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ABSTRACT

In speaker verification, two independent stochastic models, i.e. a client model and a non-client
(world) model, are generally used to verify the claimed identity using a likelihood ratio score. This
paper investigates a variant of this approach based on a common hidden process for both models. In
this framework, both models share the same topology, which is conditioned by the underlying
phonetic structure of the utterance. Then, two different output distributions are defined corresponding
to the client vs. world hypotheses. Based on this idea, a synchronous decoding algorithm and the
corresponding training algorithm are derived. Our first experiments on the SESP telephone database
indicate a dight improvement with respect to a baseline system using independent alignments.
Moreover, synchronous alignment offers a reduced complexity during the decoding process.
Interesting perspectives can be expected.

Keywords : Stochastic Modeling, HMM, Synchronous Alignment, EM algorithm.

1. Introduction

Many applications can use a speaker verification system to secure private information. Such systems
verify the identity of a claimed client on the basis of some speech utterances. To perform the
verification, client and non-client (world) models are generally computed in an enrollment phase.
These models am at discriminating between the client and impostors regarding an acoustic
realization.

Speech signal conveys different information such as the pronounced words or the speaker
characteristics. It is very difficult to separate these information. Thus, speaker verification systems
are generally classified following their degree of dependence on the pronounced text: text-dependent,
text-prompted, and text-independent systems.

Beside this classification, it is classically observed that the speaker recognition performance
generally increases when introducing more knowledge about the underlying text. In thiswork we are
particularly focusing on text-dependent speaker recognition where client and world HMMs are used
to model the passwords for the client and the non-client speakers. Using two separate models does
not explicitly take into account the fact that the password phonetic structure is similar for the speaker
and the impostors.

This motivates the study of a synchronous alignment approach where the hidden process (i.e the
sequence of states) is supposed identical for both client and non-client. Only the output distributions
differ between the two hypotheses. The synchronous alignment approach is depicted and compared to
the classical one on Figure 1.
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Figure 1: The synchronous alignment approach compared to the classical approach.

Besides the theoretical motivation, such structure has an important practical advantage since only one
decoder is used instead of two.

In section 2, the synchronous alignment approach is detailed. Different criteria that might be used in
this context are discussed. The corresponding decoding and training algorithms are aso presented. In
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section 3, experiments conducted to validate the approach and the corresponding results are
described. These experiments were conducted with a state-of-the-art system, the PICASSoft system
[1] derived from the CAVE Generic System [2]. Finaly, the main conclusions and the principal
perspectives are drawn in section 4.

2. Synchronous Alignment

The main idea of synchronous alignment is to make the two models share the same topology and
differ in the output distributions. In order to compute the optimal path in the shared model, a global
criterion is defined. Two possible criteria are proposed in this section. Specific decoding and training
algorithms for both criteria are derived. The convergence properties of such algorithm are studied
and the results are presented here.

CRITERIA FOR SYNCHRONOUS ALIGNMENT

If the paths are shared between the models of the two hypotheses, a criterion must be defined in order

to determine the optimal path. Two main directions can be followed :

* The criterion reflects how much the client model is more likely than the non-client model. Thisis
adiscriminative approach where the optimal path corresponds to the highest client likelihood and
lowest anti-client likelihood.

* The criterion reflects how well the path is ssmultaneously good for both the client and the non-
client models. A joint likelihood function can be used for this purpose.

Let X denote the sequence of input feature vectors of length T corresponding to the utterance

pronounced by the speaker to be verified, A denote the underlying common model structure, Bgjient

and By,0rig denote the client and world parameters respectively and, finally S denote a possible path in
the model. The discriminative criterion is based on a weighted likelihood ratio. The optimal path can
be found following this equation :
S" = arg max H p(A!S/eclient 1)\)0(
1) S Hp(i18/eworld 1)‘)B H

with o + B =1 for O<sa <1

where a and 3 are weighting factors.
For the joint likelihood criterion the optimal path must be found in order to satisfy :

S= arggnax p(l’ S/eclient’)\)O( p(l’ S/eworld’)\)B

2 :
@ with a+p =1 for 0<a <1
where a and 3 are weighting factors.

