Science Foundation under grant
2000-053902.98 is gratefully acknowledged.

2 IDIAP-RR 99-04

1 Introduction

The problem addressed in this paper deals with the transformation of data of arbitrary form into
binary data. In such terms, this is a very general issue. However, the application targeted here is
the preprocessing of data for a supervised learning task, and this specifies the general goal in several
respects. This preprocessing is a requirement of all learning techniques capable of handling boolean
data only.

1.1 Supervised learning

Given a set X’ of data belonging to an input space (2, it is not sufficient to associate a Boolean image
to each point x of X', but an explicit mapping m from (2 into {0, 1} must be constructed in order to
get Boolean images for any other point in €.

Assuming that a distance measure dg, is defined on {2, a simple solution to this problem could be a
vector quantization of the input space, leading to a code-book C' C 2, followed by a binary coding of the
code-book [Gersho and Gray, 1992]. However, to be satisfactory, the mapping m : — {0, 1} should
fulfill the neighborhood constraint, in the sense that dq(x,x") should be small if the Hamming distance
between m(x) and m(x’) is small. This constraint complicates significantly the binary encoding of
the code-book.

Moreover, conventional vector quantization is ruled out by the fact that the underlying learning
task is supervised, typically a classification or a regression problem. Let F' denote the unknown
target function of the learning task, with images either in a discrete unordered set in the case of
a classification problem, or in R in the case of a regression problem. The neighborhood constraint
mentioned above is subsumed by the consistency constraint, stating that m(x) # m(x’') if F(x) and
F(x') differ (classification) or are “sufficiently” distant (regression).

Regarding consistency as it is defined above, it can be discussed whether the imposition of such a
constraint is of interest in supervised learning, as it can lead to over-fitting. However, in the current
framework we deal with a preprocessing procedure. Consistency is used as an information-preserving
mechanism. It is assumed that the over-fitting problem is handled by the algorithm using data
binarization as a preprocessing step.

1.2 Easy interpretation

Other constraints imposed by the applications in focus are that the attributes of the input space
can be of any kind (binary, enumerated ordered or unordered, and continuous) and the final model
produced by the global learning method must have a clear and simple interpretation. Consequently,
each one of the d binary functions of the mapping m : Q@ — {0,1}¢ must involve only one original
attribute of the input space 2. In the sequel, each one of the d binary functions @ — {0,1} composing
the binary mapping m is called a discriminant and it is restricted to the following types.

When associated to an unordered (or binary) attribute, which is necessarily enumerated, a dis-
criminant is identified to one possible value of this attribute. As an example, to the attribute color,
taking the values {red, yellow, blue}, can correspond a discriminant of the type “color = yellow”. In
the case of an ordered attribute, a discriminant can be interpreted both analytically as a threshold
placed on an attribute value, and geometrically as an hyperplane orthogonal to the corresponding
attribute axis, splitting the whole input space into two sub-spaces. So, given an ordered attribute age
for example, a possible discriminant could be “age > 45”, taking the value 0 (false) for any point of
Q for which the value of the original attribute age is below or equal to 45, and 1 (true) otherwise.

IDIAP-RR 99-04 3

Obviously, restricting the mapping to such sharp discriminants could be a weakness in the case
of noisy data. In practice, the mapping we construct is from (2 into {0,1,%}? where * denotes a
“don’t know”, i.e. neither true nor false, activated whenever the observed value is too close to the
discriminant. A possible discriminant age > 45 is for example one taking value 0 if age < 43, value 1
if age > 47, and value * for data with attribute age between 43 and 47. In this setting, the consistency
constraint requires that if F/(x) and F(x') differ, m(x) and m(x’) must have at least one component
in which one is 1 and the other is 0.

1.3 Overview of the paper

It is now possible to state clearly the objective pursued here, which consists of finding a set of
discriminants D consistent on a given data set X that allows the transformation of X' into another
data set B of the same cardinality but where all the attributes are binary. At the same time, the
cardinality of D should be minimal, while the efficiency of the procedure should be maximal. Although
the generalization to the case of regression is possible, the results presented here concern classification
tasks exclusively.

Section 2 discusses related work and existing approaches. In Sect. 3 a new algorithm is proposed
to find the set D for the binary mapping, which is compared experimentally with Simple-Greedy and
a decision tree algorithm in Sect. 4. In Sect. 5 a possible improvement of the algorithm is suggested.
Section 6 concludes and discusses further work.

