


Abstract

Computerized human face processing (detection, recognition, synthesis) has known an intense
research activity during the last few years. Applications involving human face recognition are
very broad with important commercial impacts. Human face processing is a difficult and chal-
lenging task: the space of different facial patterns is huge. The variability of human faces as
well as their similarity and the influence of other features like beards, glasses, hair, illumina-
tions, background etc., make face recognition or face detection difficult to tackle.
The main task during the internship was to study and implement a neural-network based face
detection algorithm for general scenes, which has previously been developed within the IDIAP
Computer Vision group. It also included the study and design of a multi-scale face detection
method.
A face database and a camera were available to make tests and perform some benchmarking.
The main constraint was to have a real-time or almost real-time face detection system. This has
been achieved. Evaluation of the face detection capability of the employed neural networks
were demonstrated on a variety of still images. In addition, we introduced an efficient preproc-
essing step and a new post-processing strategy to eliminate false detection significantly. This
allowed to deploy a single neural network for face detection running in a sequential manner on
a standard workstation.

Résumé

Pendant les dernières années, le traitement des visages humains assisté par ordinateur (detec-
tion, reconnaissance, synthèse) a connu une activté intense en recherche. Les applications qui
impliquent la reconnaissance des visages humains sont très répandues et importantes d’un
point vue commercial. Le traitement des visages humains est une tâche difficile et en même
temps un défi: l’espace des formes de visages est enorme. La variabilité des visages humains et
aussi leur similitude et l’influence d’autres caractéristiques comme la barbe, les lunettes,
cheveux, l’illumination, l’arrière-plan, etc. rend la reconnaissance et la détection des visages
difficile à réaliser. La tâche principal a accomplir pendant le stage était l’étude et l’implemen-
tation d’un algorithme de détection des visages qui était développé dans le groupe de vision de
l’IDIAP. Il est basé sur un réseau de neurones et appliqué dans des scènes générales. De plus,
l’étude et l’implémentation d’une methode de détection à plusieurs niveau faisaient partie du
projet.
Une base de donné des visages et une caméra etaient disponibles pour faire des tests et des
mesures. La contrainte principale était d’avoir un system de détection des visages qui tourne en
temps-réel. Ce but était accompli. L’évaluation de la capacité de détection des visages des
réseaux de neurones employé fut demontré sur une variété d’images. De plus, nous avons
introduit une étape de pré-traitement éfficace et une nouvelle stratégie pour effectivement élim-
iner des détections erronés. Ceci a permis d’employer un seul réseau de neurones pour faire la
détection des visages s’effectuant de façon séquentielle sur une station de travail standard.



Project Summary

The project evolved over several stages. First, a simple neural network has been developed for
recognizing faces of some people recorded in a small database. Then, a simple face detection
neural network has been implemented, based on a classical approach using sliding windows to
parse a given test image for faces. The next step consisted of building a Fast Still Image Face
Detector based on a new approach using the Fast Fourier Transform in order to speed up the
execution time. Tests on a variety of images were performed to compare the usability of several
neural network pre- and postprocessing strategies. The code of the still image face detector has
been almost completely rewritten and much of the computation intensive routines could be
precalculated off-line. The resulting Moving Picture Face Detector runs in real time and this in
a purely sequential form on a single workstation. During a demonstration, where several peo-
ple presented themselves before the camera, the system detected all of the faces correctly.
Both the still and the dynamic face detector evolved further into advanced versions running
finally almost three times faster (full image search) and producing more stable results than the
initial versions. Several methods and techniques found their way into the final implementations
and contributed to increased reliability of the whole system.

At the center of face detection is the classification of faces and non-faces. A neural network
can handle this task after being trained on a variety of face and non-face images. The success-
ful run of a face detector system depends on several points. First there is the neural network
training which determines to what extent a neural network is capable of detecting faces and
under which conditions. The question arises how one should train the neural network optimally
so that it stays generic in face detection but still can distinguish faces from everything else in a
reliable fashion.This is one of the main problems encountered with face detection, how does a
non-face look like? Further more how should the training sets be set up, what should be their
optimal size and content, how long should one train the system, in what order should the train-
ing material be presented to the neural network, how should it be preprocessed?

Of paramount importance is also the postprocessing step taking place at the output of the neu-
ral network. Its aim is to reduce the number of false detections made by the neural network. It
is based on the fact that faces normally produce a variety of multiple detections located just a
few pixels away from each other and that in general other objects don’t show this behaviour
when the neural network was trained on faces beforehand. A method to address this problem
has been developed.

The goal of the project, namely creating a system that can detect faces in real-time, has been
achieved. Depending on the scales, resolutions, preprocessing, and neural network configura-
tion, the face detection system deliverers frame rates of 1 to up to 5 frames per second running
in a purely sequential version on a workstation equipped with a camera and a frame grabber.

Testing of the reliability of the Moving Picture Face Detector was done in an office environ-
ment with stable lighting conditions. Almost all faces were detected immediately and inde-
pendent of gender, beards, and glasses. The distance between the camera and the object
depends on several parameters such as the sliding-window size, but detection is in general pos-
sible at a distance between 0.3 m and about 3m from the camera.
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Fast Multi-Scale Face Detection

1  Introduction

Face detection is the fundamental step before the face recognition or identification pro-
cedure. Its reliability and time-response have a major influence on the performance and
usability of the whole face recognition system [1].

In [1] a new approach has been introduced, that can speed up processing time by con-
sidering a MLP (Multi Layer Perceptron) as a bank of filters and also by reformulating
the processing steps in terms of cross-correlations.

• The characteristic of this approach is that it reduces considerably the computation
time (speed-ups of a factor of 8 to 14, depending on the image sizes) while main-
taining identical performances to classical MLP based detectors.

• Further on, a speed-up can be gained when considering multiple scales face detec-
tion at different resolutions, due to a property of the Fourier transform that implies
that sub-sampled images can directly be obtained using the original FT.

1.1  Goal of the Project

The aim of this project was the implementation of the proposed algorithm, introducing
it into a real-world application, where a scene is searched for faces in real-time. Face
detection has to be done in a complex background without using colour or motion
information.

1.2  Applications

Applications of face recognition arise in various situations. But before the actual iden-
tification can take place, a face must first be located in a given scene. Following appli-
cations are of interest:

• Image/Movie database search, (Video Indexing): Every year, improved technol-
ogy provides cheaper and more efficient ways of storing information. However,
automatic high-level classification of the information content is very limited; this is
a bottleneck that prevents media technology from reaching its full potential [2]. A
system using face detection would allow a user to make queries of the form: “Which
scenes in this video contain human faces?” and in combination with a face recogni-
tion system even questions like “In what scene is a certain person present?” could be
answered by the system.

• Personal Identification, (Recognition): Credit cards, Driver’s License, Passports

• Bank / Store Security(Recognition): Automatic surveillance cameras

• Advanced Human-Machine Interface

• Human Expression Analysis
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1.3  Demo Set-Up

Figure 1 shows a demonstration set-up of the moving picture face detector where a per-
son’s face is being captured by a camera. A system connected to it detects in real-time
the face and marks its position with a square, as can be seen on the monitor.

FIGURE 1. The Face Detection System

1.4  Report Overview

The next chapter gives an overview of the state-of-the-art in face detection. Several
approaches can be found in the literature, basically probabilistic and connectionist
ones. The latter ones deploy neural networks for classifying faces and non-faces.

Further we present the classical neural network for object detection using a sliding
window to parse a given input image. It will be compared to the new fast neural net-
work for object detection based on cross-correlations computed in the frequency
domain using the Fast Fourier Transform.

The still image face detector incorporates the fast neural network for object detection
and served as a bases for the development of the moving picture face detector. A differ-
ence must be made though between those two: the latter one uses a camera to detect
objects, so we do have real-time constraints. On the other hand, the still image face
detector version handles - as its name suggests - still images, here we have plenty of
time at disposition and therefore we can employ for example sophisticated combina-
tions of several networks to increase the performance on detections.

Both approaches evolved in parallel and during development profited from each other.
The still image face detector used for example the main execution kernel of the neural
network while the most recent post-processing techniques developed in the still image
face detector could be implemented into the moving picture detector.
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Both the still image and the moving picture detector depend on properly trained neural
networks. In the Neural network training chapter the training process is being
described in detail. Several methods can be applied in order to decrease neural network
errors.

A discussion of the obtained results in previous chapters as well as a comparisons to
those obtained by another research group follows. Finally the whole project is reviewed
and an outlook chapter presents on how the current project could evolve further.

2  State-of-the-Art in Face Detection

An abundance of approaches addressing face detection and face recognition (often cou-
pled) can be found in the literature. Each has its advantages and disadvantages, making
it difficult to choose a superior technique.

Among a multitude of approaches, there are two important ones, namely the probabil-
istic and the connectionist one. Also there can be found some falling in between,
namely having basically a probabilistic nature, but using neural networks for later clas-
sification purposes.

2.1  Probabilistic Approaches

2.1.1  Discrete Markov Processes

1. A. J. Colmenarez et al. [8] presented a visual learning technique that maximizes the
discrimination between positive and negative examples in a training set. It was
applied in the context of face detection using a family of discrete Markov processes
to model the face and background patterns and estimate the probability models
using data statistics. The detection process was carried out by computing the likeli-
hood ratio using the probability model obtained from the learning procedure (the
one that optimizes the discrimination between the two classes in the training set).

2.1.2  Eigenfaces

2. M. Turk and A. Pentland [7] describe a detection system, that uses similarly to the
one mentioned before “eigenfaces”. It functions by projecting face images onto a
feature space that spans the significant variations among known face images. The
significant features “eigenfaces” of faces are the eigenvectors (principal compo-
nents) of the set of faces; these do not necessary correspond to features as eyes, ears
and noses. The projection operation characterizes an individual face by a weighted
sum of the eigenface features, and so a particular face can be recognized by compar-
ing those weights to those of known individuals. A non-face is assumed at the input,
if the weighted sum is too far away from the “face space.” The method is based on
an information-processing model, it can be implemented using three layer neural
networks. The symmetric weights between the hidden layer and the input, respec-
tively the output, are the eigenfaces. The hidden units themselves reveal the projec-
tion of the input image onto the eigenfaces.The output is the face space projection of
the input image.
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3. Another probabilistic approach presented by B.Moghaddam and A. Pentland [12] is
based on density estimation in high dimensional spaces using the eigenface decom-
position. Two types of density estimators are derived for modelling the training data
using either a multivariate Gaussian or a mixture-of-Gaussian models. With these
probabilities one can then formulate a maximum-likelihood estimation framework
for visual search and target detection for automatic object recognition and coding.
Computationally this is achieved by sliding an m-by-n observation window through-
out the image and at each location computing the likelihood that the local subimage
X is an instance of the target class - i.e. , After this probability map is
computed, the location corresponding to the highest likelihood is being selected as
the ML estimate of the target location.
The described approach exploits the intrinsic low-dimensionality of the training
imagery to form a computationally simple estimator for the complete likelihood
function of the object. It can be applied to probabilistic visual modelling, detection,
recognition and coding of human faces and non-rigid objects such as hands.

