REPORT

IDIAP RESEARCH

Dalle Molle Institute
for Perceptual Artificial
Intelligence o P.O.Box 592 e
Martigny e Valais @ Switzerland

phone +41 —27—721 77 11
fax 441 -27-721 77 12
e-mail secretariat@idiap.ch

internet http://www.idiap.ch

IDIAP

Martigny - Valais - Suisse

ON THE COMPLEXITY OF
RECOGNIZING REGIONS
COMPUTABLE BY TwWO-LAYERED
PERCEPTRONS

Eddy N. Mayoraz '
IDIAP-RR 98-03

MARCH 1998
REVISED IN SEPTEMBER 1998

PUBLISHED IN
Annals of Mathematics and Artificial Intelligence 24-1/4 (1998) 129-153

T IDIAP—Dalle Molle Institute for Perceptive Artificial Intelligence, P.O.Box 592,
CH-1920 Martigny, Valais, Switzerland Eddy.Mayoraz@idiap.ch






IDIAP Research Report 98-03

ON THE COMPLEXITY OF RECOGNIZING REGIONS
COMPUTABLE BY TWO-LAYERED PERCEPTRONS

Eddy N. Mayoraz

MARCH 1998
REVISED IN SEPTEMBER 1998

PUBLISHED IN
Annals of Mathematics and Artificial Intelligence 24-1/4 (1998) 129-153

Abstract. This work is concerned with the computational complexity of the recognition of LPs,
the class of regions of the Euclidian space that can be classified exactly by a two-layered percep-
tron. Some subclasses of LP» of particular interest are also studied, such as the class of iterated
differences of polyhedra, or the class of regions V' that can be classified by a two-layered percep-
tron with as only hidden units the ones associated to (d — 1)-dimensional facets of V. In this
paper, we show that the recognition problem for £P> as well as most other subclasses considered
here is NP-Hard in the most general case. We then identify special cases that admit polynomial
time algorithms.

Acknowledgements: This work was started while the author was a postdoctoral fellow at RUT-
COR — Rutgers University Center for Operations Research — supported by the Swiss National
Science Foundation and by DIMACS — Center for Discrete Mathematics and Computer Science.
The author is thanksful to Dr. Motakuri Ramana for very helpful discussions and his participation
in the proof of Theorem 5.



2 IDIAP-RR 98-03

1 Introduction

Classification is a basic ability of multilayer perceptrons and is the common point between most of the
applications of these computational models. As far as multilayer perceptrons based on linear threshold
processing units with real inputs and a binary output are concerned, it is natural to ask which regions
V of the Euclidian space R? are recognized by such devices, i.e. such that the output of the network
is True if and only if the input is in V. Defining the depth of a multilayer perceptron by the length of
the longest path from an input node to an output node, let £P, denote the class of regions of R? that
can be recognized by a multilayer perceptron of depth k. The characterization of £P; is obvious, since
this class contains nothing but half-spaces. The hierarchy LP, C LP, C ... C LP, C ... collapses
already at level 3, since any finite union of polyhedra in the Euclidian space can be recognized by a
depth 3 multilayer perceptron [Lip87, ZAW91].

The only interesting issues in this area are thus related to £ and several of them have been
already addressed [GC90, ZAW92, Sho93, TTK93, Gib96, SGM98, BKPM97]. Various necessary
conditions, as well as sufficient ones, have been proposed, and the relationships between them have
been studied. However, these studies were essentially of geometrical nature, and even if algorithms
were sometimes proposed to check the membership of a region in a particular class [ZAW92], there
was no attempt made to determine the exact complexity of any of the recognition problems.

The aim of this work is to address the question of the computational complexity of the problem of
recognizing whether a given region V' C R? is in £P,. This issue is of particular interest for example for
constructive neural networks algorithms building a single hidden layer during the learning process. A
key component of these algorithms is to be able to decide, with the information at hand, whether or not
the task to be performed is computable by a single hidden layer architecture. Since the combinatorial
complexity is the aspect investigated here, the problem will be expressed in combinatorial terms, by
opposition to several other papers on the characterization of £P,, which were mostly of geometrical
flavor. Here and there, the interest of this translation into a combinatorial language will be illustrated
by interpreting in terms of classification with a two-layered perceptron some well known results in
Boolean function theory.

The paper will be organized as follows. A formalization of the problem, as well as some notations
are presented in the next section. In Section 3 we will discuss the difficulty of the global issue and
introduce some subclasses of LP,, of particular interest with regard to computational complexity. The
negative complexity results are reported in Section 4 and some tractable situations are analyzed in
Section 5. Final remarks and open questions will conclude the paper.

2 Formalization of the recognition problem

The functions computed by two-layered perceptrons as considered in the present paper are defined
from the d dimensional Euclidian space R? onto the Boolean set {0,1} and are of the form:

fl@) = glh(z), ..., () (1)

where g : {0,1}™ — {0,1} as well as h; : R? — {0,1},i=1,...,m are linear threshold functions, i.e.

hi(z) = sgn(wio +z w;) , (2)
g(b) = sgn(to+b't). (3)
The w;; and ¢;,¢ =1,...,m,j = 1,...,d are the coefficients of the linear threshold functions, and the

wip and to are the thresholds. In what follows, coefficients and thresholds will all be real values. The
sign function is defined as sgn(r) = 1 if r > 0 and sgn(r) = 0 otherwise.

Remark 2.1 The value sgn(0) has been set arbitrarily to 1 but this choice has no impli-
cations for the class of functions computable by a k-layered perceptron, k& > 1. Indeed,
let sgn® be defined as sgn except for sgn®(0) = 0. On the one hand, observe that ¢, can
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always be chosen distinct from —b"¢ for all b € {0, 1} and thus, substituting sgn with sgn®
in the output function (function g) does not change anything. On the other hand, the
equivalence sgn®(z) = 1 — sgn(—x) shows that sgn and sgn can be interchanged in any
function of the intermediate levels (e.g. h;) assuming a modification of its input weights
and threshold (w;, w;g), its output weights (¢;) as well as the threshold ¢y of the function

g-

Definition 2.1 A region V C R? is in £P; if and only if its characteristic function can
be written in the form of Equations (1-3).

For a study of the computational complexity of the recognition of LP, the form of the input, i.e.
the way region V € R? is provided, has to be precisely specified. This is the purpose of the following
section.

2.1 From geometry to combinatorics

Let us first introduce some basic terminology in the theory of Boolean functions. A Boolean function
is a mapping f : {0,1}™ — {0,1}. A partial Boolean function is a mapping f : D C {0,1}™ — {0,1},
and D is called the domain of f. An extension of a partial Boolean function f is any Boolean function
that coincides with f on its domain. The vectors in f=1(1) (resp. f~1(0)) are called true points (resp.
false points) of f. A Boolean function f, complete or partial, is threshold, if there exists a hyperplane
in R™ separating the true points of f from its false points. Clearly, a partial Boolean function is
threshold if and only if it has a threshold extension.