2 Related work

2.1 Minimum set covering

Given a training set X' of samples partitioned into classes, and given a large set D of D discriminants
defining a binary mapping consistent with X', the problem of finding a small subset of D, still consistent
with X', can be formalized as a minimum set covering problem. Let A be the matrix with one column
per possible discriminant and one row per pair of points that has to be distinguished according to
the consistency constraint, A x),7 = 1 if the discriminant T' separates the points x and x' and is
0 otherwise. A subset of discriminants defines a binary mapping consistent with X’ if and only if its
characteristic vector z € {0, 1}” satisfies Az > 1.

An heuristic is used to solve this minimum set covering problem and find a small set of discriminants
satisfying the consistency constraint: Discriminants are selected iteratively, preference is given to those
with larger conflict-solving power, measured by the quantity of 1’s in the corresponding column of A.
For each selected discriminant the affected rows are eliminated from A, and the process is repeated
until the matrix is empty. A straightforward implementation of this greedy heuristic has a complexity
in O(N?Dd), where N = |X| and d is the size of the final subset [Boros et al., 1996]. In recent work,
E. Boros uses column generation techniques to avoid storing this constraint matrix in memory. The
quadratic nature hinders its application to problems of moderate-to-large size.

Almuallim and Dietterich [1994] propose an alternative approach to solve this minimum set cover-
ing problem in a lower computational complexity. In order to avoid considering pairs of data points,
they keep track of the clusters of data that are fragmented by the discriminants selected so far. The
discriminants are added in an iterative way until no clusters containing data points from different
classes remain, which means that consistency is attained. At each iteration all the not-yet-selected
discriminants are tested in order to select the best one, according to a merit function.

In there paper, they propose essentially three different merit functions associated to a discriminant
T, given a subset of already selected discriminants. The first one measures how the entropy would

4 IDIAP-RR 99-04

vary with the addition of 7. The second measure, called Simple-Greedy, counts the number of pairs
of points from different classes and not yet seperated that 7" distinguishes. This measure is identical
to the one of the greedy heuristic discussed above [Boros et al., 1996]. A third measure is similar
to Simple-Greedy and is called Weighted-Greedy because to each pair discriminanted by T and not
yet separated, a weight is associated, inversely proporitonal to the number of other discriminants
separating this same pair.

The results reported in [1994] show that the entropy measure is slightly less performant than
Simple-Greedy, and Weighted-Greedy improves slightly the Simple-Greedy measure. However, only
entropy and Simple-Greedy can be implemented very efficiently in O(NDd). This is done by calcu-
lating the merit of a discriminant inside each remaining subset of data, and accumulating over all
subsets. During subset splits, those containing data points from a single class are eliminated. More
details about this algorithm are given in Sect. 4.

It is worth noting that in many applications it turned out that getting a subset of discriminant close
to minimal and satistying the consistency constraint reduced too much the information of the original
data. An interesting generalization of the consistency is the c-consistency, requiring that for each pair
of data from different classes, there are at least ¢ discriminants separating them. This generalization
provides a parameter to control the final number of discriminants in the solution, while ensuring that
as much information as possible for the classification problem is preserved. Unfortunately, there are no
simple ways to generalize Simple-Greedy in order to handle c-consistency problems efficiently. On the
contrary, the extention to c-consistency constraints of the approach implemented in [Boros et al., 1996]
is straightforward.

2.2 Local procedures

The resolution of the binarization problem is obtained as byproduct by several classical algorithms
addressing directly the supervised classification problem. When a standard decision tree technique is
run without early stopping criterion and without pruning, all the data of A" getting to one particular
leaf are of the same class. Thus, the set of discriminants associated to each node satisfies the consis-
tency constraint. The drawback of this method, when used only for discriminant generation, is that it
can produce many redundant discriminants due to its local character, since at lower levels of the tree
only small fractions of the data set are used to determine each new discriminant. A simple situation
highlighting this problem is depicted in Fig. 1, where a typical decision tree would have a root node
with discriminant T; and left and right nodes with discriminants 7> and T3, while a global analysis
could consider simply 77 and T” as a solution. Of course, the fact that at lower levels of the tree the

T
3

! Discriminant sets generated:

X ! m}

% X : O e local procedure: {T1,T%,T3}
|
T g O ;X y e global procedure: {T1,T"}

o
|

T2 ITI

Figure 1: Example of discriminant sets generated for a small, two-dimensional, 2-class data set.

analysis deals only with small sets of data is extremely beneficial to the computational time.
Among the other algorithms that produce as byproduct a consistent set of discriminants, but suffer-
ing from the locality problem, let us mention the nearest hyper-rectangle approaches [Salzberg, 1991,

IDIAP-RR 99-04)

Wettschereck and Dietterich, 1995]. In this case, the discriminants derive from the edges of the hyper-
rectangles.