In the rest of the paper we refer to a as the “sync factor”.

DECODING

A decoding scheme has be@a developed to cmpute the optimd path following the two critaia
described in the pwvious subsection 0. A xiant ofthe Viterbi algorithm mustbe developedn order
to maximize the argment in Equation (1)ro(2).

2.1.1 Discriminative criterion
For the discriminative criterion, thergument to makmize in (1) can be written :
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P(X,S/0 gient A)° _ |I| as s a-B Daient .S (Lt)a
(3) P(X., S8 yorig ’)‘)B t=1 o Byiorid » St (it)B
with a +p3 =1 for 0<a <1

where ag_¢ represents the transition probability and is supposed to be identical for the speaker and
the world parameters and, byieys ) and byeng s () are the client’sand espectivey the world’s output

distributions réative to thestde S.

By replacing Eq. (3) into Eq.(}, it appers that the Viterbalgorithm can be usefbr decodirg by :

» takingthe tansition probas at the pone - 3,

» replacirg for each frame the Ig-likelihood ofan output distributionythe diferene betweenthe
weighted log-likelihoods of the client and tierld output distributions.

Since thedisaiminative criterion is manly based on the idea tha the predominant information in the
measuredeaures b relative o the speker, a probém exists when decodig with a slence. These
partsof the signal do not include ayinformation about anspeakelnd the discriminativeriterion
is not justified. Thus we propose to first deedte sigial on the world model and removethe
portions correspondgnto the silene. Onl the speeh portions of the ghal ae decoded usig the
discriminativesynchronousalignmentalgorithm. In our e)periments this procede will be retred to
aswithout silence as opposed to the standardgedure.

2.1.2 Joint likelihood criterion
For thejoint client/non-clientikelihood decodiry, the agument to makmize in Eq.(2) can be written

p(l’ S/eclient ’)\)a Ep(l’ Sleworld ’)\) P

-
(4) = [13s,_ss Dctient, s, (X, F Buorid, s, (x, P
t=1
witha +3 =landO<a <1

where he notations arelie ssme asfor the Eq. (3)

Here too, eplacing Eq. (4) in EQ. (2), shas that theViterbi algorithm canbe usedfor decodingin
the joint likelihood gnchronous algjnment apprach. Thke only modification consistan replacirg, for
each fame, tle log-likelihood of an output distributionyba linea combinationof two log-
likelihoods. These two legikelihoods carespond to thelient andthe world outputdistributions.In
thejoint optimization stheme thetransition probailities remain unchanged.

In summay, for both discriminative and joint likelihood criterithe decodimg can be performed
usinga variant of the classi@ Viterbi algorithm. This offe's an important practical advantage with
respect to thelassical method : decodjin a uniqe model can &performed.

TRAINING

For synchronous aligment, the models canelirained as classi@ly. Howeve, this is not fully
consistentwith the decodiry proeess. Thus, a spiic training algorithm has ben dewoped. It
permits to @mputethe client's paameers given someutterances of the passwordfrom the client.
The paameters eative to the non-cént or theworld aresuppogdto be knownandarenot charged
during the enroliment. An alaptation of theViterbi-basel variant of the " Estimaion-Maximizaion”
(EM) algorithm, is developed fothis purpose.
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The samne criterion usel during the decoding is usel to tran theclient's paameters. Let K be the
numbe of available enrollment utteances from the client. In the case of the discrimindive
synchronous algnment, the optimal client parabers must satigf:

A < @p(i(k)’s(k)/eclieﬂt 1}\)0( E

= arg max max
X P(X TS50, )

0 .
(5) dlert 0 client =1 S o
foor a+B=1and 0<a <1

world !