The operators A, V and T (over-line) stand for conjunction, disjunction and negation, and when
they are applied to Boolean vectors, a coefficient-wise application of the operator is meant. We will
denote by e’ the Boolean vector €] = 1,e; = 0,Vj # i. A literal is either a Boolean variable or its
negation. A conjunction of literals is a term, and a Disjunctive Normal Form or DNF , is a disjunction
of terms. Any Boolean function can be expressed by a DNF. For a term ¢ and a DNF D, |¢| and |D|
denotes the number of literals in ¢, and the number of terms in D, respectively.

For a set X, 2% denotes the set of mappings from X onto {0,1}. For any subset V C R?, V¢ (resp.
V°) stand for the closure (resp. the interior) of V' according to the usual topology of R?, V' denotes
the complement R?\V, while the border of V, defined as V°N V", is denoted V. For any collection
& of subsets of R?:

E = {VCR! | VeEE or VeE,

Pe = {VCR'|V=(\E, E €&, |I| <o},
i€l

Us = {VCR'|V=JP, P ePe, |I| <oo}.
el

Letting £ denote the set of all closed half-spaces of R?, i.e. £ = LP, the elements of P, (resp. Pz)
are called polyhedra (resp. pseudo-polyhedra). The collection Uz comprises of unions of finitely many
pseudo-polyhedra and in what follows, it will be always assumed that the input V' of our problem
belongs to Uz.

A finite subset H C L is called an arrangement. The set P with the inclusion relation is a finite
lattice. The cells of H are the minimal non-empty elements of the lattice Pz, and Cy denotes the
set of cells of H. For an arrangement H = {Hy,..., H,,}, the following natural injective mapping
bridges the geometrical problem with combinatorics : ¢ : C3y — {0,1}™ is defined so that the k**
component of the Boolean vector ¢3,(C) is 1 if C C Hy, and 0 if C C Hy. Let us call domain of the
arrangement 7, the subset ¢4 (Cy) of {0,1}"™ and denoted Dy,.
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Since any element of U7 can be expressed as a union of cells of H, Uy = 2¢* and the one-to-
one mapping ¢y from Cy to Dy provides a one-to-one mapping ®; from Uy to 2D a5 follows:
®5(V)(b) = 1 iff ¢3,'(b) C V. Finally, to each possible expression of a region V € Uz as a union
of elements of Pz, corresponds in a natural way a DNF expression for the function ®3,(V'), with one
term for each component of the union.

For V. € Uz, any H C L such that V' € Uy is called a basis of V. A halfspace H belonging
to any basis of V' is an essential halfspace of V. If H is a basis of a region V, any arrangement G
containing # is also a basis of V. Thus, H C G implies Uy C Ug. For two arrangements H C G and
a function f : Dy — {0,1}, the unique function g : Dg — {0, 1} defined as g = ®g(®3,' (f)) is called
the ezpansion of f from Dy to Dg.

In the remaining part of this paper, it will always be assumed that a region V' C R? is described
in a combinatorial way, i.e. by the complete specification of one of its bases H, along with a DNF
expressing the partial Boolean function ® (V). With these definitions, our recognition problem can
be stated as follows:

LP>-RecoaniTion: Given an arrangement H C £ and a DNF of a partial Boolean function
f: Dy — {0,1}, is there an arrangement G O H such that the expansion of f from Dy
to Dg is threshold ?

To conclude this subsection, let us illustrate the previous definitions through a simple illustration.

2.2 A simple example

Consider the region V.= P, UP, C R?, where P, = {x | ;1 > 1, 25 > 0} and P, = {z | z; < 0}.
Since P1 and P, are clearly 2 pseudo-polyhedra, V' is in U/z. The simplest basis of V, i.e. minimal
in the sense of inclusion, is {Hi, Ha, H3}, where Hy = {z | =1 > 0}, Ho = {z | =1 > 1} and

Hs = {x | 2 > 0}. In this basis, P, = H» N H3 and P, = H;. Figure 1(a) pictures the region V as
well as its basis {H;, Ho, H3 }.

LY
(€) (b)
P Py
0 1

Figure 1: Simple example of region V € Uz.

A region V union of two pseudo-polyhedra P; and P- is represented in (a), as well as a simple basis
H = {Hy, H2, H3}. (b) illustrates the partial Boolean function defined on Dy € {0,1}2 corresponding
to the region V. Since this partial Boolean function is threshold, a representation of the two-layered
perceptron classifying correctly V is given in (c) where all the non-zero parameters of Equations (2)
and (3) are given.
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Figure 1(b) illustrates the hypercube {0,1}?. Dy, is the union of black and white vertices and this

bicoloration represents the function f = ®4 (V). Observe that in this case, the black points can be

separated from the white points by a plane, therefore, ®4,(V') is threshold. Thus, there is no need to

expand it to a larger arrangement in order to conclude that V is in £P,. Indeed, if functions hy, hs

and hs in Equation (2) are the characteristic functions of H;, H» and Hj, then g in Equation (3)
1

determined by o = 5 and t = (=2, 1,1), complete the expression of the characteristic function of V'

as of the form of Equation (1). The corresponding two-layered perceptron is shown in Figure 1(c).

2.3 Monotonic Boolean functions

A Boolean function f : {0,1}¢ — {0, 1} is monotonic in its i* variable, if either f(b) > f(bVe') Vb €
{0,1}4, or f(b) < f(bV e') Vb € {0,1}¢. A monotonic function is monotonic in each of its variables.
Monotonicity is a well known necessary condition for a Boolean function to be threshold [Mur71].
Moreover, this concept can be extended to partial Boolean functions, simply by requiring that the
above inequalities hold only for the b such that the function is defined for both, b and bVe’. Obviously,
a partial Boolean function which is not monotonic in this sense, has no monotonic extension. The
essence of Lemma 1 is that if the monotonicity condition does not hold for a particular function, the
property cannot be recovered by expanding the function. To cope with some degenerated cases, an
additional technical assumption must be made for this result to hold in general.

Lemma 1 If a partial Boolean function f defined on D4, for an arrangement 7 is non-
monotonic due to a variable i and four vectors bt and b} = bl ve?, k = 1,2 (say b} and b]
are true points and by and b} are false points of f), and if the four cells Cf = ¢, b, k=
1,2, 1 =0,1, are such that

CE N CF 5 B, a (d —1)-dimensional open ball in H?, (4)
then f has no monotonic expansion.

Figure 2 illustrates an example of the situation of Lemma 1.

Figure 2: Region providing a Boolean function non-monotonic in variable i.

Proof: Using mathematical induction, it suffices to show that the expansion of f from H
to G = H U {H} is not monotonic, for any H € L\H. The proof is established by showing
that for any H € L\H, there exist four non-empty cells CFNX*, 1 =0,1, k = 1,2, where
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X* is adequately chosen either as H or as H. The images of such four cells through ¢g
provide clearly a contradiction to the monotonicity of the expansion of f to G in variable 1.