2.2  Semi-Probabilistic / Connectionist approaches

4. K. S. Sung and T. Poggio [5] came up with a technique modelling the distribution of
human face patterns by means of a few view-based “face” and “non-face” prototype
clusters (six face and six non-face prototypes delivered good results). At each image
locations, a difference feature vector is computed between the local image pattern
and the distribution-based model. A trained classifier (a neural network has been
applied) determines, based on the difference feature vector, whether or not a human
face exists at the current image location. This means that an image pattern is classi-
fied as “a face” if its distance from the sub-space of faces is below a certain thresh-
old, according to an appropriate distance metric.

2.3  Connectionist Approaches

2.3.1  Feed-Forward Neural Networks

5. H. A. Rowley et al. [2], [3] presented face detection systems based on retinally con-
nected neural networks. Through a sliding window, the input images are being
examined after going through and extensive preprocessing stage. The systems arbi-
trates between multiple networks to improve performance over a single network.
The bootstrap algorithm was employed to add false detections into the training set.
Simple heuristics, such as using the fact that faces rarely overlap in images
improved the accuracy of their detection systems. In one version, preprocessing of
the image delivered by the sliding window is done by a so called router network
which is able to determine the orientation of the input image and to turn it into an
up-right position, so that the following-up detector networks have a consistent input.
Post-processing of the neural networks are performed by either adding / oring the
outputs or using an additional neural network to arbitrate between the outputs.
A faster version of the above described detector used differently trained networks
that parsed a given input image not pixel by pixel but in larger steps, using slightly
enlarged and overlapping sliding-windows. In a second scan, interesting positions
(containing faces with a high probability) were then scanned by another network on
a pixel by pixel base.

Ω P x Ω〈 | 〉
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2.3.2  Recurrent Neural Networks

6. S. Oka et al. [9] employed a preprocessing system that extracted face parts such as
eyes and mouths from an input image. These were then fed into a recurrent neural
network composed of a non-linear oscillation system. The system is able to detect
several faces one after another by composing face parts extracted by the preprocess-
ing step. It works well even when some face parts are lost.

2.4  Comparisons

When comparing probabilistic and connectionist approaches, one must be very careful,
because the authors used different databases for both the training processes and the
detection evaluations later on. There are other differences that can have an important
influence on the final results, such as for example different sliding window sizes
deployed during the tests. The comparison below can therefore only be regarded as a
prediction of the author.

2.4.1  Key Features

The above described approaches are based on following key features:

TABLE 1. Methods applied in the literature and their Key Features

2.4.2  Strong / Weak points

Approach 1: With the discrete nature of the models applied, the detection process is by
almost two orders of magnitude less computationally expensive than neural network
approaches, however, the presented method showed no improvements in terms of cor-
rect and false detections. The system produced more false detections than were
observed with the purely connectionist approaches, see [8].

Approach 2: Using spatial temporal filtering, two to three images per second could be
processed, the detection and recognition processing was done on two computers con-
nected with each other and running in parallel. Although the results reported are quite
good, it is unlikely that this system is as robust as approach 4, because Pentland’s clas-
sifier is a special case of Sung and Poggio’s system, using a single positive cluster
rather than six positive and six negative clusters [2]. The computational requirements

Approach Sliding Window Preprocessing Methods Type Scale Ratio

Colmena-
rez, 1997

11 x 11 pixel Histogram equalization Holistic sq(2)

Turk, 1991 Sliding Win. No preprocessing Holistic -

Moghad
dam, 1995

Sliding Win. No preprocessing Holistic -

Sung, 1994 19 x 19 pixel Background mask, histogram
equalization, gradient

Holistic -

Rowley,
1997

20 x 20 pixel Linear fitting, histogram equali-
zation, background mask

Holistic 1.2
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of the current approach is high since every tested sub-window has to be projected onto
the eigenspace.

Approach 3: In comparison to the similar approach 4, there where no neural networks
applied for classification, but the maximum likelihood function was evaluated directly
on the input data.

Approach 5: The detector consisting of both extensive preprocessing (histogram
equalization, best fit linear functions, masks for ignoring the background around faces)
and post-processing (arbitration between multiple neural networks) and heuristics (no
overlapping) showed to perform very well. The question is if it is not too specialized
just for face detection (already by its retinally connections that favour the typical face
feature locations)

Approach 6: This approach is quit different from the others, since it can detect partly
obscured faces using a not clearly described preprocessing strategy. Also there are no
detection results at disposition, so it is difficult to compare it’s performance.
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3  Neural Networks

Work on artificial neural networks, commonly referred to as “neural networks”, has
been motivated right from its inception by the recognition that the brain computes in an
entirely different way from the conventional digital computer [20].

Both the Still Image Face Detector and the Moving Picture Face Detector that will be
presented in further chapters are based on fully connected three layer feed-forward
neural networks that employ a sigmoid activation function, also called squash function.
See Figure 2.

FIGURE 2. Neural Network, Neuron and Activation function

A neural network is built-up on neurons, which are the basic information treating units.
These do a weighted linear combination of their inputs and pass the sum through an
activation function of sigmoid type, which acts as a switch and propagates a given
input activation further or suppresses it.

In order to be able to detect faces, a neural network must first be trained to handle this
task. Figure 3 shows two examples of images, a neural network must learn to distin-
guish. On the right hand side we see a sample face and on the left hand side a sample
non-face.

FIGURE 3. Training Images of Size 25 x 25

Fully connected 3 layer feed-forward neural network

Input Units

Hidden Units

Output Unit

Single Neuron

Sigmoid Activation
function

“Squash Function”

b

w1
w2

y

+1

0

yi g wijx j b j+
j

∑ 
 =

g x( ) 1

1 e
x–

+
----------------=

Σ g(x)



Neural Networks

Fast Multi-Scale Face Detection 10 July 1998 8

Clearly, it is difficult to define good representatives of the so called non-face space, as
the latter one is huge. It consists of all possible combinations of pixels at different
lighting conditions found in a given image. In the real world, this non-face space would
be infinitely large, which is not the case here, as we do use grayscale pictures of 25 x
25 pixels size featuring discrete luminance values (integers). But nonetheless, all com-
binations possible represent an incredible large number. As we cannot have a training
databases of that size and have neither the time at disposition needed for a complete
training on all variations. Instead we do the following: using an initial non-face training
base that represents important variations and introducing additional non-face images
yielded by the so called bootstrap algorithm.

3.1  Training Techniques

Following techniques were applied for the training of our neural networks:

3.1.1  Back-Propagation Algorithm

Among the algorithms used to perform supervised learning, the back-propagation algo-
rithm has emerged as the most widely used and successful algorithm for the design of
multilayer feedforward networks. There are two distinct phases to the operation of
back-propagation learning: the forward phase and the backward phase. In the forward
phase the input signals propagate through the network layer, eventually producing
some response at the output of the network. The actual response so produced is com-
pared with a desired (target) response, generating error signals that are then propagated
in a backward direction through the network. In this backward phase of operation, the
free parameters of the network are adjusted so as to minimize the sum of squared errors
[20].

3.1.2  Boot-Strap Technique

A now well established technique (first applied in [5]) is the so called bootstrap tech-
nique. It allows to add non-face images to the training database that are of importance
with regard to improve the neural networks performance at a given time during the
training period. Additional non-face images are being gained by scanning images con-
taining no faces, automatically clipping false detections and inserting these into the
current training set, then resuming the training at the point where it stopped before-
hand. As expected, the networks false detection rate diminished greatly in our experi-
ments.

3.1.3  Multiple Similarly Networks

The performance of a trained neural network depends not only of the number and kind
of images it was trained on, but also in which order these were presented during the
training (best is to choose in a randomly order in which images to train on). Further on,
a neural network with a different initial distribution of its weights will learn differently
on exactly the same training set. This is due to the fact the back-propagation algorithm
finds sub-optimal solutions. Therefore with a given initial representation of weights, a
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neural network finds a local minimum. Another network would find different mini-
mum.

So in order to obtain networks that perform differently on a given input, one must alter
the initial seed distribution of their weights as well as randomly present images during
the training period.

3.1.4  Neural Network Training

Our Neural Network Trainer uses three different kind of data bases: The Training Base,
the Clipper Base and the Test Set. The first one is of variable size and contains both
face and non-face images (non-face images are being added during the training process
by the bootstrap technique). The Clipper Base consists of images that don’t contain
faces and which serve as a source of new non-face images that get clipped out to be
added to the Training Base during the neural network training process. The Test Set
contains images that contain faces, needed to compare the momentary performance of
the neural network.

The neural networks employed in the face detectors were trained by applying the back-
propagation algorithm using both a fixed learning step and momentum. Fixed values
may be not optimal, but simplified the implementation of the neural network trainer
considerably.

Figure 4 shows the data flow during the training of the neural networks. Basically there
are four parts: the actual training is based on the back-propagation algorithm, the test
set evaluation and the train set evaluation part where the test images are scanned for
faces and evaluated on the number of correctly detected faces , missed faces

and false detections . The evaluation tuple  must be maxi-

mized in order to get networks that behave optimally:

(EQ 1)

Note that false detections are in general more frequent than missed faces, that’s why
Equation 1 contains two separate ratios to be evaluated.

λCorrect

λMissed λFalse e λ1 λ2,( )

e λ1 λ2,( )
λCorrect

λMissed
-------------------

λCorrect

λFalse
-------------------( , )=
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FIGURE 4. Neural Network-Training

Training of the neural network is done in Epochs. An Epoch represents the complete
run of the network trainer through all images (faces and non-faces) contained in the
training data base. The latter ones are structured in Training Intervals, meaning the
number of faces or non-faces that follow up in a training sequence. An intervals of one
is good, that means presenting a face, then a non-face, then again a face and so on.
Even better is to choose randomly faces and non-faces. This way we prevent the neural
network from concentrating too much on certain features.

