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Abstract. The report deals with a first application of Support Vector Machines to the environmental spatial data 
classification. The simplest problem of classification is considered: using original data develop a model for the 
classification of the regions to be below or above some predefined level of contamination. Thus, we pose a 
problem as a pattern recognition task.  

The report presents 1) short description of Support Vector Machines (SVM) and 2) application of the SVM for 
spatial (environmental and pollution ) data analysis and modelling. SVM are based on the developments of V. 
Vapnik’s Statistical Learning Theory [1]. The ideas of SVM are very attractive both for research and 
applications. It was shown that they are efficient and work well in many applications. In the present study SVM  
were applied to the real case studies with spatial data and compared with geostatistical methods like indicator 
kriging. SVMs with different kernels were applied (radial basis functions - RBF, polynomial kernels, hyperbolic 
tangents). The basic results have been obtained with local RBF kernels. It was shown that optimal bandwidth of 
kernel can be chosen by minimising testing error. Real data on sediments pollution in the Geneva Lake were 
used.  
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1. INTRODUCTION 
Environmental and pollution data are usually spatially distributed and time dependent. At present there 

are many monitoring networks collecting data from local to global geographical scales. The quality and 
quantity of information can be different depending on the tools used, monitoring networks design, etc.  

In recent years there has been an explosive growth in development of adaptive methods (dependent on 
the quality and quantity of information and available knowledge) for learning from data and for working 
with data. Geostatistics (statistics for spatial data) is one of the well-established approaches for working 
                                                      
1 The report is an extended version of the paper accepted for the ACAI’99 workshop. 
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with spatially distributed data. There is a wide range of geostatistical methods for the multivariate spatial 
data mapping and predictions, local probability density function estimations (probabilistic/risk mapping), 
conditional stochastic simulations/cosimulations (generation of equiprobable realizations of the spatial 
random function) etc (Deutsch and Journel, 1997; Goovaerts, 1997). Geostatistics, in general, is a model-
dependent approach based on the exploratory analysis and modeling of spatial correlation structures. 
Another data-driven model-(semi)free, contemporary approach is based on statistical learning theory, 
including supervised and unsupervised artificial neural networks, support vector machines etc. In this case 
learning method is an algorithm that predicts unknown mapping (classification, regression, density 
estimation) between inputs and outputs from the available data and a priori knowledge.  

Support Vector Machine is used as a universal constructive learning procedure based on the statistical 
learning theory developed by V. Vapnik (Vapnik, 1995). Recently several research groups have shown 
excellent performance of SVMs on different problems of classification and regression.  

Non-parametric geostatistical model - indicator kriging, is used for the probabilistic mapping of 
cadmium Geneva Lake sediment contamination. The results are compared with SVM classification.  

The present work deals with the development and adaptation of geostatistical method and SVM for the 
classification of spatial data. The problem is to classify spatially distributed data into regions below and 
above of some predefined levels of contamination. 

All geostatistical part of the work and pre and post-processing of data were carried out with the help of 
Geostat Office software [ Kanevski et al. 1999].  
 

2. SUPPORT VECTOR MACHINES 
In the early nineties emerged a new paradigm of learning from data called Support Vector Machines 

(SVM) (Boser et al., 1992; Cortes and Vapnik, 1995; Vapnik 1995). At first, it was proposed essentially 
for classification problems of two classes (dichotomies), but now it has been generalised to regression 
problems (Smola and Scholkopf, 1998) as well as to estimation of probability densities (Weston et al., 
1998).  

This method has the advantage to place into a same framework some of the most widely used models 
such as linear and polynomial discriminating surfaces; feedforward neural networks or networks 
composed of radial basis functions. The strength of the method is that it attempts to minimize 
simultaneously the empirical risk of error (estimation of the error on the training data) and the structural 
risk (complexity of the model). By opposition to the Bayesian methods based on a modeling of the 
probability densities of each class, SVMs are focusing on the marginal data and not on statistics such as 
means and variances.  