Fix k in {1,2}. First (#!), suppose that H and H; do not have the same support hyper-
plane, i.e. H® # H?. Choose X* = H if BE*N H # 0 and X*¥ = H otherwise. In both
cases, it can be verified that B¥ N X*° # . This is obvious in the first case, since H is
already open. In the second case, B¥ C H, and because the support hyperplanes of H
and of H; where lies B* are different, one concludes that B¥ ¢ H°. By definition of B*,
B* C CF° and thus CF° N X*° # (). Since X* is open, one conclude Cf N X*° # () and
thus CF N X* #£ 0.

(#?), suppose that H and H; have the same support hyperplane. Since H € £\, the
only possibility is that H = H;". Set X* = H. By definition of Ck, Ck¥ c H; and thus
CENH # 0. It remains to prove that the same is true for CF. By definition of C¥, C¥ C H;.
(AY) If B¥ N C¥ # 0, the sought property C¥ N H # § holds because B¥ ¢ H N H;. (A?),
suppose now that B¥NCF = . By definition, B¥ ¢ CF°, thus B¥ ¢ C*“\C¥, which means
that in the expression of C} as finite intersection of elements of H or their complements,
appears a term H;, where H; = H, ie. H; = H, which contradicts H € L\H. A

The technical assumption (4) is minimal for the purpose of Lemma 1. In other works mentioning a
similar result, assumption (4) is replaced by stronger requirements [ZAW91, Gib96]. For example, (4)
follows if all the cells of the arrangement are full-dimensioned, i.e. contain an open ball of dimension d.
The so-called “general position” assumption is even stronger than the latter, since it requires that
the intersection of any k support hyperplanes of the arrangement is a sub-space of dimension at most
d—kif k <d and is empty if & > d.

Lemma 2 If a partial Boolean function f defined on Dy for an arrangement 7 containing
only full-dimensioned cells is non-monotonic, f has no monotonic expansion.

Proof: Let say that f is non-monotonic due to 4 cells CF, k =1,2,1 = 0,1 defined as in
Lemma 1. Since the CF are full-dimensioned, for a fixed k € {1,2}, the set of all possible
points & € HY and of the form = Azk + (1 — )z} (zF € CF), is full-dimensioned in H?
and thus (4) holds. A

Lemma, 1 (a similar result can be stated with Lemma 2) conjugated with the fact that monotonicity
is a necessary condition for thresholdness, leads to a slight generalization of a well known result (see
for example Theorem 1 in [ZAW92]).

Corollary 3 A region V C R? is not in £LP, if for any basis H of V, there exist H; € H
and four cells Cf € Cy, k=1,2, 1 = 0,1, such that
[ (f)H(C{”) = QZSH(C(])”) Ve, k= 1,2,

e ClUC2CVand CluC?CV,
° Cé“c N C’fe contains a (d — 1)-dimensional ball, open in the support hyperplane of H;.

This example illustrates the interest of expressing these problems in combinatorial terms and more
importantly, it brings some insight on the complexity of our recognition problem, since it is NP-
Complete to decide whether a Boolean function given by an arbitrary DNF is monotonic or not.

2.4 2-summability of Boolean functions

A Boolean function, complete or partial, is 2-summable if there exist two true points b' and b?, not
necessarily distinct, and similarly two false points b> and b*, not necessarily distinct, such that

b' +b> = b*+bt (5)
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It is well known that a 2-summable function is not threshold. In fact, the 2-summability notion can be
extended to k-summability where both sums in (5) contain k components, and a function is threshold
iff it is not k-summable for any k. Contrary to the non-monotonicity, the 2-summability property
is not necessarily preserved through expansions. Figure 4 in Section 3 will describe a 2-summable
function f : Dy — {0,1} with threshold expansions. Nevertheless, 2-summability can play a role in
the proof of non-memberships to £LPs, such as in Proposition 4.

Proposition 4 Let H; = {x | z; > 0} and H ={x | z; < -1} fori=1,...,d, be 2d
hyperplanes two by two parallel. The region V = ﬂ?zl H; U ﬂ?zl H] is not in LP.

This region V is a generalization to the d dimensional space, of a planar figure already mentioned in
the literature. The proof will be established by generalizing the argument given in [Gib96], showing
that the example pictured in Figure 3 is not in LP;.

1%
H Hy
- =
1
H>
pl /P X
-1 0 1l
p2
1 ¢H'2

Figure 3: Two-dimensional version of the region of Proposition 4.

Proof: Let us assume that V € LP, and denote by G = {H{,...,H,,} a basis of V,
such that ®g (V) is threshold. Consider the following two parallel lines in R?: p'(a) =
(a,0,...,0) and p*(a) = (a,—-1,...,—1), @ € R, and let I C {1,...,m} be the set of
indices of halfspaces of G containing one line and not intersecting the other. Note that all
halfspaces with index in I have their first coefficient w{ = 0, and that the basic halfspaces
H; and H[,i=2,...,d are in that collection.

Let ar > 0 (resp. a— < —1) be a large enough positive (resp. negative) value such
that there is no halfspace in G\{H]' : i € I} whose support hyperplane separates p'(ay)
from p*(ay) (resp p*(a_) from p?*(a_)). Such two values exist by definition of I. Let us
partition the remaining indices {1,...,m}\I into two parts J and K as follows: H]',i € J
contains either p'(a) and p*(ay ), or p'(a_), but not the four of them; while H!',i € K
either contain the four points, or contain none of them.

The four vectors bi,bg,bi,bi € {0,1}¢, defined as images through ¢¢g of the four
cells containing the points p!(ay),p?*(a_),p'(a_) and p*(a.), respectively, satisfy the
2-summability Equation (5). Indeed, p'(a) € V for a > 0, p?(a) € V for a < —1, and

1 ifielulJ .
(L +b%); = {001«2 Fie K } = (B +0b2); Vi=1,...,m.

This contradicts the assumption that ®g(1) is threshold. A
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3 Subclasses of LP, of particular interest

The LP>-RECcoGNITION problem involves two parts of different natures. On the one hand, a “good”
super-arrangement G of H has to be found. This is essentially a geometrical issue and requires the
knowledge on the relative position of the half-spaces of . On the other hand, one has to be able
to check whether a partial Boolean function g : Dg — {0,1} is threshold. This second aspect of the
problem is purely combinatorial and requires only the knowledge of the partial Boolean function g.

