On the Complexity of Recognizing Regions Computable by Two-Layered Perceptrons

This work is concerned with the computational complexity of the recognition of $ÞPtwo$, the class of regions of the Euclidian space that can be classified exactly by a two-layered perceptron. Some subclasses of $ÞPtwo$ of particular interest are also studied, such as the class of iterated differences of polyhedra, or the class of regions $V$ that can be classified by a two-layered perceptron with as only hidden units the ones associated to $(d-1)$-dimensional facets of $V$. In this paper, we show that the recognition problem for $ÞPtwo$ as well as most other subclasses considered here is \NPH\ in the most general case. We then identify special cases that admit polynomial time algorithms.


Published in:
Annals Mathematics and Artificial Intelligence
Year:
1999
Keywords:
Laboratories:




 Record created 2006-03-10, last modified 2018-12-03

n/a:
Download fulltextPDF
External links:
Download fulltextURL
Download fulltextRelated documents
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)