2.3 Feature discretization

The approaches of Sects. 2.1 are deeply related to the problem discussed here. With lesser affin-
ity, additional related work can be found in the framework of feature discretization, which is a pre-
processing technique involving the transformation of continuous-valued features into discrete-valued
ones. This is a requirement of some learning algorithms, mostly based on decision rules and decision
trees. For algorithms handling continuous-valued attributes, preliminary discretization may accelerate
the induction process, simplify the obtained models, and even improve accuracy ([Pfahringer, 1995],
[Dougherty et al., 1995]). Binarization differs from feature discretization in the sense that the former
produces possibly several binary attributes from the same original attribute.

2.4 Feature selection

Yet another domain where similar approaches can be found is feature selection. The general goal
consists in selecting subsets of attributes (features) by rejecting those that are irrelevant or misleading
for the learning task and keeping the most relevant ones. The main motivations include accuracy
improvements, reduced training times, and simpler concept models. In [John et al., 1994], existing
procedures within this domain are classified into filter and wrapper methods. The latter use the
accuracy of the learned models as objective function during the subset search, while the filter methods
consist strictly of preprocessing steps using only the training data. Reducing the initially generated
discriminant set, as described in the beginning of the current section, fits in the filter group.

3 The IDEAL algorithm

The approach proposed here is called Iterative Discriminant Elimination Algorithm (IDEAL). As
opposed to alternative approaches mentioned in Sect. 2, it is an eliminative algorithm, as it starts
with an exhaustive discriminant set that is reduced in the course of the execution. It is mainly
motivated by the limitation of the overall computation effort by means of data structures that hold
auxiliary information.

3.1 Binarizing a data set

For the binarization of a data set, a three-stage procedure is here considered: first, an exhaustive set
of discriminants is generated. This set is then simplified by a discriminant elimination procedure that
reduces its redundancy while keeping its consistency with regard to the data set at hand. Finally,
the data set is binarized using the obtained solution. The IDEAL algorithm is thus wrapped by the
Binarize procedure:

X : set of data points procedure Binarize (X')

D : set of discrimi.nant.s . g ; iBSEI‘ILD (ls;f.l;l ;nants()
B : set of data points in binary format B := ApplyDiscriminants(D, X)
return(B)
endProc

Note that during classification of unseen data, the latter are binarized by means of the mapping ob-
tained with the training data.

6 IDIAP-RR 99-04

3.2 The segment

Figure 2 illustrates the manner in which discriminants are inserted initially in the case of ordered
attributes, one between every two consecutive projected data points from different classes. For enu-
merated unordered attributes, a discriminant is created for each verified attribute value, which dis-
criminates points with the corresponding attribute value from all the others.

discriminant T
—

~——— attribute a
segment S~ segment ST

Figure 2: Example of the insertion of discriminants along an ordered attribute of a two-dimensional, 3-class
data set.

The discriminants relating to the same attribute are positioned in an ordered manner, so that it is
possible to refer to the preceding and succeeding discriminants of a discriminant 7. The same holds
for segments. We will refer to the lower and higher adjoining segments of T' as the two segments lying
between T and respectively its preceding and succeeding discriminants (S~ and ST in the figure).
Likewise, the notion of adjacent segments of a segment and adjacent discriminants of a discriminant
will be applied. These relations hold exclusively in the realm of ordered attributes. For the unordered
ones, besides the lack of order, there is a bijective correspondence between the set of segments and the
set of discriminants of the same attribute, with each discriminant overlapping its respective segment.
The set of segments S is thus derived from the existing discriminant and data sets.

3.3 Discriminant elimination

The elimination is based on an iterative procedure where, at each iteration, a candidate discriminant
is subject to a redundancy test, which determines whether it is eliminated or kept. The order in which
the discriminants are selected is discussed in the next section. For the time being, let us consider that
the discriminants are ranked in the beginning according to some weighting, and that at each iteration
the one with the least weight is the candidate for elimination, each discriminant being allowed to be
candidate only once.

In the framework of ordered attributes, let us define the local conflicts solved by a discriminant T
as the pairs of points from different classes lying in its two adjoining segments, i.e., those pairs that
are separated only by T along the corresponding dimension. The redundancy check for T consists
basically of the following procedure: for each one of its conflicts, test if the pair of points is already
separated by at least one discriminant in another dimension. If the outcome of the test is positive
for all the pairs of points in conflict, 7" is considered redundant and can thus be eliminated. This is
exposed in the pseudo-code below.