In the case of joint likelihood synchronous alignment, the optimal client parameters must satisfy :

~ K
eclient —argmax max(pL(k) S(k) /echent’)\) q)(x(k) S(k) /eworld’)\) )
(6) ecllent
with a+B=1 and O<ac<l

2.1.3 Discriminative criterion
For iteration n, the optimd client's paameters & the previous itgation 6 are known.

client
Corresponding optimal paths can be obtained using the decoding al%jorithm (subsection 2.2). Thisis
the estimation stage of the EM procedure. The optimal path for the K™ utterance satisfies :

Ep(_(k) ’ S(k) /e((:lfi:nlt)’)\)a E

@ )S(")‘” Y = arg max
st

p(i(k)’s(k)/e )\)B

Along the optimd path, new vdues of the dient’'s paranegers @n be obtaned by maximizing the
likelihood ratio. The resstimation equations can bertved from theoptimizaion :

K (k) &k)(n-) a
on = argmaxﬂ p(l(k) S /B A)
Bciient = p(ﬁ ,S(k)(n_l) /0 )\)B
(8)

world

world ?

A)

client?

= argmaxH p(X® /S g
cllent

Looking at Eqg. (8), the maximization step of the EM procedure is equivalent to the classical onein

the HMM training. Thus, in the case of discriminative training, the re-estimation equations are the

same as those of classical training with the Viterbi-based EM agorithm.

2.1.4 Joint likelihood criterion
Given theestimate of theclient's paameters 6 -2 at the end of iteration n—1, the optimd path can

client

be found for the trainirg utterarces. This is done usirthe ynchronousalignment Vitebi decoding
as described in substion 2.2. The optimal path forek™ utterance is thesolution of :
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A

© gn-1) - argma>(p(§ 0 sk g
(k)

Given hes esimated opimal paths newegsimate ofthe client's paramegrs can be btained in the maxmization step.
Maximizing the joint likelihood:

O
(10)

(-3 )\)a [p(l(k) ’ S(k) /eworld’)\)B)

client

K ~ ~
= argrnaxﬂ p(x(k) ’ S(k)(n_l) /eclient’)\)a Ep(ﬁ(k) ' S(k)(n_l) /eworld’)\)[3

e(:I ient

K ~

= argmaxl:l p(X", S0 g . N
eclient =.

As for the discriminative criterion, Eg. (10) shows that the re-estimation equations are equivalent to

those of classical training with Viterbi-based EM. Thus, we can conclude that, for both criteria,

training is similar to the classical training. The only difference resides in the estimation step where

the optimal paths are found using the synchronous alignment Viterbi decoding algorithm.

CONVERGENCE PROPERTIES

For the Viterbi-based EM agorithm, it can be proved that, for the training utterances, the joint
likelihood over the optimal path increases when the number of iterations increases. This can also be
shown for the training within the synchronous alignment approach. We show this for the case of
discriminative training. The proof for the joint likelihood approach is straightforward.
Eq. (8) yields:

K p(ﬁ(k) ’ é(k)(n-l) /é(n) )\)0( N K p(ﬁ(k),é(k)(n_l) /é(n—l) )\)0(

client? client?

||<_=|1 p(l(k) , é(k)(n—l) /eworld’)‘)B B ||<_=|1 p(l(k) , é(k)(n—l) /eworld 1)\)B
1) K px® &Rm-D,5m e K x 0 gk /-1 \ya
. 5 PX™,S /6 ) p(X™,S" /6 )

client? client’

[T zo0= z[m 0 ok
k=1 p(ﬁ ’S( o )/Gworld’)‘)B k=1 st p(ﬁ 18( )/Gworldi)\)[3

Moreover :

(12) K mas P 8100 N K (X, SO 78, N
k=

1S p(XY,S/801a. WPkt PXY, SO /0,514,0)°
Inequalities (11) and (12) can be combined into :

(13) k=1 S p@(k)’S/eworld’)\)B k=1 S p@(k)’S/eworld’)\)B

Inequality (13) shows that while iterations progress, the quantity to maximize in the criterion of Eq.
(5) increases. The convergence to aloca maximum is thus expected.

