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Abstract. This paper addresses the problem of transforming arbitrary data into binary data. This
is intended as preprocessing for a supervised classification task. As a binary mapping compresses
the total information of the dataset, the goal here is to design such a mapping that maintains
most of the information relevant to the classification problem. Most of the existing approaches to
this problem are based on correlation or entropy measures between one individual binary variable
and the partition into classes. On the contrary, the approach proposed here is based on a global
study of the combinatorial property of a set of binary variable.
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1 Introduction

Supervised classification learning addresses the general problem of finding a plausible K-partition into
classes of an input space 2, given a K-partition of a set of training ezamples X = X1 W... W X C Q.

In practical applications of data mining the input spaces {2 are usually very large and they combine
features of different nature. Therefore, for most of the mining tools to be usable, it is convenient to
preprocess the data and an important research effort is now spent on problems such as feature selection
or feature discretization.

Some mining technologies require even purely binary data. This is the case of Logical Analysis
of Data (LAD), which is a general approach for knowledge discovery and automated learning pro-
posed in the mid eighties [Hammer, 1986]. Classification is one particular usage of this theory, which
was extensively developed and implemented in the mid nineties and which showed great potentiali-
ties [Boros et al., 1996].

Thus, besides data compression, there is a need in data binarization in view of mining, where
the most relevant information for further processing has to be maintained (Sect. 2). In Sect. 3, the
binarization problem is stated and some classical approaches are briefly presented. Section 4 presents
the algorithm IDEAL, specially designed to fit the needs of LAD. Some experimental results are
discussed in Sect. 5 and Sect. 6 concludes and discusses further work.

2 Requirements for Binarization

Given a set of training examples X C 2 partitioned into K-classes X; W ... Xk, the binarization
problem consists in finding a mapping m : Q — {0,1}¢ with the following properties: (i) most
of the information relevant to the classification problem should be preserved through m; (i¢) the
size d of the binary codes is not too large. The first property is translated into a sharp and a soft
constraint. The former states that the mapping should be consistent with the training examples,
ie. m(X;)Nm(X;) =0, Vi # j. The latter asks that two points of €, close to each other according to
a reasonable metric, should have their images through m close to each other in the Hamming distance
metric.

The second property has to be taken with some care. Clearly, the size of the binary codes should be
small in order to reduce the complexity of the processing of binarized data. The research of a binary
mapping of minimal size satisfying the consistency constraint is a challenging combinatorial problem
proven to be NP-Hard in most of its forms [Boros et al., 1997]. However, experience has shown that
the final performances of any learning method applied to the binarized data can drop whenever d is
too small. This suggests that the consistency constraint is not sufficient to ensure that the relevant
information is not lost in the binarization of the data.

In practice, it is useful that the method determining the binarization provides also a way to control
the size of the binary codes produced. For this purpose, the consistency constraint can be extended
in a natural way as follows. A mapping m is c-consistent with the training examples if and only if for
any two examples ¢ € X; and y € X, ¢ # j, the Hamming distance between m(x) and m(y) is at
least c¢. Clearly, 1-consistency is identical to plain consistency. Experimentations with LAD showed
that binary mappings c-consistent with the training examples, with ¢ = 2 or 3 are still of reasonable
size for most of the datasets and allow a strong improvement of the overall behavior of the method.

For the sake of generality, the binarization methods must be able to handle input spaces {2 com-
posed of attributes of different kinds : binary, nominal (ordered and unordered), or continuous. For the
purpose of interpretation simplicity, each one of the d binary functions of the mapping m : Q — {0, 1}¢
involves only one original attribute of the input space 2.

In the sequel, each binary function m; : @ — {0,1}, composing the binary mapping m is called
a discriminant and is restricted to the following types. When associated to an unordered attribute
(binary or nominal), a discriminant is identified to one possible value of this attribute (e.g. “color =
yellow”). In the case of an ordered attribute (nominal or continuous), a discriminant is a comparison
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to a threshold value (e.g. “age > 45”).

To be usable on real life datasets, a binary mapping must handle properly unknown data, noisy
data as well as a priori knowledge such as monotonic relationship between attributes and the target.
The algorithm proposed hereafter addresses these issues. Though, space constraints prevent us from
going into further details.

3 Existing Binarization Methods

Some learning methods generate, as a by-product, a discriminant set D that defines a binary mapping
m. For example, when a decision tree is built to learn a classification task, each internal node of the
tree is a discriminant. Moreover, if no early stopping criterion is used and if the tree is not pruned,
all examples associated to one particular leaf are of the same class. Thus the binary mapping of size
d given by the number of nodes is consistent.

In this paper, the focus is put on global binarization algorithms, which usually assume a large
(implicit or explicit) initial discriminant set, from which a small subset has to be extracted. For
comparisons between global binarization methods and local approaches such as decision trees, please
refer to [Moreira et al., 1999].