The procedure SeparatedElsewhere verifies the existence, in another dimension, of a discrimi-
nant separating the two points x~ and xT, which corresponds to testing if there is a dimension for
which the two points lie in different segments. Note that, for a given dimension, if x~ or xT have
unknown value, they are considered non-separated therein.

IDIAP-RR 99-04 7

The efficient execution of the algorithm relies to a great extent in the existence of information
representing the sequential positioning of segments and discriminants of the same attribute, as well
as the membership of each data point to its corresponding segment for each attribute dimension. The
latter avoids searching all discriminants of an attribute to find those separating a particular pair of
points, inside SeparatedElsewhere. The usefulness of these informations extends to the updating
operations effectuated after each discriminant elimination.

S : set of segments procedure IDEAL (X, D)

S : segment = set of data points S := InsertSegments(X, D)
T : discriminant (weighted) while 3T with w(7T) < oo

x : data point T := argmin(w(T))

. N S~, ST := adjoining segments of T'
w(T) : weight of discriminant T’ redundantDiscr :— TRUE

forEach pair (x~,xt), x~ €S, xt e ST, F(x7) # F(xt)
if not SeparatedElsewhere(x~ x%)
redundantDiscr := FALSE
abort loop
endIf
endFor
if redundantDiscr
gnew .— §-y St
S: =8\ {S7,5t} U {S"v}
D:=D \{T}
T—, Tt := adjacent discriminants of T'
w(T~) := WeightDiscriminant(7~)
w(T+) := WeightDiscriminant(7+)
else
w(T) := oo
endIf
endWhile
return(D)
endProc

For the sake of simplicity, the pseudo code presented does not take into account the occurrence of
unordered, enumerated attributes. For these, a discriminant and a corresponding segment are created
for each attribute value. This situation carries with it a certain redundancy, since any two points of
different classes are separated by the discriminants of both. It can be said that none of those dis-
criminants is non-redundant. When such a discriminant is eliminated, its segment is also eliminated,
and the corresponding points are positioned in a so-called “neutral segment”, which receives all the
points coming from the eliminated segments of the attribute to which it belongs. In this framework,
the number of conflicts of a discriminant from an unordered attribute is always calculated based on
its segment, on one side, and the neutral segment for that dimension on the other.

3.4 Weighting the discriminants

The greedy nature of the elimination procedure causes the order in which the candidate discriminants
are chosen to be of major importance. With the assumption that a discriminant is charged of making
separations between points from different classes and that the most separations it does, the most
important it is, it seems logical to try to eliminate first the discriminants charged of fewer separations,
because of three reasons: first, the task of verifying their redundancy will be easier, since there will be
less conflicts to test; then, given that these discriminants will be most probably redundant, that task
will be better payed back; finally, and most importantly, given that the minimal amount of required
separations is fixed, fewer discriminants will remain in the end, i.e. those that “work the most”. Two

8 IDIAP-RR 99-04
main formulations have been adopted to define the importance of a discriminant:
Number of local conflicts As defined in Sect. 3.3.

Entropy Given py as the relative frequency of class k in a data set X with K classes, the entropy
e(X), of the data can be computed as

K
e(X) = => pi Inp .
k=1

If a discriminant T separates the data set X into two subsets X~ and XT, then the split entropy
esplit (X, T) is

_ X

Xt
esplit(Xa T) = |X| | |

e(X7) + S5 e(Xh),

X
which is a weighted sum of the two sub-entropies. The gain g(T) conveyed by a discriminant can
simply be computed as:

9(T) = e(X) — ewur(X,T),

and applied as a weighting measure. This criterion is successfully used by Quinlan in the decision-tree
building algorithm C4.5 [Quinlan, 1993] for the choice of the splits.

The locality of the measure based on the number of conflicts (segment level) contrasts with the
global nature of the entropy, defined over the whole data set. No clear indication exists, however, about
the advantages of a local measure over a global one or vice-versa, fact that lead to the development of
the alternative versions of each of the two measures: A local version of the entropy, calculated based
on the two adjoining segments of 7', as well as the calculation of the number of conflicts between the
two complete subsets of X generated by the split in 7.

Table 1 contains results on the size of the discriminant set obtained by each one of the four discussed
weighting procedures. In addition, the criterion of random choice has also been included in the tests
for comparison. This is justified by the fact that none of the other proposed criteria is guaranteed to
be meaningful in the particular framework of this algorithm. In the latter case, 50 experiments were
made with different random seeds and the results averaged. The data sets used are available from the
UCI repository of machine learning databases [Blake et al., 1998]. A summary is provided in Table 3.
Since no training/testing split was used in the reported experiments, the sets were applied as a whole
as input for the binarization procedure.