A very simple region V is presented in Figure 4 to illustrate these two parts of our recognition
problem. The basis H of V' is composed of the six half-spaces = {H, +,H_ +,H_ _,H, H, H_}
where the first four half-spaces are defined by H, . = {x | w1 + sz2 > 1}, 1,6 € {+,—}, and the
last two by H, = {x | w2 < 0}, ¢ € {+,—}. V is defined as the union of the two facing triangles
P, ,P_ with height controlled by the parameter 6: P, = Hy ,NH_, N H,, » € {+,—}. The images
of Py and P_ through ®4; are the vertices b = (1,1,0,0,1,1) and b~ = (0,0,1,1, 1, 1) respectively.
The two unbounded regions in Hy N H_ are mapped onto the vertices b' = (1,0,0,1,1,1) and
b> = (0,1,1,0,1,1). Since b* + b~ = (1,1,1,1,2,2) = b* + b?, the partial Boolean function &4 (V)
is 2-summable and consequently it is not threshold. However, V' € L, and two possible ways of
enlarging the basis #, for any arbitrary 4, in order to obtain a threshold expansion of f are presented
in Figure 4(a) and (b).

@ (b)
Hyy H_y Hyt H_y
3111
32
32
2111 3112 3212 33
22
2112
3,110 32
i\ 4111 3112 4212 2112 3111

\
-
T

iy

4.202
3.102

3.202

4.101 4.102 2.202

H, )

H'\l/ /I\H,

2

A

Hy_ H__ Hy_ H__

Figure 4: Two constructions solving the two triangles problem.

Two different super-arrangements G are proposed. The numbers in each cell of G in-
dicates the value of the dot product b't in Equation (3) for the following choice of
t: in (a), if G = {H++,H_,+,H_,_,H+,_,H+,H_,Hl,Hi,HQ,Hé,Hg,Hé}, t =
(1,1,1,1,1,1,E,E,W10,W10,ﬁ,1000) in (b), if 6 = {Hyy, H-y, H__, Hy_, Hy,
H_,H\,H,, H,H"}, t = (1,1,1,1,1,1,{5, 45, 15> 1g)- Clearly, for a threshold tq = —4.1115
in (a) and top = —4.25 in (b), the region V is correctly recognized in both cases. We intentionally chose

weights as powers of 10 in order to illustrate the sequence of introduction of each group of half-spaces,
and thus to give an idea on how this process can be extended for any §. By considering the integer parts
of different powers of 10 times the values reported in the cells, one can read on these two pictures the
remaining error at each step, which consists in cells of V' and cells out of V' with the same values.

This simple example in the plane suggests that £LP»-REcoaNITION is likely hard, and in particular,
it might not be in NP. Indeed, the two super-arrangements proposed in Figure 4(a) and (b) are of
linear size with the parameter § of region V', that is, the number of hidden units of the multilayered
perceptrons is growing exponentially with a compact encoding of the instance V' of LP>-RECOGNITION.
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However, we did not succeed neither in finding a super-arrangement with polylogarithmic size in §,
nor in proving polynomial lower bounds on the size of super-arrangements leading to a threshold
expansion. These issues motivated the consideration of subclass of LP, introduced in the following
subsection.

3.1 Two-layered computation with respect to a basis

Definition 3.1 A region V € R? defined on a basis H is said to be recognized on the
basis H by a two-layered perceptron if its characteristic function can be expressed in the
form of Equation (1), where each h; is a characteristic function of one element of H. A
region V € R? is in the class LP, if there exists a basis H of V, minimal in the sense of
the inclusion, such that V' is recognized on H by a two-layered perceptron.

Note that this definition assumes the existence of a minimal basis with the desired property. It is
worth mentioning that some region V' have more than one minimal basis and Figure 5 illustrates a
region that can be recognized by a two-layered perceptron according to one basis but not to another
one. However, in the particular case where V' is a union of full-dimensioned pseudo-polyhedra (i.e.
with non-empty interior in R%), it can be shown that V has a unique minimal basis.

(b)

@

(1,11) >H1l =2 =3

Figure 5: Tmpact of the choice of the basis for a region V.

Two different bases are proposed for a region V' composed of six points in the plane, such that none of
them is in the convex hull of the others. Since each point is a degenerate polyhedron defined by at least
3 closed half-planes, a basis of V' will contain at least %6 = 9 elements (each half-plane can be used
for at most 2 points). Thus, the two bases are minimal. Rotations of 27/3 preserve both figures, and
in addition, figure (b) is unchanged by a symmetry along the horizontal axis. Thus, there is no need to
distinguish half-planes with the same subscript. Each cell of the arrangement in (a) is labeled by a triplet
(n1,n2,n3), where n; is the number of half-planes H! containing this cell. In figure (b) each cell is labeled
by a pair in a similar way. The first arrangement leads to a threshold partial Boolean function f by the
following choice: the weights 3,1,2 are associated to half-planes H{ s H%, H},) respectively, and the threshold
to is —12.5. On the contrary, a 2-summability situation occurs in (b) with cells of V' labeled (5,1) and
cells out of V labeled (6,0) and (4, 2), since (6,0) + (4,2) = (5,1) + (5, 1).

From the definition of LP, it follows that £LP C £P» and this inclusion is proper since there are
examples in LP\LP, such as the one of Figure 4.
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3.2 Iterated differences of polyhedra

Another interesting subclass of regions of LP, is provided by a necessary condition for two-layered
perceptron computation, proposed independently in two different studies [ZAW92, Sho93].

Definition 3.2 A region V C R? is an iterated difference of polyhedra (resp. pseudo-
polyhedra) if it can be expressed as V. = P;\(P\(...P)...), where P; € P, (resp.
P; € Pz), i = 1,...,k. The class of iterated differences of polyhedra (resp. pseudo-

polyhedra) is denoted D (resp. D).

For example, the region V' = H; U (H N H3) of Figure 1 is in the class D since it can be expressed as
R\ (H1\(H2 N Hy)).

The inclusion D C LP, relies on the fact that P\V € LP for any pseudo-polyhedron P and any
region V' € LP,, which follows directly from two simple properties of threshold functions, namely

1. the negation of a threshold function is threshold;

2. the conjunction between a single variable and a threshold function is threshold.

In [ZAW92], the authors proposed the following algorithm for the recognition of class D, where the
operator O is the closure of the convex hull, denoted conv®.

input: V C ]Rd;
initialization: Vg :=V; [ := 0;
main loop:  while V; # 0 and (I < 2 or else P, # P;_1) loop

l:=1+1;
Py :=0(Vi_1);
Vi == P\Vi_1;
end loop
output: P\(PA\(... P \(P\W}))...) =2 V

Algo(O©): Recognition of iterated differences of polyhedra.

Obviously, if Algo(conv®) stops with V; = (J, V' is an iterated difference of polyhedra. The authors
proved that the converse is also true (Theorem 3 in [ZAW92]), i.e. that if V' € D, Algo(conv®) stops
with V; = (. However, they only conjectured that Algo(conv®) could not cycle, or in other words,
that if V' ¢ D, it will always stop with P, = P,_; # 0.

At a first glance, one might believe that choosing © simply as the convex hull would lead to an
algorithm Algo(conv) for the recognition of D, but as mentioned by the authors, the convex hull of
the difference between two pseudo-polyhedra is not necessarily a pseudo-polyhedron (e.g. a closed
halfspace H minus a half-hyperplane of its support). Moreover, with Algo(conv®) in mind we cannot
conclude that D C LP,, since the computation of the convex hull will add non essential halfspaces.
Finally, the main weakness of Algo(conv®) is its complexity, given that

e there is no proof that it always stops,
e even if V € D, there is no bound on the number of iterations,
e the computation of the convex hull is exponential in d.