In the present work SVMs are used for dichotomies, the next section briefly presents the application of 
SVMs to such problems (see (Burges, 1998) for a complete tutorial on SVMs). A presentation of the ideas 
of Statistical Learning Theory can be found in the book [Cherkassky and Mulier, 1998].  SVR Support 
Vector Regression theory and applications are presented in the tutorial [Smola and Scholkopf 1998]. 

 

Principles of SVMs 

Consider a dichotomy defined by a set of K  couples {(xk , yk )}k =1,…,K   in Rn×{–1,+1}, where the 
data point xk  has to be classified as positive (respectively negative) if yk=+1 (resp. yk =–1). In our 
application, the input space is R 2 where the two dimensions are the spatial coordinates of the points with 
measurements. The SVM is implementing a function f  from Rn  into R  with the property that f (xk ) is of 
the sign yk  hopefully for any k=1,…,K  and moreover, for any such k  the point xk  lies as far as possible 
from the decision surface f=0. 

For simplicity, let first assume that f  is a linear function: f (x ) = w ⋅x  + b . If the dichotomy is linearly 
separable, there exists a vector w  and a b  such that (w ⋅x+b )yk>0 for all k . The hyperplane w ⋅x+b=0 
does not change by rescaling w  and b , and if ||w ||=1, the distance between a point x  and the hyperplane 
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is given by |w ⋅x  + b |. Thus, if the dichotomy is linearly separable, the pair (w ,b ) chosen by the support 
vector machine is the optimal solution of the following problem:  

max δ  under the constraints that  (w ⋅xk  + b )yk  ≥ δ  ∀k   and ||w ||=1, 
or equivalently: 

min ||w ||2  under the constraints that  (w ⋅xk  + b )yk  ≥ 1  ∀k . 
This problem is a quadratic program (quadratic objective function and linear constraints) and it can be 

solved by standard packages (in practice, its dual form is solved instead). The data points xk  for which 
the inequality constraints are satisfied as equalities at the optimal solution are called the support vectors 
and they alone determine the optimal solution. 

This problem has no solution if the dichotomy is not linearly separable. To handle this case, non 
negative slack variables ξk  are introduced for each data and the former constraints (w ⋅xk  + b )yk  ≥ 1 are 
replaced by (w ⋅xk  + b )yk  ≥ 1– ξk . Of course, as few ξk  as possible should be non zero, thus a second 
objective is to minimize Σk  ξk . The new problem has the form 

min ||w ||2 + CΣk  ξk   

under the constraints that  (w ⋅xk  + b )yk  ≥ 1– ξk    and   ξk  ≥ 0 ∀k , 
 
where C  is a constant weighting the second criterion with respect to the first one. This is once again a 

quadratic program that can be solved by standard algorithms.  
Using the property that the resolution of this quadratic program requires essentially only the 

computation of scalar products of vectors in Rn , the theory of support vector machines extend to non-
linear discriminators f  in a very elegant way using the so called kernel functions. Some mappings Φ: 
Rn→RN  admit a kernel function K : Rn×Rn→R  with the property that K (x1 ,x2 ) = Φ(x1 )⋅Φ(x2 ). Thus, 
even for mappings Φ so that N>>n , the scalar products into RN  of images through Φ can be computed 
very efficiently using the kernel function. Given such a pair (Φ,K ), a discriminant function f  linear into 
RN  but non-linear into Rn  can be constructed following the same idea as above by resolving the problem 

min K (w ,w ) + CΣk  ξk   

under the constraints that  (K (w ,xk) + b )yk  ≥ 1– ξk    and   ξk  ≥ 0 ∀k , 
 
which has a dual form simpler to solve. Among all the known kernel functions, the following three are 

the most widely used: 

• Polynomial kernel:   K (x1 , x2) = (x1 ⋅x2  +1)p  . 
The result of an SVM with polynomial kernel is a polynomial of degree p . 