Here it should be emphasized that the weights of the discriminants are permanently up-to-date,
since any discriminants affected by an elimination are instantly reweighted, as is shown in the pseudo-
code of Sect. 3.3. However, for the global measures the weights are static and need only to be calculated
once in the beggining of the procedure.

Overall, the number of conflicts seems to provide a better measure than the entropy, and the effect
of a local or a global measure depends of the specific weighting method used. Number of local conflicts
and global entropy appear as the best combinations.

According to the results, the choice of the best weighting method depends on the particular features
of the data set at hand. However, the observed differences can only be considered significant after
multiple run experiments with random data subsets and a statistical test. The local conflict measure
is adopted in the remaining experiments.

IDIAP-RR 99-04 9

Table 1: Comparison between the final discriminant set size obtained with different discriminant weighting
measures. The values in bold indicate the winning measure in the corresponding row, random choice excluded.
The penultimate row contains the percentage of the initial set size achieved with each procedure, averaged
over all the data sets. The bottom row shows the number of wins, including ties.

Initial Final set size
set n.conflicts entropy random choice

data set size local global local global avg. min.
abalone 5779 192 177 724 220 282.6 £21.6 240
allhyper 440 21 33 36 34 30.4 £4.3 22
allhypo 548 20 32 43 48 35.2 £6.2 17
anneal 134 31 31 30 30 309 £2.1 28
audiology 92 23 26 24 21 27.6 £3.2 21
car 15 14 14 14 14 14.0 £0.0 14
dermatology 141 13 14 14 15 17.9 £1.6 13
ecoli 301 24 24 30 26 27.3 £2.1 23
glass 692 17 19 49 25 22.4 +1.8 18
heart-disease 309 14 17 21 18 20.0 £2.8 14
krkopt 39 38 38 38 38 37.6 £0.7 36
letter 234 59 58 62 59 65.9 £2.6 61
mushroom 112 7 8 12 12 11.7 £3.0 8
nursery 19 17 17 17 17 17.0 £0.0 17
page-blocks 3378 45 67 83 53 53.2 £2.7 47
pi-diabetes 856 24 26 57 43 31.9 £2.3 27
segmentation 9817 28 50 151 47 40.4 +6.8 31
soybean 97 36 36 34 35 39.5 £3.0 34
vehicle 1215 34 39 111 54 48.3 £5.1 37
vowel 7077 26 46 196 83 34.1 £3.1 30
yeast 374 39 42 68 48 49.4 £3.5 43

avg. % of initial size 21.5% 22.1% 24.0% 22.5% 23.1%
number of wins 16 6 5 5

4 A comparison between approaches

Experimental comparisons were made between IDEAL, Simple-Greedy (SG) and a decision tree al-
gorithm (DT) which in the present case consisted of Quinlan’s C4.5 [Quinlan, 1993]. Details of the
implementation of each algorithm are given below.

Simple-Greedy This algorithm was originally designed to handle two classes, one negative and one
positive. The merit function calculated for a discriminant 7" is therefore:

P eP
w(T) = > pp ' -np ' + pp -np ",

where P is a data subsample from the set P of subsamples, which at the first iteration contains the
single element {X'}. The quantities pp and np are the number of points in subsample P of the positive
and negative class respectively. w(T") represents the number of conflicts left to be solved by T and is
thus to be minimized. We now generalize to the case of K classes:

Simple-Greedy does not consider the existence of points with unknown values for some attributes.
Originally, when a subsample P is split by a discriminant 7", the points for which T'=1 are sent to one
side of the split and those for which T'=0 to the other. A modification was introduced which consists
in sending all points for which T=7 to both sides of the split. This has some effect in the calculation
of the merit function.

We can now generalize the merit function to the case of K classes and the eventual presence of
unknown values. To simplify the notation, we define g and ¢’ as the number of points in P from class

10 IDIAP-RR 99-04

k and k' respectively.

w(T) — Z Z Z qul(q/T:1+qlT:?) +

qT:O (qlT:O + qlT:?) +

qT=? (qITZO + q/Tzl) +

2 qTZ? qIT=? .
This formula calculates the number of unsolved conflicts taking into account the fact that each data
point for which T is unknown is added to both split sides of a subsample.