Most of these drawbacks can be circumvented, if the convex hull is replaced by a more appropriate
operator [May97].

Definition 3.3 Given a collection £ of regions of R?, the operator hullg is defined as
follows :
VXCRY, hulls(X)= () E.
Ec€, EDX
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There are relationships between convex hull and operators hull; and hull 7(X) (see [May96]). It can
be shown that conv® = hullz, while conv(X) C hull7(X), with a proper inclusion in the pathological
cases identified in [ZAW92] where conv(X) is not a pseudo-polyhedron.

Thus, operator hull 7 solves the problem highlighted in [ZAW92] and requiring the usage of conv®
instead of conv in Algo. The transcription of Theorem 3 in [ZAW92] for Algo(hull7) is straightforward
and it proves that Algo(hull;) stops with V; = if and only if V' € D.

Similarly, for any arrangement H C £, the same theorem can be translated to show that Algo(hully)
(resp. Algo(hully)) stops with V; = 0 if and only if V' is an iterated difference of polyhedra belonging
to Py (resp. pseudo-polyhedra belonging to Pz ). The result of Proposition 5 is more interesting but
its proof is long and technical and is reported in the annex.

Proposition 5 Algo(hull;;) stops with V; = () if and only if V' € Uz N D.

In particular, this result implies that if a region V' can be expressed as an iterated difference of
arbitrary pseudo-polyhedra, it can also be expressed as an iterated difference of pseudo-polyhedra, all
belonging to Pz, for an arbitrary basis H of V. In other words:

Corollary 6 D C LP,.

Proposition 5 means that deciding whether a region V belongs to D can be done using Algo(hully),
where # is an arbitrary basis of V. The interest of Algo(hull;) for a finite # lies in its complexity,
as it is expressed by the next two lemmas.

Lemma 7 For a finite #, Algo(hull;;) always stops after at most |#| steps.

Proof: First, observe that the sequence Py, Ps, . .. is nested decreasing, since for any [ > 1,
Py D P;NVj—y implies hullg (F) D hullz (P, NV;_1), which is rephrased as P, D P11. This
inclusion is proper except at the last iteration.

Let S; C H be the set of halfspaces such that their support hyperplanes have a non-empty
intersection with the interior of /. Since P, and P41 € Py and P, 2 P41, the expression
of the latter as intersection of elements of H must contain at least one element of S;. Thus,
Si 2 Si4+1, which implies that the total number of iterations is bounded by the number of

halfspaces (a halfspace and its complement could not occur simultaneously in the definition
of the Ps). A

Thus, substituting the closure of the convex hull with hull; allows the recognition of D instead of D,
avoids the problem of the conjecture in [ZAW92] (since no halfspace is added in the algorithm) and
even bounds the number of iterations linearly with the input size of the problem.

Lemma 8 For an arrangement # in R? and a region X € Uz, union of s pseudo-
polyhedra, the computation of hully (X) (resp. hull7(X)) is polynomial in d, || and
s.

Proof: Let G be any finite subset of £ (e.g. H or H). The computation of hullg(X)
requires that for each halfspace G € G and each pseudo-polyhedron P defining X, we check
if P C G. This is done by testing if P NG = (). It requires to check the non-feasibility of
a system of at most |H| inequalities, which can be done by linear programming in a time
polynomial in the number of inequalities and the number d of variables. A

Lemmas 7 and 8 are positive news for the complexity of the recognition of D using Algo(hully), since
they resolve all the problems identified by the authors of Algo(conv®) in [ZAW92]. However, it will
be shown in the next section that this recognition problem is still intractable, and this is due to the
complexity of computing the difference of sets.
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4 Intractability results

Negative complexity results are presented for the recognition problems of the classes described in
Sections 2 and 3, in the general case.

Remark 4.1 Even if V C R? is given by a basis # and a partial function ®4 (V) defined
on the very special domain Dy, it still generalizes the case of complete Boolean function.
Indeed, for any arbitrary complete function f : {0,1}¢ — {0,1}, there is an arrangement
H in R? and a region V € Uz such that f = ®,(V). For that, it suffices to choose H
composed of d halfspaces so that their support hyperplanes intersect in a single point.
Therefore, all the questions we might ask in our setting will be at least as hard as their
equivalent formulation for complete Boolean functions.

In particular, since it is NP-Hard to decide whether an arbitrary DNF represents a threshold
function, LP2-RecoaniTion is NP-Hard. On the other hand, the same problem is polynomially solvable
if the given DNF is monotonic, so £LP»-RECOGNITION might be polynomial in the case of monotonic
inputs.

Lemma 9 LP,-RECOGNITION is in co-NP.

Proof: Given a region V C R? and a minimal basis 7, let Dy; = T U F be a partition of
the domain of the function ® (V') into its set of true points and false points. By definition
of thresholdness, ®4 (V) is threshold if and only if the following system of inequalities in
the variables (to,t) has a feasible solution:

to+b"t
to+b"t

> 0 VYbeT (6)
< 0 VYbeF

By the standard separation theorem the system of inequalities (6) has no solution if and
only if the convex hulls of 7" and F' intersect, or in other words, if and only if the following
system has a solution:

EbieT b’ = EbjEF B;b’

iOéi = 1
B =1 (7)
Bi > 0 vy

Since System (7) has d+2 equations of rational coefficients, Caratheodory’s theorem implies
that there exists a solution («, 8) with at most d + 2 non zero variables.

A concise certificate showing that £P is in co-NP is thus provided by at most d 4+ 2 non
zero values o; and f3; defining a solution of (7), as well as the corresponding boolean points
b'. The certificate can be verified in polynomial time, since

e the membership to Dy, for each of the b® given in the certificate can be checked by
solving a linear program of d variables and |#| constraints;

e the outcome of the function &4 (V) for each b is obtained by evaluating the DNF
given as input;

e the fact that the certificate provides a solution of (7) can be checked in O(n?) oper-
ations.

A
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In our further considerations on the classes D and D, the following equality will be useful:

Lemma 10 For any sequence X; D X D ... D X, of subsets of R?, the following equality

hold:
o/ — ¢ if sis even
XX\ X)) = [H(Xain mxm)w{ X. ifsis odd

i=1

Proof: The equality is obvious for s = 0,1,2. The general statement follows easily by
induction on s (the statement holds for s + 2 if it holds for s). A

Lemma 11 D-RECOGNITION is in NP.

Proof: First, observe that if A = A;\(A2\(... Ag)...) for any sets A, Ay, ..., A, there
exists some sets Aj,..., A} such that A} D ... D A} and A = AJ\(A45\(... A})...). This
sets can be obtained for example by setting A] = A; and by choosing A} = 4; N A]_,
iteratively for ¢ = 2,...,k. Consequently, if the A; are pseudo-polyhedra, we can find
pseudo-polyhedra A} with the inclusion property.