• Radial Basis Function (RBF) kernel:  K (x1 , x2)=exp(-||x1  –x2 ||2/2σ2) . 
The result of an SVM with RBF kernel is an RBF network where σ2 is the variance of the RB 
functions (bandwidth). 

• Hyperbolic tangent kernel  K (x1 , x2)=tanh(κx1 ⋅x2–δ) . 
The result of an SVM with such a kernel corresponds to a one hidden layer neural network with 
hyperbolic tangents as transfer functions of the hidden units and no transfer function for the output 
units. 
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3. GEOSTATISTICS. PROBABILISTIC MAPPING WITH INDICATOR KRIGING 
There are different geostatistical approaches for the spatial data classification [Goovaerts 1997]. Most 

of them are based on 1) development of class probability distribution functions and 2) classification with 
some decision rules. In the present paper indicator kriging is used for the mapping of probability of 
exceeding selected levels. Probabilistic treatment of the results gives some flexibility in the interpretation 
of the results and comparison with Support Vector Machines classification. 

Indicator kriging is a well-developed geostatistical model for the probabilistic mapping – mapping of 
local conditional probability distribution function (cpdf) based on available data and knowledge (Deutsch 
and Journel, 1997; Goovaerts, 1997). Indicator is a function I=Ind(Z ;Z*)=1 if Z≤Z* and =0 if Z>Z*. 
Indicator coding allows different types of information to be processed together, regardless of their origins. 
The objective is to evaluate at any location x  the conditional cumulative distribution function (ccdf) value 
or posterior probability: F (x ;Z * |(n ))=Prob{Z (x )≤Z *|(n )} where the conditioning information consist of  
n  data measurements and x=(x1 ,x2 ) in a 2 dimensional case. After an indicator transformation, 
geostatistical model kriging is applied for the indicators.  

Kriging is a Best (minimizing variance of the estimates) Linear Unbiased Estimator (BLUE) of the 
random function. Each ccdf value can be estimated as a linear combination of neighboring indicator data 
using kriging algorithm (Goovaets, 1997): [F (x ; Z *|(n ))]IK =Σλi(x ;Z *)I(x ;Z *), where the weights are 
given by an ordinary kriging system (Deutsch and Journel, 1997; Goovaets, 1997).  

 
Σj=1  {λj(x ;Z*)γ(x i-x j)} - µ(x ;Z *) = γ(x i-x ;Z *) 

 
Σj=1  {λj(x ;Z *)}=1,   i=1,…n  

 
The reconstruction of the entire ccdf can be performed by estimating several thresholds/indicators.  
In case of second order stationarity spatial correlation function variogram γ(h ) = E{I(x ;Z *) − 

I(x+h ;Z *)} depends only on separation vector (h ) between points and can be estimated by using 
transformed data (indicators).  

In case of several thresholds co-kriging (co-estimations) of indicators with analysis and modelling of 
both variograms (autocovariance functions) and cross-variograms (cross-covariance functions) in general 
should be used. In this case it can be compared with multi-class SVM classification [Weston and Watson 
1998]. Indicator co-kriging allows to respect the histogram of data, but the indicator variograms for 
thresholds not close to median are difficult to infer. Moreover, the smoothing effect due to minimising of 
the variance is large. 

4. CASE STUDY 

Description of Data 
 
Data were provided by the CIPEL (International Commission for the Protection of Water of the 

Geneva Lake, Lausanne). They are of two kinds. The first data set is a chemical analysis of sediments 
during the years 1978, 1983 and 1988. These data had not been previously valorized spatially with 
geostatistical methods. The second data set is a chemical analysis of water of the Geneva Lake at various 
depth, at various locations, and from 1957 to 1994 for the longest period. 

For this case study, we focus on sediment data of the year 1988. Those data contain a list of chemical 
elements (heavy metals, and organic molecules) detected during the analysis, and also some information 
about the various kinds of sediment analysed (diameter of the grain). 