Decision tree For C4.5 to be used as a discriminant set generator, the trees must be fully-grown,
i.e. no errors are allowed in the training set, even if certain leafs contain a single data point, and no
pruning is allowed either. These conditions comply with the consistency constraint and the program
was adjusted accordingly. From the resulting tree each node is considered a discriminant. However,
two or more equal nodes at different levels of the tree are merged into one single discriminant.

Table 2 shows the results of the experiments both in terms of final discriminant set size and
execution time. It is interesting to note that IDEAL and SG achieve quite comparable results

Table 2: Resulting discriminant set size and execution time of the compared approaches: IDEAL,
Simple-Greedy (SG) and decision tree (DT).

initial final set size execution time

data set set size IDEAL SG DT IDEAL SG DT
abalone 5779 192 171 1282 20.5 195x10° 24.2
allhyper 440 21 18 60 56.6 16.3 2.1
allhypo 548 20 19 40 58.1 14.6 1.0
anneal 134 31 33 107 2.8 6.2 1.4
audiology 92 22 22 71 0.8 10.4 0.5
car 15 14 14 22 2.1 0.3 0.1
dermatology 141 13 13 17 4.9 1.2 0.3
ecoli 301 24 20 49 0.3 5.9 0.2
glass 692 17 15 41 0.4 5.6 0.3
heart-disease 309 14 12 62 0.8 1.4 0.3
krkopt 39 34 34 48 34.1 217.6 5.7
letter 234 59 58 252 3497.3 2586.9 84.1
mushroom 112 7 6 30 1440.9 4.6 0.5
nursery 19 17 17 27 106.6 2.5 0.6
page-blocks 3378 45 39 144 108.8 396.1 12.7
pi-diabetes 856 24 22 123 2.1 17.0 0.8
segmentation 9817 28 24 72 121.0 698.8 5.6
soybean 97 25 22 105 6.5 43.9 0.7
vehicle 1215 34 26 137 14.5 44.9 1.9
vowel 7077 26 22 123 9.2 773.6 3.1
yeast 374 39 41 307 4.0 139.4 2.5

avg. % of initial size 20.0% 19.7% *48.1%

* Note that in this case the initial set is not the same as with the two other algorithms. It can even be observed that for some
data sets the final size obtained with decision trees is larger than the initial value for the two other algorithms.

even though their search path is different, one being eliminative and the other constructive. This has
probably some relation with a certain similarity between their merit functions.

Previous to the examination of the execution times, we proceed to the time complexity analysis
of IDEAL and SG. In the case of IDEAL, O(AN log N) is needed to sort the attribute projections of

IDIAP-RR 99-04 11

data points and insert the segments, A being the number of attributes. The evaluation of the merit of
each discriminant and sorting the list cost O(K2D + Dlog D). The main part of the algorithm needs
O(DN?4) to test the redundancy of all the discriminants in the initial set, test their discriminated
pairs of data points over other attributes, and sort the discriminant according to the merit function.
Considering that N is usually much large than K or log D, the total complexity is

O(AN?D) .

For SG, d discriminants are selected at most and for each one O(D(N K?)+ N) is the bound for testing
every available discriminant, calculating the merit function and splitting the data subsets. The total
is then

O(dDNK?) .

We note the quadratic bound in N for IDEAL, although it is a very loose bound. This aspect is further
discussed in Sect. 5. We note also the quadratic bounds in D and K for SG, although it becomes
quadratic in D only in case the resulting size d is close to the initial size D.

The execution time comparison between IDEAL and SG gives empirical support to the complexity
analysis laid above. Although the time results do not follow blindly the provided formulas, some
typical patterns can be identified and, with the aid of Table 3, the influence of the respective sensitive
parameters can be observed. Namely, the combined influence of D and K over SG is apparent in
segmentation, soybean, vowel, and yeast, being particularly striking in abalone. Cases where the
value of IV is considerable comparing to D and at the same time considerable loss is verified for IDEAL
are car, mushroom, and nursery.

Beyond the effective time complexity, two conceptual issues establish the difference between these
two procedures. One is the fact, already mentioned, that IDEAL is eliminative, while SG is constructive:
SG is executed until consistency is attained, while in IDEAL consistency is never lost, if verified initially.
(This may not be the case for datasets with missing values, e.g. soybean.) The other, very important
aspect is that IDEAL is heavily grounded on the original attributes.

Concerning the comparison between IDEAL, SG, and decision trees, the numbers in the table
emphasize the differences between a local approach, fast but with large final sets, and the two global
ones, more time-consuming but with better final results.