3.2  Training Database

The face images contained in the training set were all of up-right frontal type. The
training database featured also slightly rotated faces as well as some taken at closer dis-
tances. This improves the robustness of face detection process.

Having highly representative images in the training database is of paramount impor-
tance. Figure 5 depicts some bad face examples. These either don’t show all face fea-
tures (missing eyes for example) or then again show to much background which
belongs to the non-face space and shouldn’t be present in the face training set in order
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to have a maximum separation of the two classes.

FIGURE 5. Bad Training Examples

Training images have an influence on the performance of face detection. Figure 6
shows an example of a false detection that occurred because the image on the left hand
side (a face taken at a too close distance) was present in the training set. After remov-
ing it, this kind of false detections disappeared.

FIGURE 6. Impact of Bad Training Images

Our main training database consisted of about 1500 face examples and 4000 non-face
examples. Additional non-faces were introduced by applying the bootstrap algorithm.

On the left hand side of Figure 7 is shown the sum of errors of the hidden and output
units during network training. One can see in the center of the figure the effect of a
bootstrap operation that introduced new clipping images (non-faces) into the training
data base. It was started when 100% of the training set was correctly detected. New
clippings in the training base lead to increased errors, because the network must adapt
to the new data and in doing so produces also more errors on images it was previously
trained on.
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FIGURE 7. Hidden Units Error

Error recovering is rather fast though, but later on, errors drop slower than before. This
is because the network has lost some of its flexibility due to an adaptation on the
former training base. On the right hand side we see the error rates of two networks
using the same training base. The first one was trained on an initial training base which
got enlarged by the bootstrap algorithm. Training a second neural network on this com-
bined training base leads to a similar adaptation on the training data as suggests the
asymptotic convergence of both curves.

3.3  Training Risks

There are some risk one must try to avoid when training neural networks, among these
are:

• Over-training: If one trains a network too long, it starts to learn by heart a given
training set and behaves worse than a less trained network when being encountered
with some unknown input data.

• Another issue is how to schedule training data, that means, how training data should
be presented to the neural network. Best results can be obtained by randomly choos-
ing faces and non-faces.

• Forgetting happens with large databases where quite some time passed by before a
certain feature is represented to the network, so, what has been learned before is for-
gotten in the meantime. One may avoid this by trying to keep in the training base
only examples that are relevant at a given time. Especially when applying the boot-
strap algorithm, the training base grows during following-up iterations, introducing
more and more non-faces. This threatens the balance between the number of face
and non-face examples contained in the training base. The so called boosting algo-
rithm can provide a solution to that problem, see also Section 10.5 on page 63.

3.4  Hidden Weights Visualization

Two weight matrices of a trained neural network are depicted in Figure 8. These can
look faintly like faces, featuring parts that represent eye and mouth locations as can be
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seen on the left hand side, or round forms representing head contours, as can be seen on
the right hand side.

FIGURE 8. Weight Visualization

Hidden Weight Nb 14
Neural Net with 15 Hidden Units

Hidden Weight Nb 6
Neural Net with 15 Hidden Units
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4  Neural Network for Object Detection

In this section we focus on the classic solution for face detection based on the parsing
of a given input image with a sliding window.

Such a still image face detector, is depicted in Figure 9, and works as follows: a given
gray-scale input image is scanned pixel by pixel with a sliding window passing through
it and which represents also the input that is being fed to a neural network after pre-
processing in order to remove much of the variations due to various lighting conditions
and camera characteristics.

FIGURE 9. System for the detection of faces in a still image

Further on, contrast enhancement methods such as histogram equalization may be
applied in addition. Finally, the neural network decides whether there is a face present
at the momentary position of the sliding window or not.

4.1  Theory

Below is shown a neural network with an image as its input. Every pixel of the input
image connects to an input unit. The rectangles depict the weight matrices W1 of the
input and W2 of the hidden units respectively, see Figure 10.

FIGURE 10. Classic MLP architecture
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The activity of the hidden units and the output unit are given by:

(EQ 2)

(EQ 3)

where (EQ 4)

Here, g represents the squash function, q the number of hidden units and I the input
image in vector form. As the outputs of the neural network are in [0,1] we apply a sig-
moid function:

(EQ 5)

The activity of a particular neuron i in the hidden layer H can be written as:

(EQ 6)

Similarly, the output activity is:

(EQ 7)

Where q denotes the number of hidden units.
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4.2  Fast Classic Neural Network

The above described method performs an exhaustive search, passing the sliding win-
dow pixel by pixel through the input image. An alternative consists in scanning the test
image only at certain intervals, let’s say for example every three pixels along the rows
and likewise for the columns. A considerable speed-up can be gained this way, see
Figure 11. Comparison is made to the FFT approach that will be introduced further
below.

FIGURE 11. Comparison FNN / CNN with stepsize 3 and 6

There is a mayor drawback though with this strategy: scanning is not performed in
every possible image location, therefore faces may get overlooked. In addition, multi-
ple detections, that can help greatly reducing false detections, as will be shown, occur
less often.
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5  Fast Neural Network for Object Detection

In contrast to the classic neural network presented above, this approach is based on two
dimensional cross-correlations that take place between the test image and the sliding
window, itself represented by the neural network weights situated between the input
units and the hidden layer. These cross-correlations can be represented by a product in
the frequency domain. By using the Fast Fourier Transform, speed-ups in the order of a
magnitude can be gained.

In the next few sub-sections we present several approaches that differ in the way the
input images are being preprocessed. First there’s only a rescaling of the input values,
followed by a centred version and finally we address vector normalized / standard devi-
ation normalized versions. The theory is presented in sections 5.1, 5.2, 5.5 and is
based on the work done in [1]. For an explanation of the symbols used, have a look at
the “Table of Symbols and Abbreviations” on page 65.

5.1  Basic Algorithm

During the detection step, a sub-image of size m x n (sliding window) is extracted from
the test image of size S x T and fed to the neural network.

FIGURE 12. MLP architecture for object detection

Let be the vector of weights needed to compute the activity of the hidden neuron i.

This vector is of size an can be represented as a matrix . Equation 6 in a

2D space will look like:

(EQ 8)
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The expression is obtained for a particular sub-image I. We can extend Equation 8 to
the global input image .

(EQ 9)

Note that the origin of is in the center of the matrix. By posing and

 we obtain

(EQ 10)

which contains a 2-dimensional convolution and can be written as:

(EQ 11)

In general the following property holds:

(EQ 12)

where the first operation denotes a cross-correlation1operation, and the second one a
convolution. Therefore we can reformulate Equation 11 as

(EQ 13)

where (EQ 14)

is the activity of the hidden unit i and is the activity (or output) of the hid-

den unit i when the observation window (sliding window) is located at position (r, c).

Similarly, the final output of the neural network can be expressed by a linear combina-
tion of the hidden units activity:

(EQ 15)

is the output of the observation window located at the position (r, c) in the

input image .

1. Cross correlation: , here m an

n are limited to the sliding window size, outside these are zero. Note that both the input image and the
weight matrices have real values.
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Now, the above given cross-correlation can be calculated in terms of a Fourier Trans-

form1:

(EQ 16)

Evaluating this cross-correlation using the Fast Fourier Transform, an important speed-
up can be gained in comparison to a classic neural network based on sliding windows,
see Figure 18.

5.2  Vector Length Normalized Input Version

In order to get meaningful and stable results using a face detector in various lighting
conditions, normalization of the input images must be done. This has to be done locally
over the sliding window and not globally over the whole input image, as otherwise val-
ues may not be normalized / centred in the sub-windows. As the Fourier transform is a
global process, the local centring must be reformulated, adapted to the whole Fourier
Transform framework.

Let be the zero-mean normalized sub-image located at (r,c) in the input image

:

(EQ 17)

where is the mean value of the sub-image located at (r,c) and a m x n matrix

where every element is 1. We are interested in computing the cross-correlation between

the sub-image  and the filter  that is:

(EQ 18)

where (EQ 19)

and (EQ 20)

1. Fundamental property: A and B are matrices, the multiplication
on the right hand side is not a matrix multiplication but is done element-wise.
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also (EQ 21)

Combining (18), (19), (20), (21) we get the expression

(EQ 22)

with (EQ 23)

Equation 22 gives the activity of the hidden unit i when the sub-image is located at
position (r,c) in the image .

One can observe from Equation 22 (compare the nominator) that cross-correlating a
centred image with a filter is equal to the cross-correlation of the non-centred image
with the centred filter, i.e. we have the following property that holds in general:

(EQ 24)

This is an interesting property, as we can now calculate the normalization of the
weights off-line, instead of normalizing the sub-images during the detection process.

In order to get the activity of the hidden unit i when considering all possible sub-
images, we get the activity matrix which corresponds to a normalized version of
in Equation 13.

(EQ 25)

The final output of the neural network is a simple combination of the different activity
matrices (q represents the number of hidden units):

(EQ 26)

Note that the output here is not a scalar but a matrix of dimension [S-m+1, T-n+1],
where S and T are respectively the rows and columns of the input image, m and n the
dimension of the sub-image (sliding window). Note further that since the central part of
a face is almost square, we will use square sliding window sizes (m = n) when doing
face detections later on.
Figure 13 compares the classic approach with the fast one where the whole input image
gets treated at once. In the latter one, part of the preprocessing stage takes place off-
line: centring of the input can be integrated right into the weights as has been shown
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above. The output of the face detector neural network is a matrix of values situated
between zero and one, representing estimated face and non-face locations.

FIGURE 13. Cross-Correlation Operation

Given below is a graphical representation of Equation 25. is the conjugated com-
plex of the Fourier Transform.
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FIGURE 14. Graphical Representation of the Equations

The upper part of Figure 14 shows the central equation that must be computed for all
hidden units. It contains three cross-correlations that may also be expressed using Fou-
rier transforms. The hatched parts in the dashed formulas can be precalculated (off-
line).

The activities of the hidden units are then fed into the output unit which finally delivers
the Face Position Matrix (faces are detected, if an output network output value exceeds
the decision level. In the above case, the network found three faces, their positions are
marked with X’s).
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5.3  Standard Deviation Normalized Input

The normalization procedure described in the previous section, based on the work done
in [1] caused problems during the training of the neural network - slowly decreasing
error rates, especially errors reported by the hidden units. Therefore epoch rates of
1000 and more were needed for a complete training cycle.