The Cadmium concentration was used, as reported on the sediment data set of 1988. Thus, univariate 
(only one variable) spatial classification and mapping of the Cd concentration (measured in µg/g) is of the 
main interest. The basic batch statistical parameters of the data are following:  
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min = 8.e-02; Q 1/4 =  5.1e-01; median = 7.3e-01;  Q 3/4 = 1.030e+00; max = 3.290e+00; mean 

value = 8.16e-01; variance = 2.2e-01; sigma = 4.71e-01; skewness = 1.950e+00;  kurtosis = 6.88e+00.  
Total number of measurements equals 200.  
Cd histogram along with histogram cloud are presented in Figure 1. The histogram cloud represents 

the density of measurement points versus measurement values. Histogram is a summary statistics of the 
histogram cloud after dividing the measurement values into several bins.  

 
 

 
 
Figure 1. Histogram and histogram cloud of original Cd data.  
 
Qualitative and quantitative analysis and description of the monitoring networks and their clustering is 

an important phase of spatial data analysis. There are different deterministic (describing spatial 
resolutions), statistical (Morishita diagrams, etc.), and fractal (describing dimensional resolution) 
measures for the monitoring network analysis. In general, in order to work with representative data sets, 
different declustering procedures (random declustering, cell declustering, Voronoi polygons, kriging 
weights) applied to the original raw data should be used.  

The second important step in the geostatistical spatial data analysis deals with comprehensive 
exploratory description and modeling of spatial continuity using spatial correlation functions: variograms, 
covariance functions, madograms, rodograms, etc. In the present work it was performed on indicator 
transformed data (see below). The variography is of great importance both for the original data analysis 
and the results despite of the methods used.  

The figure 2 shows the cadmium concentration at each point of measurement, the higher level are 
reached in the north coast and in the middle of the “Small Lake”, in the southwest. But there is also a 
large area of medium concentration in the center of the “Great Lake”, and some hot spots near the coasts. 

Figure 2 was prepared with linear interpolation algorithm (Delauney triangulation) and can be 
considered as a visualisation of the raw data.  
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Figure 2. Linear interpolation of original data (visualisation of data).  
 

Data Pre-processing 
 

Original data were split into training (150 measurement points) and testing (50 measurement points) 
data sets. Two different techniques have been applied: 1) random splitting, when 50 data points are 
randomly selected from the original file: 2) spatial declustering with random selection. In the latter case 
region is covered by regular grids and from each cell one data is randomly selected. Selected data set is 
more homogeneous, the rest data set is more clustered. Number of extracted data depends on the regular 
grid. This procedure usually gives more representative data sets. One of the example used for the study is 
presented in Figure 3. Netman module of the Geostat Office was used for the data analysis and spitting. 

In general data splitting should be performed many times which helps in understanding of algorithms 
stability and effect of clustering of the monitoring network .  

In the present paper we are trying to solve one of the important problems of decision-oriented 
mapping with pattern recognition technique. The posing of the problem is following: using available data 
draw a decision boundary for the indicator function (indicator is a binary function equals 0 if data are 
above threshold or 1 otherwise). Thus, we are interesting in drawing the boundaries separating data into 
the regions above and below some predefined level. Usually this level is an intervention or 
countermeasure one for pollution.  

For the present research study experiments were performed mainly with two thresholds: C1=0.8 µg/g; 
and C2=1.0 µg/g.  

The choice of a 0.8 threshold (very close to the mean value of the data) gives a quite large area of 
matching points see histogram cloud. In comparison, the choice of the 1.0 threshold concentrates the 
information much more on the location of higher concentration areas. The future classification will then 
result in two patterns, different so to conclude on classifiers’ efficiency. Let us note that both cases are 
non-linear classification problems. 

The next step consists in preparing data for training and testing the classifier, and also in creating a 
geographical grid in order to perform spatial classifications. 