5 A suitable stopping criterion

Despite the encouraging results obtained with the IDEAL algorithm in terms of discriminant set size,
for some of the data sets included in the tests the minimization of the binary mapping still takes a
considerable amount of time. However, in all the reported tests the algorithm has been given the
freedom to run till the end, that is, to test the redundancy of all the discriminants in the initial set.
Figure 3 shows the evolution of the elimination process with the conflict-based weighting method for
four of the data sets. In the case of Letter Recognition, for example, the algorithm starts with 234
discriminants and takes almost 3500 seconds to find a final set with 59. However, after 1000 sec. only
69 discriminants remained, and after 3000 sec. 60. This phenomenon was observed for the majority of
the data sets tested and it finds explanation in two main factors: the probability of finding redundant
discriminants decreases with time, while the effort spent on each redundancy test increases, due to
the fusion of segments that takes place at each discriminant elimination, and the consequent increase
in the number of conflicts to be tested.

This observation demonstrates the need for a suitable stopping criterion as the execution time can,
for some problems, be largely reduced at the cost of a minimal increase in the number of discriminants.

12 IDIAP-RR 99-04

Table 3: Summary of the data sets used in the experiments. The rightmost column indicates the
number of discriminants generated by the procedure InsertDiscriminants (see Sec. 3.1).

data initial
data Set classes attrib. points discrim.
abalone 28 9 4177 5779
allhyper 5 29 3772 440
allhypo 4 29 3772 548
anneal 5 38 898 134
audiology 24 69 226 92
car 4 6 1728 15
dermatology 6 34 366 141
ecoli 8 7 336 301
glass 6 19 214 692
heart-disease 2 14 303 309
krkopt 18 6 28056 39
letter 26 16 20000 234
mushroom 2 22 8124 112
nursery 5 8 12960 19
page-blocks 5 10 5473 3378
pi-diabetes 2 8 768 856
segmentation 17 19 2310 9817
soybean 19 35 683 97
vehicle 14 18 846 1215
vowel 11 10 990 7077
yeast 10 8 1484 374
® letter segmentation krkopt soybean
§ 200 8000 38 80
- 6000
g 150 4000 36 60
£ 100 2000 40
8 0 34
&) 0 100020003000 0O 20 40 60 80 6.64 6.66 2 4 6
Time (s) Time (s) Time (s) Time (s)

Figure 3: Evolution of the discriminant elimination procedure for four data sets with the local conflict-based
weighting method.

In addition, it suggests a convenient method to implement the criterion, based on the gradient of the
plotted function. Nevertheless, the asymptotic elimination behavior is non-uniform among problems
and cannot, in reality, be granted. The two curves at the right of Fig. 3 serve as counter-examples.
Another aspect to take into account is associated with the actual procedure used to calculate the
variation of the discriminant set size. The plots of Fig. 3 are based on time, but this is not necessarily
the best indication of the state of the process, an alternative being the number of past elimination
iterations combined with the observed frequency of rejections (candidates that are not redundant).

Overall, the observation of the different behavior patterns provided by the figure indicates that a
robust criterion for appropriately stopping the elimination procedure is not obvious and is yet to be
determined. This subject should deserve considerable attention in the continuing work.

6 Conclusions and further research

The approach that is proposed here (IDEAL) is capable of finding, in the context of a supervised
learning task, a consistent mapping from a set of arbitrary data into a set with a binary format. The

IDIAP-RR 99-04 13

quest for consistent mappings into Boolean spaces of small dimensions requires a global analysis of the
data set, which implies high computational times comparing to local methods such as decision trees or
nearest hyper-rectangles. However, the inclusion of heuristics that make extensive use of temporary
auxiliary information allows this procedure to be accomplished in a time less than quadratic in the
number of data. This represents an important result, as the algorithm constitutes a useful tool to
be used in conjunction with learning methods that deal with data in binary format, as is the case of
logical analysis of data [Boros et al., 1996].

Empirical and analytical comparisons have been made between IDEAL and an alternative approach,
Simple-Greedy[Almuallim and Dietterich, 1994]. Their differences have been emphasized, although in
further work some of their concepts can possibly be exchanged or merged in order to attain better
performances. While the Simple-Greedy algorithm proceeds by constructing a solution iterative,
IDEAL prunes a large initial solution. In the former case, the process goes on until consistency is
reached, while in the latter case, the rule is to prune without loosing consistency until no discriminant
can be dropped. Simple-Greedy has in general a lower complexity than IDEAL. On the other hand,
IDEAL allows to look for discriminant sets such that every pair of data from different classes are
separated by at least ¢ discriminants, where ¢ could be any positive integer.