Given a training set X of examples partitioned as before into K classes, and given a large set D of
discriminants defining a binary mapping consistent with X, the problem of finding a small subset of D,
still consistent with X, can be formalized as a minimum set covering problem. For each discriminant
T € D there is one variable z, € {0,1} indicating whether 7 belongs to the resulting subset or not.
The constraint matrix A has a row for each pair of examples * € X;,y € Xj, i #j. Ay =1
if the discriminant 7 distinguishes the example x from y (i.e. * # m,(x) # m,(y) # *) and is 0
otherwise. A subset of discriminants defines a binary mapping c-consistent with X if and only if its
characteristic vector z € {0, 1}IPl satisfies Az > c.

The minimum set covering problem is an NP-Complete problem, but for our purpose, optimality is
not critical and thus, any good heuristic is satisfactory. The most obvious heuristic for the resolution
of the minimum set, covering problem is the incremental greedy approach. It consists, at each iteration,
in selecting the column of A with the highest number of 1s, introducing the corresponding discriminant
7 in the solution (i.e. switching 2z, from 0 to 1), and suppressing the rows 7 in A whenever A;z > c.

A more critical issue is related to the computational complexity of this approach. If D denotes the
initial number of discriminants and if there are n examples in X, the construction of the constraint
matrix A is in O(n2D). A naive implementation of this greedy heuristic has a complexity in O(n?Dd)
and has demonstrated its limitations in the experiments reported in [Boros et al., 1996].

A very nice solution proposed in [Almuallim and Dietterich, 1994] (denoted “Simple-Greedy” in
Sect. 5) consists in resolving this minimum set covering problem using the same greedy heuristic, but
without enumerating any column of A. A clever data-structure is used that allows to determine the
number of conflicts solved by a discriminant at a given time in O(n). The total complexity of this
approach is O(nDd), where d is the size of the final subset of discriminants. However, this approach
is designed to solve the problem of the 1-consistent discriminant set and is not easily generalizable to
the c-consistency case.

The algorithm proposed in the next section is an alternative to this problem as it addresses the
c-consistency issue. Even though its worst case complexity is in O(D log D + n2?D), it is shown to be
quite efficient in practice even with large training samples.

4 An Eliminative Approach
The algorithm IDEAL (Iterative Discriminant Elimination Algorithm) is an eliminative procedure for

finding a minimal c-consistent discriminant set. As for the other global methods discussed in Section 3,
the initial discriminant set D is obtained by placing: along each ordered attribute, one discriminant
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between every two projected examples of different classes and of consecutive values; and for each
unordered attribute, one discriminant for each one of its possible values.

IDEAL iteratively selects discriminants from D minimizing a merit function w(7). Each selected
discriminant is eliminated if approved on a redundancy test (checking whether the elimination of this
discriminant would still leave at least ¢ others discriminating every pair distinguished by this discrim-
inant), and kept otherwise for the final solution. This process is repeated until all the discriminants
have been tested once. Choosing as w(7) the total number of pairs of examples from different classes
discriminated by 7 would lead to an algorithm very similar to the greedy heuristic described in Sec-
tion 3. The only difference would be that in the former case the solution is built iteratively while here
it is pruned iteratively.

Among the various merit functions w(7) experimented [Moreira et al., 1999], the one finally se-
lected for IDEAL measures the number of local conflicts defined as follows. If the discriminant 7 is
based on the original attribute a, w(r) is the number of pairs of examples from different classes,
discriminated by 7 and by no other discriminants based on a.

This choice for w(7) has several advantages, the most important one is the computational complex-
ity. The merit of each discriminant is computed (cheaply) once at the beginning and then, whenever a
discriminant 7 is pruned, the merit changes for only few discriminants (each one associated to the same
original attribute a as 7, and in the case of an ordered attribute even only the two discriminants just
below and just after 7 along a). The second advantage of this merit function is that it makes IDEAL
sensitive to the relation between discriminants and original attributes. Consequently, this introduces
a bias in the final solution towards sets of discriminants well spread over the different attributes, i.e.
avoid (if possible) having many discriminants related to the same attribute. We consider that in many
applications, this is a desirable property.

5 Experiments

The response of IDEAL to the rise of the consistency constraint has been studied empirically. The algo-
rithm was tested on 21 datasets from the UCI repository of machine learning databases [Blake et al., 1998],
with different values of ¢, from 1 to 4. Table 1 contains the results, including the test done with Simple-
Greedy, for comparison purposes.

Table 1 shows that, against expectations, the obtained number of discriminants increases more
than linearly with ¢ for 6 of the datasets. We find explanation for this in the fact that there is a
set of important discriminants providing large amounts of separations and thus covering a significant
part of the plain-consistency solution, but as the consistency constraint is tightened, discriminants of
increasing specificity are added to the solution, resulting in a faster increase of the latter. Nevertheless,
for the majority of the remaining datasets the increase is less than linear, corresponding to the expected
behavior.