This work has been done with a Netman module of Geostat Office [Kanevski e al. 1999]. Netman 
permits to split the data set of 200 values in one training data set of 150 values, and one validation data set 
of 50 values, without destroying the spatial structure of the monitoring network, as shown in figures 4 and 
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5 for the 0.8 threshold. In general, Netman is a powerful collection of tools for the quantitative and 
qualitative monitoring networks description, analysis and modelling.  

 

 
Figure 3. Posplot of data splitting.  
 

 
 
Figure 4. Indicator 0.8 postplot. Training data set. 
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Figure 5. Indicator 0.8 postplot.  Testing data.  
 
 

 
 
Figure 6. Indicator 1.0 postplot. Training data set.  
 

For the geographical grid, Netman generated a dense network of 720 points (figure 7) based on the 
initial positions of the data points. There are some points outside of the lake border, but it does not pose 
any problems, except for visualisation. In general, the final results should be prepared as the decision-
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oriented maps and presented with the help of Geographical Information Systems. Geostat Office is able to 
export to GIS all basic results as the main topological objects: points, lines and polygons.  

 

 
 
Figure 7. Prediction grid. The coastline of the Leman lake is presented as well. 
 
SVMLab program used in the present study at first linearly transforms spatial co-ordinates (input space) into 

Zscores by using the following relationsip: 

X
x m x

x

s c o r e =
−
σ

 

where vector x=(x,y), and σ - is a standard deviation (square root of variance). The parameters for the Lake 
are following: mx =526.9; my = 139.29; σx =16.78; σy =7.1. Let us remark, that occasionally relationship between  
σx and σy is close to the relationship between ranges of spatial correlation in X and Y directions (see 
variography below).  

Postplot of the training data using transformed co-ordinates is presented in Figure 8. This is an affine 
transformation of the input space. In fact, working with the unique sigma value of the kernel (bandwidth of the SVM 
kernel) means anisotropic modelling in the input space. The bandwidth of the SVM kernel for the results below is 
presented in the transformed co-ordinates. These remains  to ascertain that this coordinate reduction does not mesh 
the anisotropies “naturally” present in the data. This applies specifically to the Leman data where the flows from 
Valais down to Geneva are a major fact.  
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Figure 8. Postplot of training data set using transformed data.  
 
 

Classification with SVM 
Most of our results on SVM were obtained with a classification program made at IDIAP (Dalle Molle 

Institute of Perceptive Artificial Intelligence, Switzerland). This program is an Octave application using 
the LOQO free optimiser. At this time, we are testing the efficiency of the RHUL (Royal Holloway 
University of London, United Kingdom) software on SVM, in order to compare the results. 

 

Quality of the results criteria 
The construction of a classifier is decided as follows. First of all, a kernel type is chosen (three basic 

kernel have been applied). Then, the specific parameters of the kernel are selected. After this, the support 
vectors’ coefficients with the optimiser are calculated according to the training data. Finally, the 
efficiency of those coefficients and kernel’s parameters are estimated using testing data set. 

Two error measures were used: 

dataofnumberTotal
dataiedmisclassifofNumber

___
___

 

One of them is specific to the training data and the other one to the testing data. The objective of the 
training is to minimise both.  

 

Choice of the kernel 
The choice of the kernel is a crucial issue in the SVM method. With the polynomial kernel, high 

quality results with a degree 9 were obtained. But when using the grid in order to see the quality of the 
results, error was growing in a pathetic way at the border of the classes (i.e. near the coasts of the lake). 
This is also a well-known problem with polynomial regression for one-dimensional function. 

The case of the hyperbolic tangent kernel is very different. In fact, this kernel is using two parameters 
that are difficult to optimise with a given data.  
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With the RBF kernel, very good results (even better than with polynomial kernel), without strange 
features at the border of the classes were obtained. In addition, this kernel is very simple to use, as it 
needs only one parameter (variance of the kernel - bandwidth). The interpretation of the kernel is rather 
simple as well.  