We found that the problem was caused by the division of large values in the denomina-
tor aggregated by summing over all values in the sliding window:

Equation 17 can also be written as

(EQ 27)

where n is the sliding window size, the sub-image located at rc in the test image

and  its mean value.

The weight of the denominator was therefore be reduced according to the number of
components contained in the sliding window. Dividing by the standard deviation is

virtually the same (one component less in the latter case):

(EQ 28)

There is still a problem though, namely with the behaviour of the denominator in
Equation 28. In homogenous areas of the input image, the average of a sliding window
may cancel out with each of its components, leading to very small denominator and in
turn to extreme peaks at the momentary position of the sliding window, yielding more
false detections, as the neural network sees its input getting overflowed by huge values.

The solution is to divide by a small additional constant  and Equation 28 becomes:

(EQ 29)

5.4  Centered1Input Version

As the normalized version of the face detector delivered too many false detections (see
also obtained test results), the zero-mean centred only approach had been investigated.

1.  Centred image stands here for an image having zero-mean values.
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Here we divide by , the half of the maximum pixel value that can be found in the
input image.

(EQ 30)

Our test sets contained exclusively grayscale image encoded with 8 bits. In other
words, 255 levels were present, therefore was set to 128. In this way the neural net-
work input values are between -1 and +1. Not dividing by this constant resulted in poor
learning and detection rates.

5.5  Execution Speed-Ups

5.5.1  Theoretic Speed-Ups

The 2D Fourier Transform of a N x N test image requires computa-

tion steps1. The 2D FT of the filters can be computed off-line since these are

constant parameters of the network independent of the test image. A 2D FT of the test
image has to be computed, therefore the total number of FT to compute is q+1 (one
forward and q backward transforms). In addition, we have to multiply the transforms of

the weights and the input image in the frequency domain adding a further
computation steps.

This yields a total of computation steps for the fast

neural network.

For a classic neural network, computation steps are required,

when one considers the activity of neurons in the hidden layer and a square test

image of size and a sliding window of size . Therefore the theoretical speed-
up factor is

(EQ 31)

Equation 31 describes the speed-up gained with the input centred version of the face
detector. The input normalized version features three more FFT transforms, which
leads to a complexity of

1. http://theory.lcs.mit.edu/~fftw/
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(EQ 32)

Figure 15 displays the expected speed-up with the centred input centring only, respec-
tively with normalized input.

FIGURE 15. Theoretic Speed-Up curves FNN versus Classic NN

The multiscale centred version on the other hand needs one less FFT transformation on
upper scales, (two less in the case of the multiscale normalized version) so there would
be a speed-up of order

(EQ 33)

with sub-sampled scales.

Figure 16 shows the aligned theoretical values (using a scaling factor) in comparison
with the measured ones. Prediction is quite satisfying and underlines the correct model-
ling of the curves by above formulas.
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FIGURE 16. Comparison CNN / FNN measured and theoretical values

Figure 17 (see also Figure 11): The difference in execution time introduced by the fast
squash function can be clearly seen with large input image sizes as we must call it pro-
portionally to the seize of the input image.

FIGURE 17. Comparison with/without the Fast Squash function
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5.5.2  Measured Speed-Up

FIGURE 18. Measured Speed-Ups curve Centered Input FNN versus Classic NN

Interesting is the comparison between the measured speed-up and the predicted one in
Figure 18, using the aligned curves defined in Figure 16. The theoretic curve models in
a quite precise fashion the general progression of the measured curve. But with smaller
input image sizes, the measured speed-up exceeds the predicted one significantly. In
addition the curve is rather jagged, reflecting the internal behaviour of the FFT imple-
mentation. The FFT library used during this project [18] is heavily optimized and we
experienced execution times that go well below the theoretically predicted order of

.O N
2
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2
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5.6  Neural Network Visualization

Each hidden unit in a neural network performs a cross-correlation operation between
its weights and its input. Here, the input consisted of the image shown on the left hand
side of Figure 19. Its intensity plot is given in the middle, the viewing angle being from
top of the input image.

FIGURE 19. Cross-Correlation Operation

On the right hand side is shown the same image cross-correlated with the weights of a
hidden neuron. Clearly all uniform areas result with low intensity. On the other hand,
the group and especially their faces get accentuated.

Figure 20 depicts the effects of the cross-correlation operations on a Neural Network
scale. Note that images having passed the squash function contain values between zero
and one.
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FIGURE 20. NN Cross-Correlation Visualization
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5.7  Summary

The fast neural network computes exactly what the classical approach which employs a
sliding window. But it runs in a much faster way, thanks to FFT.

The fast neural network approach can be summarized as follows:

Cross-correlating the input image with the hidden weights is the same as passing a slid-
ing window through the input image and afterwards multiply the input with the weight
matrices. This cross-correlations can be expressed in terms of a multiplication in the
frequency domain. The mapping into the frequency domain and backwards afterwards
is accomplished by using the Fast Fourier Transform. Parts of the cross-correlation can
be calculated off-line, before the actual operation. This leads to a significant speed-up
in calculation that have to be performed on-line.

Note that with the fast neural network, the input image is treated as a whole and there is
no sliding window employed to feed a local sub-window into the neural network.
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6  Still Image Face Detector

The fast neural network described above can be applied for the purpose of still image
face detection. Speed of execution is not an important issue here and the still image
face detector serves as a test bed for the Moving Picture Face Detector presented in the
next chapter.

The architecture of the Still Image Face Detector will be explained in the implementa-
tion section followed by a discussion of postprocessing methods as well as still image
scanning results.

6.1  Theory

We found that blurring the input image and therefore reducing its high frequency com-
ponents can lead to dramatically reduces false detections, especially with high contrast
images, the theoretic layout is given in the next section

Scanning an input image at different resolutions allows to detect objects (faces), that
are close to the camera, or further away and couldn’t therefore be detected otherwise.
Scanning at close distances has another advantage, because there occur 3D-Multiple
detections, that can help to distinguish faces from non-faces in the post-processing
step. This subject will be addressed further below.

6.1.1  Gaussian Blurred Input

The idea is to filter the input image with a low-pass filter, in order to reduce high fre-
quency components that have shown to be prone to excite the neural network in an un-
controlled way, see also Figure 21. This can be achieved by cross-correlating the input
image with a gaussian mask G:

(EQ 34)

where G may be chosen as: (EQ 35)

Using a gaussian mask G of size 3 x 3 results in a reasonable blurring of the input
image.

The blurring operation can be integrated right into the FFT framework, the cross-corre-
lation part of Equation 13 becomes then

(EQ 36)

where (EQ 37)

Finally the main cross-correlation operation (see Equation 13) can be reformulated as

ℑ Blurred ℑ G⊗ F
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(EQ 38)

The term can be precalculated in the off-line section, so there won’t be addi-

tional computational expenses during the actual detection process in the on-line sec-
tion.

Blurring the input image using a gaussian filter results in a substantial reduction of the
false detection rates, especially in scenes containing lots of textures or in images with
an important high frequency spectrum. The following images demonstrate the latter
behaviour. The image on the right hand side was blurred using a 3 x 3 gaussian mask:

FIGURE 21. Comparisons with / without blurring

The gaussian filtering was integrated into the face detector and can be switched on and
off. In the case of the multi-scale face detector, this also reduces disturbances caused
by anti-aliasing when doing sub-sampling of the input image for the multi-scale face
detection purpose as described in the next section.

6.1.2  Multi-Scale Search

Scanning an image at several resolutions can be done by sub-sampling the whole test
image at several scales before feeding the various sub-images obtained later on to the
neural network.
During the computation of the cross-correlation we work in the frequency spectrum.
the sub-sampling can be entirely performed there using the following property of the
Fourier transform:

(EQ 39)

ℑ Blurred Φi⊗ F
1–

F ℑ( ) F∗ P G Φi,( )( )•( )=

P G Φi,( )
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One could chose for example a = b = 2 in order to get an image reduced to half of the
original size. The main cross-correlation operation in Equation 13 can therefore be
modified to accommodate multiple scales (resolutions) in the face detector:

(EQ 40)

Note that the size of the weight matrices (right hand side components in above equa-
tion) must be equal to the size of the sub-sampled input images in the frequency
domain (left hand side components).

6.1.3  Method Combination

We can combine now all described methods into one, featuring input centring, input
blurring and multi-scale search in a single expression. Applying equations (13) and
(30) we get:

(EQ 41)

Or alternatively doing input normalization and using equations (22), (28) and (29) with
the standard deviation method:

(EQ 42)

In both cases, the nominator can be computed as follows:

(EQ 43)

 and  stand for the activity of the hidden unit i in combination with the

above mentioned methods.

Note: One can get the two convolutions in the denominator of Equation 42 in a similar
way as done in Equation 43.

The sub-sampling section forms an integral part of the multi-scale face detector. Each
input image is being processed in neural networks at various resolutions. The output is
then fed into an arbitrator structure which decides at which resolution a face has been
detected.

Figure 22 shows a graphical representation of the fast multi-scale face detector. The
pictures surrounded by a black frame represent the sub-sampled images in the fre-
quency domain.
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FIGURE 22. Fast Multi-Scale Face Detector

On the left hand side of Figure 23 is shown the unprocessed output of the multi-scale-
face detector whereas on the right hand side the output was postprocessed using meth-
ods described in the next section.

FIGURE 23. Multi Resolution Example
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Detection was done at three resolutions.

6.2  Postprocessing - Single Network Arbitration

In contrast to the preprocessing stages that are closely interweaved with the neural net-
work as described above, the postprocessing takes place in a separate module, using the
outputs delivered by the neural network(s). Postprocessing is an important step in order
to reduce false detections, while confirming correct detections.

6.2.1  Face Properties

Faces demonstrate an interesting property: a face can easily be recognized as such
when being viewed through the sliding window not only in the centre position but also
at positions located near to it. Further on, the face images used to train the neural net-
works were taken at different scales of resolution, which leads to detections of a given
face at multiple resolutions. The face detector generates in this way clusters of 2D and
3D multiple detections when it comes across a face.
Using this property we have in addition to the detection rate information that says
something about the probability of the existence of a face located at the current sliding
window position. Depending on whether we work at a single or with a multitude of res-
olutions, several additional decision strategies may be applied.