A certificate showing that a region V is in D is provided by the sequence of pseudo-
polyhedra P,..., Py such that P, D P» D ... Pg, and V = P\(P\(... P;)...). The
length k of this sequence is at most |H| by Lemma 7, so the certificate is of polynomial
size in d and |H|.

The inclusion A C B between two pseudo-polyhedra can be checked by solving |B| linear
programs of d variables and |A| 4+ 1 constraints, where |X| for a pseudo-polyhedron X
denotes the number of half-spaces used in the intersection defining X. So we can check in
a time polynomial in d and |H|, whether the sequence of pseudo-polyhedra given in the
certificate is so that P, O ... D Pj. Then, the iterated difference can be computed using
Lemma 10, and it is easy to verify that the whole computation can be done in polynomial
time in d, k and |H|. A

Theorem 12 /JPQ—REQOGNITION and D-REcogNITION are NP-Hard, LP>-RECOGNITION is
co- NP-Complete, and D-RecocniTion is NP-Complete.

Proof: By Lemmas 9 and 11, it remains to show that the four recognition problems are
NP-Hard. This will be done by a reduction to SAT.

An instance of SAT is given as a DNF of a Boolean function a : {0,1}¢ — {0,1}

d

a)=\/( A b n AT

=1 jerf jer;

Consider the Euclidian space R? and the arrangement H containing the following 2d half-
spaces:

Hi:{il: | X ZO}, HZI:{LB | z; < —1} ‘v’i:l,...,n.
Let us call b; the Boolean variable associated with the half-space H; ([b; = 1] = &4 (H;)),
and b} the Boolean variable associated with the half-space H] ([b} = 1] = &y (H])) for all
i=1,....d
Consider the region V' C R? based on these 2d half-spaces, which coincides with <I>;£1 (a)
in the orthant ﬂ?zl ﬁ;, and which contains the remaining part of the space except or-
thant ﬂgzl H!. In other words, V = ®3'(f), where f : {0,1}*¢ — {0,1} is defined by
Equation (8):

d
Flbr, o b, by, 0 = (alby,. ., b) ACABD ) v\ B (8)
i=1 i#]
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Since D C D C LP, C LP,, the 4 complexity results are proved if the two following
statements hold:

(i) V € D if a is a tautology;
(ii) V ¢ LP; if there is a b € {0, 1} such that a(b) = 0.

Let us first prove (i). If a is a tautology:

d
f(b) = (A v /o, = \/ b

i=1 i#£j i=1

and V = @;tl(f) is simply given by

d d
v = JH = R\ () H,
=1 i=1

which is obviously in D.

-~

To prove (ii), let us assume that there is at least one vector b € {0, 1} for which a is false.
Case 1: 3b° € {0,1}%,a(b") = 0, with by = 0 for at least one j.

Let us consider the following two vectors of {0, 1}%¢:

b' = ( 0,...,0 ,1,...,1)
b’ = ( b° ,0,...,0).

With f defined by Equation (8), we have f(b') = f(b°) = 0 and f(b' — e;) =
f(b2 + e;) = 1, where €’ is the vector with all components 0 except the d + j*"

j
which is 1. Thus, the condition of Proposition 3 is fulfilled and V' ¢ LP;.

Case 2: a(1,...,1) =0, and Vb € {0,1}%,b # (1,...,1),a(b) = 1.

The region V = @;{1( f) is the whole space R? except the two opposite orthants
ﬂgzl H; and ﬂgzl H. In other words, it is the complement of the region of
Proposition 4 and consequently it is not in LP;.

5 Tractable cases

The complexity results of Theorem 12 rely essentially on the fact that it is hard to find a DNF
expression for the complement of a region defined by a DNF, since it is already hard to decide
whether this complement is empty or not (SAT). Let us first analyze the complexity of several of our
recognition problems whenever not only V is available as input, but also V.

5.1 V and V are available

Remark 5.1 Note that even though the number of cells of an arrangement does grow
exponentially with d, in many practical situations, ®4 (V) and ®4 (V) can be provided
by two DNFs whose total size is polynomial in d and |H|, for any arbitrary basis H of
V. For example, the class of regular functions introduced in [Win62] is an important class
of Boolean functions with the property that the complement f of a function f can be

expressed by a DNF of size polynomial in d and in the size of any DNF of f [PS85].
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In what follows, a slightly more general setting will be used. Suppose that two disjoint regions V'
and W are given by a common basis H and two DNF's for ®4 (V') and &« (1W). The question related
to a class of regions X’ will be to decide whether there exists a region S € X', which is a sandwich
region between V and W, i.e. such that V. .C S C W.

This makes more sense with respect to the applications, since in most practical cases we have a
positive area that has to be separated from a negative area, and there might be some intermediate
regions without any constraints. For the computational complexity point of view, this setting is also
more convenient, since it is easy to verify that ¥V N W = (), while checking whether V U W = R? is
NP-Hard. Indeed, in the particular case of the remark at the beginning of Section 4, the problem
is to check whether the DNF Dy V Dy is a tautology or not, where Dx is the DNF given for
oy (X), X =V, W.

Proposition 13 Given a basis H and two DNF's expressions D1 a~nd D, it can be checked
in polynomial time whether there is a region S in D ( resp. in D) such that <I>;£1 (D) C

S C @3 (D).

Proof: Let V and W denote ®;;'(D;) and ®3,'(D2) respectively. Consider the following
variation of Algo(©).

input: V, W c Re;
initialization: Vp :=V; V_1 := W; [ := 0;
main loop:  while V; # 0 and ([ < 2 or else P; # P;_1) loop

l:=1+1;
P :=0(Vi_1);
Vii= PN Viiy;
end loop
output: PA(P\( - P \(PAVD)) - )

Algo'(@): Recognition of iterated differences of polyhedra, without computation of sets differences.

The remaining part of the proof holds for any operator © such that ©(X) D> X, X CY =
O(X) Cc () and ©(O(X)) = O(X). Py = O(P,NV,_y) C O(P) = P, thus Algo’
produces a nested decreasing sequence of sets, which means that Lemma 10 can be used
and more importantly, that the same argument as in Lemma 7 applies to show that the
number of steps is linear in |#|. Moreover, other relations characterizing Algo are still
valid in Algo’, e.g.

VinVio =0. (9)

Indeed, by induction, V;_; N V;_s = (§, and by construction V; C Vj_s, thus V; N V;_; = {.

The interest of Algo’ is that it does not compute any difference of sets. The computation of
the intersection of two regions based on H is achieved by computing the intersection of all
pairs of pseudo-polyhedra from the two regions. The computation of each such intersection
requires the resolution of a linear program with as many inequality constraints as halfspaces
in the two pseudo-polyhedra. Moreover, by Lemma 8, the computation of P, from V;_; is
polynomial for both © = hully; and © = hull.