 

Error curves 
In order to make a legitimated choice of the optimal classifiers, and also to understand the variation of 

the training error and the testing error, error curves were calculated (figures 8 & 9). 
Those curves represent the variation of training error and testing error versus the kernel variance 

parameter. 
 

 
Figure 9. Indicator 0.8. SVM error curves for the training and testing data sets.  
 

 
Figure 10. Indicator 1.0. SVM error curves for training and testing data sets.  
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The error curves for the two thresholds are quite similar and can be divided into three parts. First, 
testing error is at a very high level while training error is almost zero. This is the over-fitting part of the 
curves. Second, testing error is falling as fast as training error is rising. But after this decrease, testing 
error starts to follow the raise of the training error. Classifier’s parameter is optimal when testing error is 
reaching its minimum. At the end, the two curves are reaching a plateau at a high error value. In this part, 
nothing can be decided because the classification does not work correctly. This is a region of 
oversmoothing. 

After selecting the optimal bandwidth of the kernel, it can be used for the spatial classification 
(predictions on the dense grid).  

 

Results of the SVM classification 
By changing the kernel variance parameter (bandwidth), different results can be demonstrated: from 

overfitting at small bandwidth, to oversmoothing with rather high values of the kernel bandwidth. The 
application of the trained SVM for the spatial classification at the grid points is presented in Figures 10-
12 for the 0.8 indicator and in Figures 13-15 for the 1.0 indicator. SVM with the optimal kernel variance 
(minimum testing error) as well as with sub-optimal kernel variances giving rise to over-fitting and over-
smoothing effects have been applied for the comparison. 

 

 
 
Figure 11. SVM classification. RBF kernel. Over-fitting. White zones correspond to the above 

threshold value classification. Dots indicate above threshold values for the validation data. (σ=0.03) 
 
 
The shapes obtained for these 3 classes are currently under investigations by methods of mathematical 

morphology: relationships of perimeters to surface, areas, etc. Comprehensive structural analysis of the 
results with geostatistical tools (variography) is under study and will be published with discussions 
separately.  
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Figure 12. SVM optimal classification. RBF kernel. White zones correspond to the above threshold 

value classification. Dots indicate above threshold values for the validation data. (σ=0.35) 
 
 

 
 
Figure 13. SVM classification. RBF kernel. Oversmoothing. White zonez correspond to the above 

threshold value classification. Dots indicate above threshold values for the validation data. (σ=3.0) 
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Figure 14. SVM classification. RBF kernel. Overfitting (σ=0.1). White zone corresponds  to the above 
threshold values. Dots indicate above threshold values for the validation data; filled squares – below 
threshold values. 

 

 
 
Figure 15. SVM optimal classification. RBF kernel. White zone corresponds to the above threshold 
values. Dots indicate above threshold values for the validation data; filled squares – below threshold 
values. (σ=0.5) 
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Figure 16. SVM classification. RBF kernel. Over-smoothing. White zone corresponds  to the above 
threshold values. Dots indicate above threshold values for the validation data; filled squares – below 
threshold values. (σ=10.0) 

 

Indicator Kriging 

Experimental variography 
Geostatistics is based on a description and modeling of spatial continuity using original data (hard data) 
and knowledge about phenomena under study (soft data). There are several measures describing spatial 
continuity (spatial correlation structures). The most widely used measures in geostatistics are covariance 
funtion and variogram/semivariogram. The basic theoretical formulas as well as empirical estimates of the 
corresponding functions are presented below.  

1. Covariance function. Theoretical formula 
 

C(x,h)= E{(Z(x)-m(x))(Z(x+h)-m(x+h))} 
 
Covariance function. Empirical estimate (under the hypotheses of second-order stationarity C()=C(h). 