6.2.2  2D Multiple Detections

If we work at one resolution, we may use the number of 2D multiple detections as an
indication for faceness in addition to the detection rate given at a certain position in the
input image. On the upper left hand side in Figure 24 we see a typical output of a neu-
ral network. The face has been detected several times at close distance. In a next step,
the square with the highest detection value is being chosen and its centre location taken
(see image on the upper right hand side) to define the centre of the multiple window
(hatched). All further detections which have their centre in multiple window are then
removed and one retains only the detection with the highest probability value found
(see image on the lower right hand side).
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FIGURE 24. 2 D Multiple Detection Examples

The 2D-Multiple-Detection-Marking procedure works as follows:

1. All outputs of the neural network that are equal or larger than a given threshold are
stored in a list, together with the position in the input image, as well as the associ-
ated detection value.

2. The obtained list is being sorted in descending order of the obtained values

3. Next we parse the list. The candidate located at the first position is the one with the
highest detection value. Then, marking as multiple all double detections further
down the list (those having a centre in the multiple detection window) prevents from
starting the same procedure for these later on. Every time we encounter such a mul-
tiple, we increment the multiple counter of the first candidate by one.

4. The next non-multiple marked candidate in the list, starts again the multiple mark-
ing process described in point three. This goes on till there are no more candidates
left in the list.

This marking procedure is graphically represented in Figure 25.
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FIGURE 25. 2D Multiple Marking Procedure

6.2.3  3D Multiple Detections

3D Multiple detections are clusters of 2D detections at the same location at different
resolutions in the test image. The occurrence of such a cluster indicates a high proba-
bility of a face at the given location.

Another value that is a measure of confidence of a certain detection is the 2D-Aggre-
gate value. That is the number of 2D-Multiple detections that occurred in a given 3D-
Cluster at all resolutions involved.
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FIGURE 26. 3D-Multiple-Detection Set-Up

Figure 26 shows the principle of the 3D-Clusters. All single detections have been
removed beforehand and there remain only 2D-Multiple detection for further evalua-
tion. All positions containing no 3D-Clusters may eventually be discarded by the sys-
tem.

The 3D-Multiple detection marking and 2D-Aggregate summations take place after the
2D marking process described above. Merging detections at all scales into one list
allows for a simpler handling of the 3D marking:

After 2D marking, parsing of the output list starts again from the beginning. This time,
all non-multiple 2D detections found in different resolution of the input image but
located at the same position (with centre located in the multiple window) are attributed
to the resolution, where the highest detection value has been registered. In addition
every 2D-Multiple encountered increments the 2D-Aggregate counter of the main rep-
resentative of the 3D-cluster. Repeating these steps through the whole list finally yields
all 3D-Multiple detections featuring just one 3D detection per 3D cluster.

6.2.4  Decision Criteria

In addition to the detection rate we have now the above described three additional indi-
cators at disposition: 2D-Multiples, 3D-Multiples and 2D-Aggregate values. The ques-
tion is now how to combine all those values in order to get robust results. That is a high
face detection rate and a low false detection rate.

Following strategies may be applied:

1. Strategy one (single resolution)

• Reject all detection values below a certain detection threshold

2. Strategy two (single resolution)

• Reject all detection values below a certain detection threshold

• Reject all 2D-Multiple detections below a certain 2D threshold

3. Strategy three (single resolution)

• Reject all detection values that fall below a certain detection threshold

• Reject all 2D-Multiple detections that fall below a certain 2D threshold

• Take only a given percentage of all detections and reject those with the lowest deci-
sion values

4. Strategy four (multi resolution)

• Reject all positions with detection values below a certain detection threshold

• Reject all positions with 2D-Multiple detections that fall below a certain 2D thresh-
old

• Reject all positions with 3D-Multiple detections that fall below a certain 3D thresh-
old

5. Strategy five (multi resolution)
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• Reject all positions with detection values below a certain detection threshold

• Reject all positions with 2D-Multiple detections that fall below a certain 2D thresh-
old

• Reject all positions with 3D-Multiple detections that fall below a certain 3D thresh-
old

• Reject all positions with 3D-Clusters containing less 2D-Aggregate values than
demanded by the 2D-Aggregate threshold

The arbitrator settings given in Table 2 showed to deliver acceptable detection results
on various test images. The first one is of interest when doing scans at one resolution,
strategy 5 is the most restrictive one and of interest when doing multi-scale face detec-
tion.

TABLE 2. Strategy Threshold Settings

Figure 27 shows an actual example of how the postprocessing strategy five works. An
image has been sampled at three resolutions. The number and kind of detections are
given in the lower part of the figure.

FIGURE 27. 3D Multiple Detection Examples

Features Strategy 1 Strategy 5

2D-Multiple Threshold 2 2

3D-Multiple Threshold - 2

2D-Aggregate Threshold - 8 or 4 * # resolutions

Detection Threshold 0.85 0.85

Scale Ratio 1.2 1.2

160 x 159

111 x 110
133 x 132

Resolution 0 Resolution 1 Resolution 2

Final Result

# 2D-Multiples: 6
# 3D-Multiples: 3
# 2D-Aggregate: 13

# 2D-Multiples: 9
# 3D-Multiples: 3
# 2D-Aggregate: 21
Detection Value: 0.94

Detection Value: 0.97
- Detection Threshold: 0.85

- Decision Strategy: Nb 5
 with following thresholds:

2D Multiples: >= 2
3D Multiples: >= 2
2DAggreagtes: >= 4*#res =12
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The accumulated 2D detections values (2D-Aggregates) are important indicators: In
Figure 27 we can see an erroneous detection in the upper left hand corner that occurs in
all three resolutions. This would have produced a false detection without the 2D-
Aggregate value threshold.

6.3  Postprocessing - Multiple Network Arbitration

Superior detection results can be obtained by combining several neural networks that
have been trained differently (see Section 3 on page 7). This results in lower false
detection rates without an important reduction of correct face detections.

FIGURE 28. Multiple Networks in Parallel applied to the same Input Image

Figure 28 is shows the set-up of a multiple neural network face detector. On the con-
trary to what we did in the previous chapter, the input image is here treated at the same
resolution. There are various possibilities of how to arbitrate between multiple neural
networks (AND, OR, Arbitrator network, etc.). We use here adding over a multiple
window, that means, all detection that have their centre in the same region (multiple
window) are considered to belong to the same detection and therefore will lead to a
positive detection at the output of the network arbitrator.

6.4  Implementation

The Fast Face Detector (FFD) consists of three basic modules, the Neural Network
Trainer (NN-TRAIN), the off-line Precalculator (FFD-PREC) and the on-line Face
Detector (FFD-ON). First a neural network is trained on a given database. All weights
of this network are then written into a Network file. Reading this file, the on-line proc-
ess can later on instantiate the same neural network, ready for face detection.
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FIGURE 29. The Still Image Face Detector

The Precalculator in Figure 29 determines the hatched parts of the cross-correlations
displayed in Figure 14. The actual Face Detector is contained in the on-line module. It
computes the cross-correlations using Fast Fourier Transforms.

6.4.1  Off-line / Total Execution time

The time spent in the off-line section evolves in an exponential way. This goes also for
the total time, which gives an indication of much time is needed to scan an image of a
given size, see Figure 30.

FIGURE 30. Off-line and Total execution time, Centered version

A speed-up of about three can be obtained in comparison to the classic neural network
(see Figure 16), provided that we work with image sizes that allow us to exploit the
minimum region of the FFT, see Figure 44.
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6.5  NN Output Discussion

In the following sections we have a look at outputs produced by neural networks and
discuss postprocessing arbitration and decision level settings.

6.5.1  NN Output Visualization

On the left hand side of Figure 31 is shown a 3D plot of the raw output of a neural net-
work obtained with the image on the right hand side as input (without the decision
threshold being applied). The surface is rather jagged with lots of needle-like peaks.
The highest of these represent face location.

FIGURE 31. Neural Network Output Visualization

Between the peaks are wide open spaces featuring very low values, see Figure 32. This
results in rather low average values as will be discussed in the next section. Clearly can
be seen the white spot in the middle of the figure. It corresponds to the highest peak in
Figure 31 and represents the face location.

Image “Face”NN Output for “Face”, 3D view
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FIGURE 32. Probability Map for Image “Face”

Setting correctly the output threshold is of great importance as can bee seen in
Figure 33. If you set it to high, you may loose detections and if it is set to low, second-
ary peaks appear and introduce false detections. So we should set it in between in order
that we have enough 2D multiple detections allowing us to applicate the multiple arbi-
trator correctly.

FIGURE 33. Decision Thresholds

NN Output, sidewards view

Desc. Threh.: 0.7

Desc. Threh.: 0.85

Desc. Threh.: 0.9
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In Figure 34 we see a typical result of the sill image face detector, doing a close scale
search on two levels. Face number on was detected with highest probability on level
zero (original input image size), the others in the sub-sampled image.

FIGURE 34. Face detection

Table 3 represents all values associated with the faces detected in Figure 34. There is a
correlation between the detection value at the output of the neural network and the
number of 2D multiple detections, respectively 2D aggregate values. This shows that
its is important to set correctly the decision threshold, because strong multiple detec-
tions can occur also at non-face positions - but with lower detections probabilities.

TABLE 3. Multiple detection results

Face number five got detected with the lowest detection values of all faces. This due to
its slightly sidewards position.

2D-Aggregate values are important to indicate, whether at a given location a face has
been detected or not. Figure 35 compares the number of summed 2D-Aggregate values
that occurred on the faces locations in Figure 34.

Features Face 1 Face 2 Face 3 Face 4 Face 5

# 3D-Detections 2 2 2 2 2

# 2D-Detections 16 12 9 11 5

# 2D-Aggregates 37 17 14 14 8

Detection Value 0.96 0.94 0.94 0.93 0.92

Dominant Scale 0 1 1 1 1

2

3

4
5

1
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FIGURE 35. 2D-Aggregate Values, Network Comparison

Networks with fewer hidden units produce in general more double detections, because
these can probably less specialize to face features than networks with higher numbers
of hidden units.