Another major difference between IDEAL and the other algorithms is that, due to its local merit
function, IDEAL takes into account the original attributes information. In particular, the solutions
proposed by IDEAL are biased towards discriminant sets well spread over the set of attributes, i.e.
solutions were many discriminants are related to the same attribute are avoided, if possible.

Concerning further work, an important step to be made is to test the actual quality of the obtained
discriminant sets, with the application of the binarized set for classification. The comparison between
the approaches studied here has to be re-analyzed in light of the results produced by the classification
procedure in which they are to be used.

As discussed in Sect. 5, a suitable stopping criterion can possibly improve the interest of the
algorithm due to the considerable reduction of its execution time with the compromise of a slightly
larger final discriminant set, also because the size of the discriminant set is possibly not the ultimate
goal to attain, but rather the quality of the results produced on the learning task where it is to be
applied.

Several particular subjects are already handled by the proposed algorithm but are not reported
here, for the sake of simplicity. For example, the treatment of missing information can be quite
straightforward but leads to three-valued logical data (0,1, *). The current version of the algorithm
is also able to deal with discriminants along continuous attributes that assign the unknown value
* to continuous values that are too close to the cut point of the discriminant (see Sect. 1.2). In
some applications with an ordered output, monotonicity constraints might be imposed between some
ordered attributes and the output. For example, in a medical database designed to characterize the
risk of heart attack, the expert might be interested in imposing that any dependency between the age
and the risk of heart attack is monotonic positive. In these situations, it is essential to introduce these
constraints already in the binarization procedure, as the definition of consistency is slightly modified
as follows. For any two data points x and x’ with outputs F(x) > F(x'), there must exist either a
discriminant T' without monotonicity constraint such that mr(x) # mp(x'), or a discriminant T', say
with a positive monotonicity constraint, such that mrp(x) > mp(x').

Finally, one may argue that this algorithm is not robust towards outliers or points with incorrect
outputs, given that if a point wrongly classified as class 1 lies in the middle of a cluster of points of
class 2, several discriminants might be introduced only to isolate this point. When this binarization
is used just as preprocessing for a classification method using binary data this is not critical, as long
as the final classification method deals with such points adequately. The recognition of outliers into

14 IDIAP-RR 99-04

the binarization algorithm would however be a plus and it is a topic of further investigation.

References

[Almuallim and Dietterich, 1994] Hussein Almuallim and Thomas G. Dietterich. Learning boolean
concepts in the presence of many irrelevant features. Artificial Intelligence, 69(1-2):279-306, 1994.

[Blake et al., 1998] C. Blake, E. Keogh, and C.J. Merz. UCI repository of machine learning databases,
1998. http://www.ics.uci.edu/ mlearn/MLRepository.html.

[Boros et al., 1996] E. Boros, P. L. Hammer, Toshihide Ibaraki, A. Kogan, E. Mayoraz, and I. Much-
nik. An implementation of logical analysis of data. RRR 22-96, RUTCOR-Rutgers University’s
Center For Operations Research, July 1996. http://rutcor.rutgers.edu:80/ rrr/ Submitted.

[Dougherty et al., 1995] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and un-
supervised discretization of continuous features. In Armand Prieditis and Stuart Russel, editors,
Machine Learning: Proceedings of the Twelfth International Conference, San Francisco, CA, 1995.
Morgan Kaufman Publishers.

[Gersho and Gray, 1992] A. Gersho and R. M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, 1992.

[John et al., 1994] George H. John, Ron Kohavi, and Karl Pfleger. Irrelevant features and the subset
selection problem. In William W. Cohen and Haym Hirsh, editors, Machine Learning: Proceedings of
the Eleventh International Conference, pages 121-129, San Francisco, CA, 1994. Morgan Kaufman.

[Pfahringer, 1995] Bernhard Pfahringer. Compression-based discretization of continuous attributes.
In A. Prieditis and S. Russell, editors, Proceedings of the 12th International Conference on Machine
Learning (ICML’95), Los Altos/Palo Alto/San Francisco, 1995. Morgan Kaufmann.

[Quinlan, 1993] J. R. Quinlan. C4.5 Programs for Machine Learning. Morgan Kaufmann, 1993.

[Salzberg, 1991] Steven Salzberg. A nearest hyperrectangle learning method. Machine Learning,
6:251-276, 1991.

[Wettschereck and Dietterich, 1995] D. Wettschereck and T. G. Dietterich. An experimental compar-
ison of the nearest-neighbor and nearest-hyperrectangle algorithms. Machine Learning, 19(1):5-28,
1995.