C h
N

Z Z m mh h
i

N

( )
( )

( ) ( )
( )

= + − − +
=
∑1

1h
x x h

h

m ZN i
i

N

−
=

= ∑h h

h

x1
2

1
( )

( )

( )

m ZN
i

N

+
=

= +∑h h

h

x h1
2

1
( )

( )

( )

 
2. In multivariate case cross-covariance function is considered as well. Theoretical formula 
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Cij(x,h)= E{(Zi(x)-mi(x))(Zj(x+h)-mj(x+h))} 

 
3. Semivariogram/variogram (the basic tool of the spatial structural analysis - variography). Theoretical 

formula (under the intrinsic hypotheses) 

{ } ( ){ }γ γ( , ) ( ) ( ) ( ) ( ) ( )x h x x h x x h h= − + = − + =1
2

2Var Z Z E Z Z
Empirical estimate of the semivariogram 

( )γ ( )
( )

( ) ( )
( )

h
h

x x h
h

= −
=
∑1

2
2

1N
Z Zi i

i

N

+

In the two dimensional space vector x=(x,y) and vector h defines a distance and direction between two points in 
space.  

General understanding of spatial continuity described by variograms can be obtained from the 
variogram analysis of raw data. The variogram rose (presentation of the variograms, calculated in several 
directions) for the raw data of Cd sediments concentration is presented in Figure 16. Geometrical 
anisotropy (different ranges of correlation in different directions) is evident. These anisotropies respect 
the main flow of the river Rhone in the lake.  
 
 

Figure. 17. Experimental variogram rose of Cd sediment concentration. 
 

Anisotropic structure of the spatial correlation of raw data can be observed. This is so-called geometric 
anisotropy – different ranges of the correlation in different directions. The major axis of correlation is 
along the 10 degrees calculating from WE direction. Minor axis is in a transverse direction 100 degrees 
from WE direction.  

1 dimensional figures for the anositropic variograms for the raw Cd data are presented in Figure 17. 
The ratio between major and minor axes is near R(||)/R(⊥)≈15/7.  
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Figure 18. Cd raw data.  Experimental anisotropic variograms. 
 

For the indicator kriging is important to calculate and to model indicator variogram. After 
transformation of the raw data to the indicators comprehensive structural analysis (variography) was 
carried out.  

The experimental variogram rose is presented in the Figure 18. What is different in comparison with 
the raw data variogram rose? First, angle of the geometric anisotropy was changed. Now, the major axis 
of the anisotropy is along the direction –15 degrees from the WE direction. Second, the correlation ranges 
have been decreased. But the ratio between major and minor ranges is almost the same R(||)/R(⊥)≈11/5.  
 

 
 
Figure 18. 0.8 indicator Variogram Rose.  
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Figure 20. Anisotropic indicator experimental variograms.  
 

One dimensional variograms calculated in two directions (WE and SN) are presented in Figure 19. 
Rather high nugget effect can be mentioned as well. Nugget effect describes small scale variability. The 
relationship between nugget and sill (plato) reflects the relations between stochastic and structured 
components of the data.  

Variogram rose for the transformed coordinates was calculated as well (see Figure 20.). It is evident 
that variogram rose in this case is much more isotropic. It means, that occasionally by using Zscore 
transformation the object under study was simplified. Actually, it should help SVM to develop model, 
which would be simpler (less support vectors) than in the case of anisotropic object. The general question 
is how data pre-processing are important for the support vector machines? Remember, that taking into 
account inherent properties of the data (symmetries, etc.) should help to improve the results of the SVM 
classification. This fact was mentioned in the book of V. Vapnik [ Vapnik 1995]. Of course, this is 
possible only when do we have only one (possibly anisotropic) scale of variability. In case of multi-scale 
variability there is still some possibility to simplify patterns with the help of general affine 
transformation. The problem of the relationships between spatial correlation structures and SVM 
classification of environmental data is under extensive study at present and will be published.  
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Figure 21 . 0.8 Indicator Variogram Rose with x,y-transformed coordinates.  
 
 

 
 
Figure 22. Indicator 0.8. Experimental anisotropic variograms (transformed coordinates).  
 