6.5.2  Decision Threshold Settings

One must set the decision threshold for the output of the neural network according to
the network currently applied. It depends on how the network was trained (number of
epochs, training base, initial weight settings). One can only estimate the appropriate
threshold by doing some test runs using a variety of thresholds. A good measure is to
maximize the number of correct detections divided by the number of missed detections
plus the number of false detections, see Figure 36.
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FIGURE 36.  Decision Threshold Comparison

The maximum of the curve is at 0.8. That’s the value we should adopt as decision
threshold for the given network in order to have a maximum of faces detected with a
minimum of false detections. Decision thresholds vary heavily with the neural network
applied. We found optimum settings that were as low as 0.3 or as high as 0.9.

A decision threshold must also be set according to the arbitrating strategy applied.
With a strategy that is very selective, this threshold must be set to a quite low value in
order to get enough multiple detections / aggregate values to allow a face being
detected. On the other hand when the only postprocessing measure applied is the deci-
sion threshold (strategy one), we must set it to a high value in order to reduce the
number of false detections. See also Section 6.5.1 on page 42.

FIGURE 37. Sample Image and NN Output
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FIGURE 38. NN Output, 3 Resolutions

Figure 38 shows neural network outputs obtained at three different resolution using as
the input the image depicted in Figure 37, viewed from the left side to the right. The
marked zones correspond to the face locations and can be distinguished by high detec-
tion values as well as resemblances in shape. Clearly, resolution two is dominating, the
arbitrator will finally draw detection squares conforming to this dimensions.

Another point is to determine a decision threshold without using an priori fixed deci-
sion threshold, so the detection process could adapt itself to various conditions. The
mean detection values of the sample are 0.1131 for resolution zero and 0.1187 respec-
tively 0.1273 for resolutions one and two, which are quite low in comparison to the
maxima that are close to 1. Clearly, the average can’t be taken directly as a measure to
estimate a decision threshold. A better approach consists of setting the decision thresh-
old to about 90% of the highest peak found in the neural networks output list. This
would allow to take into account most 2D multiple detections situated on the upper
parts of the peaks found in Figure 38.

6.6  Test Runs on CMU Data-Base

In this section we present tests that were performed on an image database (test set A)

provided by CMU1 and allows to compare detection results directly to those obtained

1. http://www.cs.cmu.edu/~har/faces.html



Still Image Face Detector

Fast Multi-Scale Face Detection 10 July 1998 48

by other research groups.
Test set A contains forty images with different backgrounds, illumination and faces in
all scales.

6.6.1  Trained Neural Networks

Table 4 and 5 show the neural networks that have been trained for our face detectors.
The main differences consist in the trained image size, preprocessing type and different
initial seeds (resulting in different initialization of the neural networks weights).

TABLE 4. Trained Neural Networks 1

TABLE 5. Trained Neural Networks 2

Both the average neural networks output error (over all trained images) as well as the
sum of the hidden and output error during one epoch were measured to indicate the
level of adaptation of the trained neural networks.

The training data base (Standard, without bootstrap clippings) consisted of about 1500
face images (700 faces and mirrored versions) and about 3500 non-faces.

The network with a sliding window size of 12 x 12 was used only in combination with
the camera (Moving Picture Face Detector), as we can then do face detection on
smaller input frames which means faster execution.

Net Features GreenNet Red1Net Red2Net

# Hidden Units 25 30 30

Trained Image Size 25 x 25 25 x 25 25 x 25

Preprocessing Type Centered Centered Centered

# Training Epochs 400 400 108

# Bootstrap Iterations 2 2 2

Final Errors (Sum / Out) < 25 < 25 24.8

Initial seed Type 1 Type 1 Type 2

Data Base + # Clips Standard + 60 Standard + 60 Standard + 150

Net Features BlueNet YellowNet OrangeNet

# Hidden Units 20 15 30

Trained Image Size 25 x 25 25 x 25 25 x 25

Preprocessing Type Centered Centered Stand. Dev.

# Training Epochs 132 200 100

# Bootstrap Iterations 2 2 2

Final Errors (Sum / Out) 25.4 26.3 15.38

Initial seed Type 1 Type 1 Type 1

Data Base + # Clips Standard + Standard + Standard +
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6.6.2  Post/Preprocessing results

To evaluate the effectiveness of the multiple detection arbitrator, comparisons were
made between the raw output obtained by the neural networks and those being post-
processed by the arbitrator applying strategy 5. We obtained following results with the
test set A:

TABLE 6. Results With / Without Arbitration (2D,3D-Multiples)

Note that overlapping false detections were counted as one false detection. The number
of faces detected is far from the total number of faces contained in the images. This is
due to the fact that we did just rescale the original images and processed these at two
different resolutions in order to produce the 3D-Multiples needed by the postprocess-
ing strategy.The relative changes in Table 6 are clearly visible. The postprocessing
strategy applied showed to be quite effective in order to reduce false detections without
changing much on the correct detection rate. Blurring reduces false detections further
on but has a quite negative effect on the number of faces being detected. This method
should only be used with a single neural network and when doing either scans at only
one resolution or at different resolutions that are not close to each other, so we couldn’t
apply the 3D-Multiples postprocessing strategy.

6.6.3  Multiple Network Arbitration

In order to reduce false detections, two differently trained neural networks were com-
bined, using a network arbitrator to decide on possible face locations. The arbitration
distance (maximum distance at which to detection are combined) was set to 5 pixels.
The result is compared to those obtained using a single network:

TABLE 7. Comparison Single / Multiple Neural Networks

When doing multiple network arbitration, the input shouldn’t be blurred, in order to get
a maximum of positive face detections. The decision thresholds should also be set
lower than usual, resulting in more faces being detect. An increasing number of false
detection can be bypassed, due to the fact that these occur normally in different loca-
tions.

Features - GreenNet
Without

Postprocessing
With

Postprocessing
With Postprocessing

+ Blurring

# false detections 1316 466 278

# correct detections - total nb 110 - 169 95 - 169 68 - 169

# missed detections 59 64 101

Features
Single Network

Red1Net
Two Networks

Red1Net+Red2Net

# false detections 957 355

# correct detections 132 - 169 124 - 169

# missed detections 37 45
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6.7  Vector Normalized / Standard Deviation Preprocessing

For comparison purpose, we present here some results obtained with the normalized
(vector length normalized) version of the face detector. We included also a version that
doesn’t employ preprocessing at all. All neural networks were trained on relatively
small databases not applying the bootstrap algorithm.

Note the high Epoch rates, necessary due to non-diving the input image by the maxi-
mum of the luminance, therefore having high values (0 .. 255 instead of 0 .. 1) at the
input of the neural networks which results in poor learning rates.

Four neural networks were trained differently:

TABLE 8. Four different neural networks

Remarks concerning the chosen parameters:

• The first two networks don’t use all the images available in the databases, to be able
to compare the neural networks behaviour with the next two networks

• Network one has only 10 hidden neurons which makes it faster during the detection
process (more than doubling the speed) but reduces also its capability to store facial
features

• Network three was trained using all of the non-faces but just 500 faces. This with the
idea in mind that some hundreds of faces should be enough to give the network an
impression, of what a face looks like

• Network four was trained with all face images available and almost all non-face
images, an equal number was chosen to have a regular face - non-face succession
during the training phase. The image interval (series of the same type of images
(either faces or non-faces) that follow each other during the training phase was set to
2, a reasonably low value which results in a large learning rate

• 25 hidden units showed to delivers acceptable results. These may not deliver opti-
mal results, but not too great a number of hidden units should be chosen in order not
to increase too much the execution time of the face detector

Note: Between network three and four we have a difference not just in the size of the
database used but also the number of epochs the training has been gone through, as
well as a different interval size. Obviously, in order to be able to compare the results
properly, just one parameter should change at a time. The reason why we still included
network four is for giving an overview.

Note: the sliding window seems to be rather small in comparison to the size of the of
the faces found in the test images below, i.e. faces captured with the sliding window

Features one.net two.net three.net four.net

# Faces 500 500 500 1528

# Non-Faces 500 500 1600 1528

# Hidden Units 10 25 25 25

Interval Size 1 1 1 1

Epoch Size 300 300 1000 1000
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below contain sometimes no mouth and just parts of the eyes. A successful detection is
still possible because the learning process was carried out using various face positions.

FIGURE 39. Face detection results (one.net + two.net)

FIGURE 40. Face detection results (three.net + four.net)

TABLE 9. Number of faces detected

Of interest in Table 9 is the quotient of the number of correctly detected faces (multiple
detections shifted by a few bits are allowed) and false detections. This value gives us an
indication to which extent one can trust the results delivered by the face detector. Net-

Features one.net two.net three.net four.net

# correct detec-
tions (multi-
ples)

18 28 // 34 38 24

# false detec-
tions

60 134 // 51 51 17

Total nb of
faces detected

78 162 // 85 89 41

 # correct /
 # false

0.3 0.21 // 0.67 0.75 1.41

Normalization ON ON // OFF ON ON

Test image Aero 272x392 Aero 272x392 Aero 272x392 Aero 272x392

one.net two.net

three.net four.net two.net
No PreprocessingVector Normalization



Moving Picture Face Detector

Fast Multi-Scale Face Detection 10 July 1998 52

work four tops on all the other networks. But one should also consider that network
two in its non-normalized version did false detections virtually just in one place of the
test image (and multiple times for the same motif). If one would include the falsely
detected element into the non-face learning set, false detections would drop down to
almost zero for this image.

One can see immediately, that the longer the neural networks have been trained (more
epochs accomplished), the lower is the false detection. On the contrary, correct face
detections may not profit too much from higher epoch rates as suggests Figure 40.

Surprisingly well behaved the non-preprocessed network with 3 faces detected and
false detections virtually just in one place. A reason for this probably, that with normal-
ization activated, the network is able to detect faces for example in a dark background
that look just faintly like faces.

7  Moving Picture Face Detector

The Moving Picture Face Detector consists of a camera, a frame grabber and a program
processing the frames delivered by the latter one and doing face detection on the input
frames in real-time. The resulting frames marked with a square on locations a face has
been found are then displayed on a Monitor, see “The Face Detection System” on
page 2.

Figure 41 shows the setup of the Moving Picture Face Detector. A cluttered scene is
being captured by a camera connected to a frame grabber (Osprey-1500, see Section B-
1 on page 78), transforming the incoming video stream into a series of frames (30
frames per second).

FIGURE 41. System for the detecting faces in a live video stream

Frames delivered by the camera are of size 288 x 384, 144 x 192, 72 x 96. For speed
reasons only the latter two sizes are of interest. With a square sliding widow of size 25
x 25, an input image of size 144 x 192 is an appropriate when doing face detection at
an intermediate distance from the camera (30 cm to about 3 m). When using a square
sliding window of size 12 x 12, a frame size of 72 x 96 is a good choice.