In terms of execution time, although it generally decreases with ¢, that is not a general behavior.
Both increases and decreases can be explained. However, no element allows to predict the particular
evolution for a given dataset, that being dependent on its intrinsic, non-observable characteristics.
The redundancy test of IDEAL is composed mainly of two nested loops, the outermost dedicated to
the pairs of examples to be tested and the innermost to the search in other dimensions for at least ¢
alternative discriminants separating those pairs. The raise of ¢ abbreviates the outermost loop, since
less time will probably be needed to find a non-compliant pair, but it will prolong the innermost loop
because more alternative dimensions must be analyzed until the minimal separability is found.

The observed decreasing tendency in execution time is an argument in favor of eliminative proce-
dures, as their search path is shortened when the consistency constraint is strengthened, as opposed
to constructive approaches.
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Table 1: Evolution of IDEAL with the raise of the minimal consistency level. Simple-Greedy (SG), a
1-consistent, constructive procedure is provided for reference. The left-hand part of the table shows
the size of the obtained discriminant sets. The D column gives the initial size.

FINAL SizE d ExecuTioN TIME
consist. level ¢ (IDEAL) consist. level ¢ (IDEAL)
dataset D 1 2 3 4 SG 1 2 3 4 SG
abalone 5779 192 319 513 861 171 211 16.4 114 8.2  195e®
allhyper 440 21 36 59 110 18 53.7 43.1 31.6 22.2 16.3
allhypo 548 20 57 110 207 19 60.2 43.7 26.9 15.5 14.6
anneal 134 31 60 88 103 33 3.0 1.3 0.8 0.6 6.2
audiology 92 22 47 70 76 22 0.8 0.9 0.6 0.5 10.4
car 15 14 15 15 15 14 2.2 0.3 0.2 0.2 0.3
dermatology 141 13 21 27 34 13 5.0 7.3 7.9 8.2 1.2
ecoli 301 24 47 93 203 20 0.3 0.3 0.2 0.1 5.9
glass 692 17 30 47 71 15 0.4 0.4 0.4 0.3 5.6
heart-dise. 309 14 21 34 51 12 0.8 0.6 0.7 0.5 1.4
krkopt 39 34 34 34 34 34 35.3 3.8 3.2 3.2 217.6
letter 234 59 90 128 151 58 3598.3 2531.5 1368.2 395.9 2586.9
mushroom 112 7 14 29 42 6 1469.2 1853.2 1453.5 718.3 4.6
nursery 19 17 19 19 19 17 110.7 1.8 1.8 1.8 2.5
page-blocks 3378 45 82 126 193 39 112.0 88.8 64.0 45.1 396.1
diabetes 856 24 40 66 127 22 2.2 1.8 1.5 1.0 17.0
segmentati. 9817 28 53 74 100 24 109.2  147.6  200.9 177.6  698.8
soybean 97 25 35 44 52 22 6.7 9.5 8.0 8.2 43.9
vehicle 1215 34 49 71 92 26 15.0 20.2 17.3 18.4 44.9
vowel 7077 26 38 59 86 22 9.7 10.1 10.3 9.6 T773.6
yeast 374 39 82 173 271 41 4.0 2.6 1.0 0.3 139.4
average ratio d/D 204 27.1 348 429 20.1
(std) +30.3 +£32.4 £33.5 +34.2 +£30.4
average evolution 0.7 1.7 3.1 -0.15  -0.28 -0.43
(std) +0.4  H11  £24 +0.4 +0.5  +05

6 Conclusions and Further Research

We have described the basic concepts of Logical Analysis of Data and highlighted the need for finding
a suitable binary mapping that can transform data of arbitrary form into binary data, unique format
tractable by LAD.

IDEAL, an eliminative algorithm for finding a minimal discriminant set consistent with a set of
training examples, has been described. The relation between the enlargement of the minimal differ-
entiability among binarized objects with their resulting size growth was also examined. It has been
shown that the growth rate depends on the data, although in the majority of the tested cases less
than linear growth has been observed.

For comparison, an alternative, constructive approach has been briefly described and tested, with
1-consistent constraint. We speculate that constructive procedures are, in principle, less adapted to
the referred constraint tightening, due to the consequent longer search path. No empirical evidence
has been provided, though, due to the absence of a constructive approach of satisfying efficiency that
is able to deal with the problem.

Concerning further work, we refer that an early stopping criterion could accelerate the proposed al-
gorithm execution without major result deterioration. This aspect is discussed in [Moreira et al., 1999],
although a suitable solution is yet to be developed. In fact, the time complexity of the redundancy
tests tends to O(n?) as the elimination of discriminants proceeds. In this latter phase, small decreases
are verified in the discriminant set size.

A natural goal for follow-up activity consists in measuring the quality of the obtained binary
mappings applied to LAD in classification tasks.
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