It should be noted, that variogram in transformed coordinates is more isotropic than in original 
coordinates. In fact, it was not an objective of this transformation. In fact, both topology of the monitoring 
networks (input space) and spatial correlation structures (output space = phenomena) should be taken into 
account. Probably, preprocessing of the data by affine transformation and taking into account anisotropic 
structure of the phenomena can help SVM in classification. This investigation is under progress. 
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Indicator variogram modelling 
 
Indicator variogram is a variogram calculated for the indicators.  
 

 
 
Figure 23.  Anisotropic 0.8 indicator variogram fitting with the Geostat Office. 
 

With the help of Geostat Office software anisotropic variograms have been modeled. Modelling means fitting of 
known theoretical variogram structures (simple formulas with few parameters) to the experimental variograms 
calculated using data [Goovaerts 1997, Journel and Deutsch 1997]. Interactive module of the Geostat Office for the 
variogram modelling is presented in Figure 22.  

Nested variogram consisted of pure nugget effect (constant value) and spherical models with different ranges in 
different directions described above was used for the indicator kriging. The formula for the spherical model is the 
following:  
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− ≤
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[ . ( / ) . ( / )15 0 5 3  ,   if h a

                       if  h a           
     

 
where a defines a range of correlation and c is the so called sill (Plato).  
 

Indicator kriging. Results 
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Let us consider some results of the indicator kriging. First, remind that nugget value (behaviour of the 
variogram near the origin) is rather high. It means that there is a high stochastic component and small-
scale variations are important.  

The outputs of the indicator kriging are treated as a ccdf value or posterior probabilities. In the present 
case the outputs are probabilities that Cd concentrations does not exceed level 0.8 µg/g. The result of 
indicator kriging is presented in figure 24 (IK estimates). For the convenience results for the probability 
of exceeding level 0.8 are presented [probability of exceeding = (1-probability of not exceeding)] 
validation data are also plotted. Some data points are really difficult to classify correctly.  

Results of indicator kriging along with optimal SVM classification are presented in figure 25. With the 
exception of some details, results seem to be in a good agreement with each other and with validation 
data. 

At this point it should be noted that probabilistic mapping with indicator kriging as the geostatistical 
methods for the comparisons was used instead of other spatial classifiers. In this study it was important to 
understand spatial uncertainty and variability of data and models. Actually, indicator simulations should 
give much better quantification of the spatial pattern uncertainty and variability. This work is currently 
under progress. 

 
 
 

 
 
Figure 24. Indicator kriging. Probability of exceeding level 0.8. Validation data are presented as well. 
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Figure 25. Indicator kriging and Support Vector Machines. 
 

5. CONCLUSIONS AND DISCUSSION  
The first and preliminary results of the SVM application for spatial data classification are promising. It 

was shown that the quality and quantity of the information extracted from data can be controlled by 
changing kernel parameters and using testing data sets. An important problem for the future research 
consist in developing data-driven automatic selection of the optimal bandwidth parameters.  

In general, the problem of joint multi-class classification is more important for the real environmental 
and pollution decision-making. Usually several thresholds are important. There are some developments 
for this case both in statistical learning theory and geostatistics which are interesting to be studied. 

Spatial uncertainty and variability of indicators can be described and modelled with the help of 
conditional stochastic simulations. It seems that direct estimation of the local conditional distribution 
function (probabilistic treatment of the SVM’s outputs) can improve both data treatment and 
interpretation of the results.  

An important problem deals with the number of support vectors and the quality of classification. There 
is some indication that near the optimum the number of support vectors is minimal. It should be noted, 
that expected testing error is bounded by the ratio of the expected number of support vectors to the 
number of training data [Vapnik 1995]. This can be additional criteria for the selection of SVM 
parameters (e.g. bandwidth).  

Another important question which is under study concerns pre-processing of raw data and its influence 
on the results. Usually data driven approaches highly depends on data pre-processing.  

Finally, there are some question related to the selection of kernel function and hyperparameters.  
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