Camera Frame Grabber

Series of Frames
Scene

0.3 m.. 3 m

The Sliding Window is always of constant size - 25 x 25 pixels. Larger faces are
detected at a different scale obtained by sub-sampling the input frames



Moving Picture Face Detector

Fast Multi-Scale Face Detection 10 July 1998 53

7.1  Theory

Two methods lead to an improved speed-up: Active zone search restricts the search on
those areas containing movements. They are smaller than the original input image
which means less area must be scanned for faces. The computation of the squash func-
tion can be done by employing an adequate approximation as will be shown after the
next sub-section.

7.1.1  Active Zone Search

The idea here is to define active search areas based on the differences found in subse-
quent pictures in a given stream. Using such a sub-zone clipping, an important reduc-
tion in execution time should be obtained. Especially interesting is the fact that smaller
images are handled in a non-linear faster way by the cross-correlation operation used
throughout this project, see also speed-up curve in Figure 18.

FIGURE 42. Simple Head Tracking system

Initially, there is a scan for faces through the whole first frame, in next frames one
would only concentrate on zones of interest (active zones).

Figure 43 shows how the precomputed clipping form (it can be prepared in the off-line
section of the detector) that gets applied to the upper part of the moving area where the
face may be found with a high chance. If no new detection has been obtained, the pre-
vious one stays valid.

FIGURE 43. Single Frame containing a zone of interest
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7.1.2  Execution Time Reduction

In order to reduce execution time to maximum, several measures have been taken:

• IFFT Measurements: The FFT subroutine starts during the initialization process a
short series of measurements in order to adapt some internal parameters optimally to
the machine the FFT transform is later used on.

• Compiler options have been activated in order to receive faster code. See Section B-
2, “Software,” on page 78.

• The code was written as lean as possible, using examples found in [16].

• The sorting algorithm applied in the output list is of QuickSort type

Neural networks simulations often spend a large proportion of their time computing
exponential functions. Since the exponentiation routines of typical math libraries are
rather slow, their replacement with a fast approximation can greatly reduce the overall
computation time. The exponentiation is being approximated by manipulating the com-
ponents of a standard floating-point representation, hence modelling the exponential
function as well as a lookup table with linear interpolation, but is significantly faster
and more compact [10].

The squash function at the output of each neuron can be com-
puted more efficiently than presently done using the standard C math library.

In [10] a speed-up factor of about 10 had been obtained on UltraSparcs running Solaris.
Using this method leads to a reduction of the execution time in the on-line process, as
the squash function is called  times by the FNN during a test image scan:

(EQ 44)

where is equal the number hidden units, n the sliding window size and S, T the
number of rows respectively columns of the input image. See also Figure 17.

7.1.3  Measured Execution times

In Figure 44 we see the execution time needed by a detector based on the fast neural
network using FFTs. There are strong oscillations, but both the maximum and the min-
imum values follow exponential curves.
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FIGURE 44. Execution times comparison FNN raw and interpolated

Having a closer look reveals even values in between that demonstrate the same expo-
nential growth. The maximum values represent those cases where general purpose
algorithms must be employed to compute the FFT. On the other hand, the minimums
reveal the real power of the Fast Fourier Transform. That’s were we use the fast fourier
neural network. Note the five spikes that don’t follow the general behaviour, they were
caused by erroneous measurements in our program and can be neglected.

The dimensions of the input images must be chosen carefully [18], in order not to fall
into a region where the FFT library must apply a general algorithm. Especially in
multi-scale mode, one can easily obtain dimensions producing slow computations.
Special search methods have been implemented that find, on the base of the above
given formula, valid dimensions.

7.1.4  Reduced Sliding Window Size

Gaussian Blurring of the input image as described in Section 6.1.1 results in a reduc-
tion of the information delivered to the neural network. Nevertheless, it performs well
and produces less false detections. So there must be a redundancy of information car-
ried in the input image, namely in the high frequencies. Cutting off high frequencies
parts and padding the reminder with zeros is the same as taking a smaller input image
and enlarging it by adding zeroes in the frequency domain. With a smaller input image
we must also reduce the sliding window size in order to still able to detect faces at the
same scale. But of interest is the smaller input image, as it gets treated as a whole in the
cross-correlation operations performed in the hidden units of the fast neural network
described in chapter 5.

With an input image size 72 x 96 (one of the resolutions sustained by the frame grab-
ber), the sliding window size should be set to 12 x 12 in order to get a similar operation
range (distance from the camera, where face detection is possible).
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7.1.5  Multi Resolution

With the Moving Picture Face Detectors, we cannot scan at a multitude of resolutions
like in the case of the still image face detector. Since we have time restrictions, scans at
two different resolutions must be sufficient to cover a large field. Therefore, post-
processing arbitration can’t be based on 3D-Multiples, this leaves us strategies 1-3 for
arbitration, see Section 6.2.4

On the other hand if detections must take place at more or less the same distance from
the camera, two close scans are would be possible and we could then also use strategies
3-5.

7.2  Implementation

Figure 45 shows the data flow in the Moving Picture Face Detector. After a general ini-
tialization, the detection engine is getting started, searching the frames delivered by the
camera for faces on different scales (resolutions). Then the detection results are being
arranged in a list for the multiple marking purpose. Finally a multiple Detection Arbi-
trator decides where a face are located in the input frame. Marked frames are displayed
in real-time on a monitor.

Note that the Moving Picture Face Detector employs only one single neural network,
sequentially applied on different scales. We cannot use multiple neural networks with
network arbitration as described in Section 6.3, as we do have time constraints. Unless
we could run several networks parallel on different machines, see also Section 10.2.
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FIGURE 45. Data Flow in the Moving Picture Face Detector

7.3  Results

As the detection engine used with the Moving Picture Face Detector is the same as the
one described in the Still Image Face Detector section, we present here primarily
results that concern the execution time of the Moving Picture Face Detector.

7.3.1  Camera Series

Given here are two examples obtained from real-time face detection using a camera.
The face detector delivers pictures at a rate of about 1.5 frames/s. See also Figure 51 -
Figure 55.
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FIGURE 46. Two pictures from a live series taken by our camera (0.7 s interval)

We experienced relatively few false detection (in an office environment) after the intro-
duction of an appropriate post-processing strategy 3. In Figure 51 for example we have
zero false detections and just one missing positive detection in 40 frames.

7.3.2  Execution Time Speed-Ups

The following time values have been obtained running the programs on an Ultra-Sparc
30 under Solaris with an input image size of 144x 192:

• Time needed for a single FFT transformation: 0.01 s

• Time needed to calculate 25 hidden units: ~ 0.6s

• Total time for the on-line process (with normalization): ~ 0.7s

• Total time needed by the legacy network: ~ 11s

Here, the speed-up factor for the FNN network obtained was: . This is
somewhat faster than one would expect, see also Figure 18 for comparison. This may
be due to the fact that the code used for the legacy network hasn’t been optimized for
speed.

7.3.3  Required Resources

The fast face detector in its serial implementation must run on a fast machine in order
to obtained acceptable refresh rates of the detected scene. On an Ultra Sparc 30 the
processing time needed per frame is 0.6s for an image of size 144x192.
Another point should not be neglected either: the amount of memory needed by the
program. Running detections on images of size 144 x 192, the still image face detector
needs about 33 Mb of RAM, with the Moving Picture Face Detector about 150 MB of
RAM is mandatory, depending on the kind of preprocessing chosen. A vector normal-
ized or standard deviation normalized version may demand more. When using the
detector on larger images (for example when scanning still images), about 427 MB or
more of RAM is needed when the images size is in the order of 500 x 500.

11 0.7⁄ 15.7=
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8  Discussion

One has to be careful when comparing results obtained by different face detection sys-
tems. There are various parameters to be taken into consideration. Test sets differ in
difficulty. The one we used (Test Set A) contains a variety of images (40 in total), fea-
turing real-world scenes.

Here follows a comparison of our still image face detector with another neural net-
works approach (Rowley et al. [2]), that is close to ours in the sense that it uses also a
feed-forward neural network and a comparable training image size (20 x 20 pixels):

TABLE 10. System Comparisons

This test was performed on the Test Set A, as mentioned above. Rowley’s networks are
of retinally connected type. Net1 features 2905, while Net2 has 4357 connections. The
first one uses 52 hidden neurons, the latter one 78. The preprocessing strategies applied
are advanced, employing mask, linear fitting functions and histogram equalization.
Postprocessing is done by 3D-Multiple detection and elimination of overlapping detec-
tions.

Table 10 shows that our system has lower positive detection rates and produces more
false detections than their system. This is due to simpler network training on our side
(we used a training base of about 1500 face images and 4000 non-face examples, while
they trained with 16000 face images and 9000 non-face images, where 8000 were
obtained by applying the bootstrap algorithm several times. We on the other hand col-
lected only 300 bootstrap clippings during two bootstrap operations. Another point is
the extensive preprocessing applied by the other group. Histogram equalization for
example is a non-linear operation and can’t be integrated into the Fourier framework of
our system.

Note that the rather high number of false detections on our side was caused by only
three images of the test set, that contained printed letters (parts of a book). Unfortu-
nately the lines where separated with about the same distance found between the eye
line and the mouth in a sliding window. This lead the system do reproduce always the
same errors. Just a few non-face examples of this type in the training set would resolve
this problem though.

Type
Rowley’s
System

Our
System

Rowley’s
Results Our Results

Single Network,
using Heuristics

Net1
3D-Multiples
Overlap elim.

GreenNet
2D-Multiples
3D-Multiples

85.8% corr.
222 false

71.1% corr.
496 false

Single Network,
using Heuristics

Net2
3D-Multiples
Overlap elim.

RedNet
2D-Multiples
3D-Multiples

84% corr.
179 false

73.3% corr.
957 false

Arbitration Among two Net-
works

Net1 + Net2
AND

GreenNet +
RedNet

80.5% corr.
67 false

69.5% corr.
355 false

Fast Version Candidate Veri-
fication Method

- 65.7% corr.
3 false

-



Discussion

Fast Multi-Scale Face Detection 10 July 1998 60

The fast face detector of the other group produced a rather low detection rate, because
they skipped the sliding window over the test image as described in Section 4.2. This
caused also lower false detections, because less positions were parsed and also due to
their candidate verification method applied (basically consisting of a combined coarse
and fine scan of the test image).