SCORING

As mentioned previously, decision is generally taken by comparing the likelihood ratio to a
predefined threshold. With discriminative synchronous alignment, the likelihood ratio can be
obtained directly for a = 0.5 (by a multiplicative constant). Thisis not generally the case for different
values of a or for the joint likelihood criterion. Given the optimal alignment provided at the end of
the decoding process, the likelihood ratio can be recomputed with different normalization methods :
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Sum, Mean-0, Z-norm. Please refer to [3] for more details on these normalization techniques. Results
presented in this paper are obtained with the Sum normalization.

3. Experimentsand results

Experiments were conducted within the European PICASSO project on the SESP task defined during
the CAVE project [1]. The corpus of the SESP database is composed of connected Dutch digits
uttered by 48 speakers (24 male and 24 female). The PICASSO reference system (Picassoft), derived
from the CAVE-WPA4 reference system (Genesys), is based on state-of-the-art approaches.
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Figure 2 : Results for different sync factors (a) with the discriminative approach. Synchronous alignment is done during training.
Silences removed before decoding.
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Figure 3 : Results for different sync factors (a) with the joint likelihood approach. Independent training (left) vs. synch. alignment
training (right). Slences are not removed
In our experiments, speaker verification is performed in text-dependent mode. Left-right HMMs with
2 states per phoneme are used to define the client and world- models. The output distribution are
modeled by 3 Gaussian mixtures per state. Feature vectors are extracted from 25ms signal frames
with a 10ms shift. These vectors are formed of 12 LPCC and the Energy on log scale plus first and
second derivatives. The results are presented as DET curves [4] showing false rejection rates as a
function of false acceptance rates.
Figure 2 presents a summary of the results obtained with the discriminative criterion. In Figure 2, the
results are provided in the case when the client models are trained with the synchronous alignment
algorithm as described in the subsection 2.3 (the results obtained with independent training of the
client and world models are worse).



IDIAP—RR-99-23 7

Figure 3 presents the performance for joint likelihood synchronous decoding with different sync
factors. These results are given for both independent and synchronous alignment training. Although
the results are much better than those obtained with the discriminative criterion, no improvement is
obtained over the baseline reference. With synchronous alignment training, the best results are
obtained with a synchronous factor of 0.25. A dlight improvement with respect to the reference
system is noticed, although it may not be statically significant. It shows however that the
synchronous alignment approach is at least promising. Moreover, the synchronous aignment
approach has the advantage of a simpler decoding process.

In summary, the synchronous alignment approach provides slight improvements on the SESP
database when the joint likelihood criterion is used. A more comprehensive study can be found in

[5].
4., CONCLUSIONS

Two main sources of information are expressed in a speech signal: the underlying text and the
speaker characteristics. In general speaker recognition performance increases when considering the
underlying text during the modeling process. This was one motivation for the development of the
synchronous alignment method. This method considers a speech utterance as the result of a single
hidden process common to the client and world model and therefore associates two sets of output
distributions to a single HMM automaton. In this framework, we studied two criteria. The
discriminative criterion assumes that the speaker information is predominant in the signa. In
contrast, the joint likelihood criterion searches for an optimal path that maximizes a joint likelihood
of both hypotheses assuming that the underlying text is the predominant information in the signal.
We aso derived a decoding algorithm and a training algorithm for both criteria (these algorithms
were implemented within the HTK toolkit). They have been experimented on the databases of the
PICASSO project. They have been compared to state-of-the-art speaker verification techniques. The
results show that equivalent results (or slight improvement) can be obtained with the joint likelihood
criterion. This offers the advantage of both a cheaper decoding algorithm and a more consistent
interpretation of the frame-based termsin the likelihood ratio. An other significant result of this work
is that the discriminative criterion has limited performance. This tends to show that the predominant
information in the speech signal is the underlying text, and opens the door for other applications of
this approach, in particular in speech recognition.
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