To complete the proof, it remains to verify that the output of Algo'(©) fulfill the sandwich
condition for the input V, W i.e. it contains V" and it is contained into W. This is obvious
for I = 0,1, so let proceed by induction. Using Lemma 10, it suffices to show the following

statements.
PNV D Vi, (10)
(PiNP)UV, D Vi, (11)
(P.NP)UV, C PNV, (12)
(PsNP_)U(PNV)  C  (P2nNViss). (13)
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These properties allow to make a single or a double induction step, depending whether [
is odd or even and whether one has to prove that the output of Algo'(©) contains V or is
a subset of W. The verification of these four statements is straightforward. V;_; C P}, by
a basic property of ©, and V;_; C V; by (9), which proves (10).

(PoiNP)UVi=(P_1NP)U(PNVi_2).

Distributing the union of the two intersections into an intersection of four unions and
simplifying each of these unions, one get

(PoiNP)UVi =P N (R UV_). (14)

Since V,_ clearly belongs to the two sides of the intersection in the right-hand-side of (14),

this proves (11). The right-hand-side of (14) can also be rewritten as P,_y N PN V,_,.
Since V;_; C P, and from (9), V-1 C Vj_o, then V,_1 C P, N Vj_a, or equivalently

Vi—1 D P NV,_y, which achieves the proof of (12).

(P2 NP_)U(BNV) = (P2NP_1)U(PNERUV_y))
(P2 NP 1)U (P NVi_)
= PN (P-1U (P NVi-2)).

Since P,_1 D Vi_s, Vj_5 contains the outer parenthesis of the last equation above. This
concludes the proof of (13). A

In the remaining part of this section, the complexity of LP;-REcocniTioN is addressed in the
sandwich setting. It is well known that if D; is a positive DNF (no literal is negated) and D, is a
negative DNF (all literals appear negated), it is easy to decide whether there is a threshold function
f such that Dy > f > D;. Indeed, such an f exists if and only if there is a hyperplane having each
minimal true point of each term of D; on its positive side and each maximal true point of each term
of D» on its negative side. The quest for such a hyperplane is reduced to the resolution of a linear
program with one inequality for each term in D; and Ds. Proposition 14 states that this problem is
still easily solvable when D; and D, are not given in monotonic forms.

Proposition 14 Given two arbitrary DNFs D, 3£d Ds, it can be decided in polynomial
time whether there is a sandwich function f,i.e. Dy > f > D;, which is threshold.

Proof: In order to characterize the most critical true point of a term, without assuming
anything on the monotonicity of the function in any particular variable 7, we need to split
every coefficient ¢; of Equation (3) into two variables tzr and t;, with the property that
t;rt; =0andt; = tzr —t, . With that decomposition in mind, consider the following linear

program:
b+ S -t = S 5 >0 WD t= AbA Ab o (15)
eI+t igr+ul- eI+ el
to+ Y (tF—t;) + >t <0 VtinDy t= \b A N\NB o (16)
el t igItur- eI+ -

We will complete the proof by showing that this system of inequalities has a solution
(to,tT,t ) if and only if (to,£T — ¢ ) separates the true points of D; from the true points
of D2.

First observe that if the system (15-17) is feasible, then it has a solution satisfying t;¢; = 0
for every i = 1,...,|H|. Indeed, if t; and t; are both non-zero in a feasible solution, the
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solution will remain feasible if the t{ are replaced by t{ — min{t;,¢; }, for ¢ = +,—.
Therefore, each pair (t],¢7) in a solution of (15-17) is completely determined by the
difference t; = tj' —t;.

Assume that the system (15-17) has a solution (o, t). For the sake of contradiction, suppose
that there is one true point b of D; for which Equation (3) evaluates to 0 (the case when
a true point of D, is evaluate to 1 is treated similarly). Let t = A;cp+ bi A A;eq- bi be
a term of D; which has b as true point. In particular, this implies that b; = 1, Vi € IT,
and b; =0, Vie I. With J* ={i | i ¢ [TUI", andt; >0} and J- ={i | i ¢
ITUI~, and t; < 0}, we get:

0 > tg + b't

to + > ti+ Y tibi — Y t;b;

ielt ieJt ieJ—
>t + > ti— Yt
iel+ ieJ—

which contradicts the feasibility of the solution (to,t), since the inequality of type (15)
corresponding to this term ¢ is not satisfied.

On the contrary, assume that (¢o,t) separates correctly the true points of Dy from those
of Dy. Then, for any term ¢t = A;_;+ bi A A;c;- of D1 (the terms of Dy can be analyzed
similarly) and for any true point b of ¢, to+b"t > 0. In particular, if b; = 1 iff i € ITUJ ™,
the previous relation implies that the inequality of type (15) corresponding to ¢ is satisfied.
A

This result can be rephrased in terms of regions and £P,-RECOGNITION as follows:

Corollary 15 Given two regions V and W based on a common basis H and specified by
two DNFs D, for &4 (V) and D, for ®4 (W) such that all the true points of D; and D,
are in Dy, it can be decided in polynomial time whether there exists a sandwich region

SeLlP,,VCScW.

For an immediate application of Proposition 14, it is necessary to assume that all true points of Dy
and Dy are in Dy,. Without it, the resolution of the system (15-17) could lead to the wrong conclusion
that there is no sandwich f € £P, due to true points corresponding to no cell of the arrangement.
Although we suspect that this assumption is not necessary, we did not succeed in proving the result
without it.

In order to illustrate Corollary 15 and the proof of Proposition 14, let us consider once again the
region illustrated in Figure 1. For the basis H = {H1, Ha, H3} represented by the Boolean variables

b1,bs and bz, a possible choice for the two DNFs D; and D, for V and W = V, satisfying the
hypothesis of Corollary 15 is

Dy = (by Aby) V (b Aby Ab3), Doy = (by Aby)V (by Abz).

The linear program of the form (15-17) associated to Dy and D- is the following:

to -ty >0
to +tf —t] +ty —ty; +ti —t; >0
to +tf  —t] +t5 <0
to +t7 —t;  +ty <0,

and the solution (to,t],t, ,t5,t5,t4,t5) = (3,0,2,1,0,1,0), proposed in Figure 1(c), satisfies this
set of inequalities.
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5.2 Euclidian space of fixed size

In many practical situations, the size d of the Euclidian space is small, while the number of halfspaces
can be very large. Therefore, in this section on tractable cases, it is worth highlighting that some of
the recognition problems discussed in this paper become easy when d is a constant. Even the cases of
d = 2,3 themselves are quite interesting for certain applications of Neural Networks such as Computer
Vision.

Proposition 16 £P,-RECOGNITION, D-RECOGNITION and D-RECOGNITION are polynomial
in the size of the basis and in the size of the DNF given as input.

Proof: The maximal number of cells contained in an arrangement of h hyperplanes in

R?,n < h is given by
L (h
N(h,n) = E (z)’

i=0
a formula many times rediscovered under various forms, but which was already known to

Ludwig Schlifli in the middle of the previous century. This expression proves that the
number of cells increases exponentially with d, but polynomially with h.

Let a region V C R? be given as input by a basis H# and a DNF expression D for ®3,(V).
If the set of all cells of #, or equivalently the domain D3, can be enumerated in time
polynomial in |H| and D, then this proof follows from Propositions 15 and 13.

To enumerate the set of cells, we can proceed by induction on the size of |H|. If H = (), R?
is the unique cell. The list of cells of the arrangement X = {Hy, ..., Hp} can be produced
by checking for each cell P of the arrangement {H,, ..., H,_1}, the intersections P N Hy,
and P N Hy, and by introducing in the list the non-empty intersections. Since N (h,n) is
monotonic increasing in h, the whole process requires only a polynomial computational
time. Obviously, if we are just interested in the computation of a DNF for ®4 (V) in order
to apply the algorithm in the proof of Proposition 14, this can be done more efficiently
than by enumerating the whole domain Dy, still by using induction on the number of
halfspaces. A

6 Conclusion and open problems

In this work, we essentially showed that the problem of deciding whether a region V' of the Euclidian
space can be computed by a two-layered perceptron is difficult. Several other decision problems,
variants of this general question, are also examined and it turns out that all of them are also hard, as
long as the dimension of the Euclidian space is not fixed, or the complement of the region V' is not
available as input.

Among the unanswered questions, it is worth mentioning two that we consider of particular interest.

Does there exist a region V' C R? that can be computed by a two-layered perceptron,
but that requires a number of hidden units growing exponentially with a compact binary
encoding of the region V' 7

Note that even if this question is answered positively for a very simple example such as the one of
Figure 4, it does not prove that LP-RecocniTioN is hard in some favorable cases provided by a
fixed size Euclidian space or by the sandwich framework. Indeed, there could exist a certificate to
the existence of a 2-layered network without expressing it. In the case of Euclidian space of size 2,
examples of such certificates can be found in [Gib96, SGM98] or in [BKPM97].

The second question is concerned with the generalization, to the particular type of partial functions
defined on arrangements, of the problem of deciding whether a monotonic DNF is threshold.
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Is there a polynomial time algorithm deciding on the thresholdness of a monotonic partial
Boolean function over h arguments whose domain of definition is given by an arrangement
of h hyperplanes in a Euclidian space 7

We are convinced that this interesting issue as well as most of the open questions related to the topic
developed in this paper, requires a deeper understanding of the structure of the set of vertices Dy.
In a first approximation, if the arrangement is in general position in R?, one can say that

e Dy is a union of d-dimensional faces of the hypercube {0, 1}/%!,
e cach of these faces shares a d — 1-dimensional face with n other such faces, d <n < 2d,
e D4, contains no face of dimension greater than d.

But, this is still not enough to characterize completely D, and probably much more could be said on
its structure.

Annex
Proposition 5. Algo(hull;;) stops with V; = () if and only if V' € U N D.

Proof: Algo(hullj;) returns an expression of V' as an iterated difference of pseudo-
polyhedra of P and of a residual set V;. Thus, if V ¢ Uz, a fortiori V; # 0. So, let

assume that V' € Uy and show that Algo(hullz) stops with V; = @) if and only if V' € D.
The proof will be established by showing that if Algo(hull;) stops after L iterations with
VL = 0, Algo(hully) stops as well after L iterations, with V = 0.

To simplify the notations, let denote by comp, the operator defined as
compg (X) = hullg (X)\ X.

If {Vi}i>o and {W;}i>o are two series of sets defined as Vo = Wo =V, V41 = compg(V;),
and Wiy = compz(W;), Vi > 0, the goal is to show that

Wr=0 = VvV, =0. (18)
To prove (18), it is sufficient to show
W; = COmpE(Vvi_l), Vi > 0. (19)

Indeed, using (19), Wi = 0 = compz(Vy 1) = 0. By definition of compz, this implies
hullz(Vz 1) = Vi1, which means that Vz_; € Pz. But Vi1 € Uy by construction of
the series {V;}i>0, thus compﬁ(VL_l) = V1,_1, which implies V;, = 0.

The proof of (19) follows if
VX € Uy, compz(compz(X)) = compz(compz(X)). (20)

Let demonstrate that (20) implies (19) by induction on i. As V = Vp = Wy, setting
X =V in (20), one get Wy = compz(V1). Suppose now that (19) is true for every
i < j. Wip1 = compz(W;) = compz(compz(V;-1)) by induction. Using (20), one get
Wit1 = compz(compg (V;—1)) = compz(V;), which completes the induction step.

Let try to simplify Relation (20).
compz(compz(X)) = hullz(compz(X)) N compz(X)
= (hullz(comp (X)) Nhull7(X)) U (hull z(comp (X)) N X).
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The first parenthesis in this last expression is empty, because compz(X) C hullz(X) =
hull z(comp 7(X)) C hullz(hull7(X)) = hullz(X'). Thus,

comp z(comp z(X)) = hull z(comp (X)) N X. (21)

Similarly, one can derive
comp z(comp; (X)) = hull z(comp (X)) N X. (22)

and (20) is rephrased as
VX € Uz, hullz(comp (X)) N X = hullz(comp (X)) N X. (23)

The left part is obviously included in the right part, since compz(X) C compg(X). So it
remains to prove the other inclusion. Observe that

compz(X) = hullz(X) N X = hull z(X) Nhull;(X) N X = hull z(X) N comp(X),
thus the remaining goal is
VX € Ug, hullz(comp;(X))NX C hullz(compg(X)Nhullz(X))N X. (24)

Pick € hullz(compg(X)) N X. @ € conv(compy(X)) and let 2’ denote points in
compg(X) such that & = Y, Az, X\ > 0, Y, A = 1. 2" € compy(X) = 2’ €
hull;(X) = [¢,2*] C hull;;(X), where [z, 2*] denotes the line segment from z to x*.

For any @, there exists y* € [z, z*] Nhullz(X) N X. Indeed, if [z, /] Nhull ;(X) N X = 0,
then the border of X and the border of hull 7(X) coincide on the segment [z, z'] in say z°.
This means that there is H; € H, with z* € H? and H; > X. But in this case, 2’ = 2
which contradicts the fact that @’ € compg(X).

Say y' = ayz + (1 — a;)z’, a € [0,1). Thus,

xTr

I
g

>

SH.S

i Ai
m+Zla—aim - Zl—aiy

Ai i
r = PV AR
; (1—a)(1+ Y, £25)

It can be easily checked that the coefficients in front of the y's are non-negative and sum
to 1, thus @ is a convex combination of the y’s. By definition, y* € hullz(X) N X =
compz(X) and compz(X) C compg(X). Thus, y* € hullz(X) N compz(X), and finally,
x € conv(hullz(X) N compg(X)) C hullz(hullz(X) N compg (X)), which completes the
proof. A
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