Both our vector normalized preprocessing method, as well as the standard deviation
method showed to perform poorly, yielding many false detections. The difference
between these, is the fast adapting to the training set of the latter one during network
training. The vector normalized method had to be trained with high epoch rates, as the
error of the hidden units decreased only slowly. This is probably due to the fact that
homogenous zones in the input image caused a high normalizing denominator, which
in turns lead to a high activation in the neural network.

The YellowNet (15 hidden units) and the BlueNet (20 hidden units) performed quite
well, but they cant compete with networks containing 25 hidden units or more, as they
tend to produce high false detection rates. But even though, they can be applied in the
Moving Picture Face Detector with acceptable face detection rates and due to the
decreased number of hidden units, they execute also faster than their counterparts with
more hidden units.
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9  Conclusions

The Still Image Face Detector delivered acceptable results on a variety of images as
has been shown in the result section. Currently, there are still too many false detections,
but this may be overcome by advanced network training. Especially the novel 2D-Mul-
tiple marking based postprocessing showed to be a powerful method in reducing false
detections. It can be applied both with single and multiple neural networks. In contrast
to other systems, our face detector perform a full search of the input frames which
means an improved face detection capability.

The fast fourier based neural network described in this report consists of a 100% soft-
ware approach and allowed the Moving Picture Face Detector to do real-time face
tracking, running on a single standard workstation with following characteristics:

• 0.6 s / frame, 144x192 frame size, NN with 25 hidden units

• 0.23 s / frame, 72x96 frame size, NN with 25 hidden units

• 0.17s / frame 72 x 96 frame size, NN with 20 hidden units

Although progress has been made, the Moving Picture Face detector still lacks some
robustness:

• No direct sun light exposure of a scene where faces must be detected, because this
results in partly shaded faces that cannot be detected due to missing normalization
of the input (centered only version).

• Glasses with dark frames or glasses mirroring light lead to non-detection of faces
present in a given scene

• Rotated faces, lateral view, partly obscured faces

The Moving Picture Face Detector demonstrated its capability during a demonstration,
where people presented themselves before a camera and were detected successfully by
the system.

Martigny, June 30 1998

Beat Fasel
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10  Possible Extensions

Following suggestions could be of interest for future extensions of this project:

10.1  All Frequency approach

For each hidden unit in the Fast Fourier based neural network, we must apply a back-
transformation, which means a considerable time spent doing Fourier transforms. We
came up with the idea of reformulating the squash function in the frequency domain.
This would allow to combine the outputs of the hidden units directly in the frequency
domain and doing so, only one back-transformation would be necessary for all hidden
units. The problem though is how to formulate the squash function in the frequency
domain. An alternative consist of introducing a modulation , replacing the cur-
rent squash function (here being tanh), where

(EQ 45)

FIGURE 47. Modulation function

The following property of the Fourier Transform holds:

(EQ 46)

A similar property governs also a modulation by a sine. The idea here is to approximate
 by a Fourier Series. A few terms may be sufficient to model the function. Note

that functions described by fourier series are periodic. This may not be a problem as we
would use in the first interval - output values produced by the neurons seem to be
limited (see also Figure 19).
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10.2  Parallel Multiple Networks

Using a reduced image size, faster program code, and a fast squash function [10], a
pure sequential implementation yielded acceptable results and a frame rate that still
allowed a dynamic detection. But if high frame refresh rates are mandatory or the
deployment of several different networks in combination would be an issue, there
would be too much computations to be handled by a single computer, so one would
eventually be forced to use a cluster of computers. The MPI (Message Passing Inter-
face) showed to be an interesting approach for implementing programs in parallel.

Parallelization of the Face detector can be done either

• by using a machine with several processors

• or distributing the task over a cluster of workstations

The question that arises is how to parallelize the program in order not to loose too
much time with communication between the sub-processes (granularity). This means
that one should probably try an implementing on either the neuron os neural network
level, instead of doing FFTs in parallel.

10.3  Lighting Independence

One of the main weakness of the present face detector is its dependence on good light-
ing conditions. The light source should be in front of face to be detected. Partly shaded
faces cause enormous problems. Nonlinear methods (such as histogram equalization)
don’t work because they must be integrated into the FFT framework which is not feasi-
ble. Linear fit functions such as applied in [2] may improve the situation.

10.4  Network Combinations

In addition to the presently trained networks, some others may interesting to consider,
possibly in combination with the first:

• Neural networks using different preprocessing strategies

• Flipping neural networks - same networks, but with a flipped (mirrored) input -
faces are symmetric!

10.5  Advanced Neural Network Training

The training process can be speeded-up, thus gaining also in quality when using a
method called boosting technique [11], so far especially employed in speech recogni-
tion research due to the considerable amount of computation that is required to train
networks for large vocabulary speech recognition. The basic idea is a procedure that
make selective use of training data to increase performance. Boosting is based on an
ensemble of networks that are trained sequentially on data that has been filtered by the
previously trained networks in the ensemble. This ensures only data that is likely to
result in improved generalisation performance is used for training.
The whole training process described in section 3.1, should be automated. This way,
the network trainer could be able to teach dynamically the neural network under train-
ing the best images at a given moment - automatic supervised learning. Images produc-
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ing constant bad result could be clipped automatically out of the current database, re-
introduced later on, or eliminated completely after user supervision. Training sets
delivering good results may be momentarily taken out of the database in order to allow
faster training on images less well handled by the network, this way one could combat
forgetting of previously learned material, which manifests itself with the use of large
databases and therefore fewer repeated epochs.

10.6  Rotation Faces Scan

The aim here is to bring faces in the input image into an up-right position for better
detection. One could also rotate the weights of the hidden units that operate at the
momentary position of the sliding window to obtain the same result. Direct treatment
in the frequency domain is possible and rotation of the weights can be done in the off-
line section which means no further overhead:

(EQ 47)

We used the polar coordinates, r is the range, the angle. The weights of the neural
network may be turned in the frequency range which results also in a rotation in the
time domain. This way, turned faces may be detected and this in a straight forward
manner without the need of sophisticated set-ups such as for example a preprocessing
rotator neural network as described in [3].

f r θ θ0+,( ) F w φ θ0+,( )⇔

θ



Table of Symbols and Abbreviations

Fast Multi-Scale Face Detection 10 July 1998 65

11  Table of Symbols and Abbreviations

Note: Matrices are held in capital letters.

q Number of hidden units (neurons)
n Sliding Window columns (if square also rows)
m Sliding Window rows

Activity of a particular neuron i in the hidden unit H

Activity of a particular neuron i extended to the global image

o Output activity
Global input image

S Row of the global input image

T Column of the global input image
w Neural Network weights

Sub-image located at position (r,c)

Activation function or squashing function
G Gaussian mask
N Normalized activation
C Combined activation

Filter of size mn

NN Neural Network
CNN Classical Neural Network
FNN Fast Neural Network (Based on FFT)
MLP Multi Layer Perceptron, Neural Network

hi

Hi ℑ

ℑ
ℑ

ℑ

X[ ] rc

g x( )

Φ
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12.3  Internet Resources

• Homepage of the fast face detector:
http://www.idiap.ch/vision/faceresults.html

• The face recognition home page:
http://www.cs.rug.nl/~peterkr/FACE/face.html

• The computer vision home page:
http://www.cs.cmu.edu/~cil/vision.html

• Facial analysis:
http://mambo.ucsc.edu/psl/fanl.html

• Face detection:
http://www.cs.cmu.edu/~har/faces.html

• FFTW Homepage
http://theory.lcs.mit.edu/~fftw/

• Source code of MLP
http://www.cs.cmu.edu/~tom/faces.html
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Appendices

A  Face Detection Test Runs

Both still images and moving pictures were evaluated by either the Still Image or the
Moving Picture Face Detector. The most interesting samples can be found further
below.

A-1  Still Images

The following images were scanned with the Still Image Detector. As we don’t have
time restrictions, some more sophisticated methods (3D-Multiple Detections, 2D-
Aggregate detections and several neural networks in parallel) can be applied than in the
case of the Moving Picture Face Detector.

A-1-1  CMU Data Base

The following results were obtained using a single neural network with 30 hidden units
and a fixed decision threshold of 0.85. Detection was performed at two resolutions
close by (scale factor: 1.2).

There’s a label in the upper left hand corner of the images, indicating how its was prep-
ocessed, respectively the results obtained.

Here is an example: [N,B, 3-5, 2] means Normalized, Blurred, 3 correct detections out
of 5 possible and 2 false detections. C stands for centered and W for without blurring.

Even though the face detector had been trained on natural faces, it can also detect hand-
drawn ones, as can be seen in Figure 48.
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FIGURE 48. CMU Data Base Test Examples (Single Network)

C,W,5-5,0

C,B,1-1,0C,W,9-9,0

C,W,4-6,8

C,W,1-1,0

C,W,9-9,0

C,W,2-2,0

C,W,1-1,0
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FIGURE 49. CMU Data Base Test Examples (Multiple Network)

Figure 49 shows how false detections can be reduced when combining the output of
two neural networks.

Network 1 Network 2 Network 1+2
combined
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A-1-2  Other Data Base

FIGURE 50. Other Data Base Test Examples (Single Network)

Note that false detections occur in general not in the same location when using differ-
ent networks. This property is used when combining several networks with output arbi-
tration.

Neural Network: RedNet

Neural Network: YellowNet
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A-2  Moving Pictures Series

In the following sub-sections, we present some samples of real-time face detection in
an office environment. The frame rate obtained was about 1.5 frames per second.
Sequences shown here were recorded in the MPEG format. Only one centered neural
network was deployed, the post-processing strategy was of type 3, see Section 6.2.4 on
page 38. Further, in Section A-2-4 we performed a multiple resolution scan. Otherwise,
just single resolution scans were sufficient to track the faces reasonably.

A-2-1  Different Illuminations and Background

Figure 51 demonstrates the robustness of our Moving Picture Detector in various light-
ing conditions. A person is walking through an office, followed by a camera. The back-
ground changes considerably, but there are virtually no false detections.

As you may notice, the lighting conditions change from dark to light. Face detection is
still assured, due to zero-mean centring of the input frames in the preprocessing section
of the face detector.



References

Fast Multi-Scale Face Detection 10 July 1998 73

FIGURE 51. With Different Illuminations and Background (one scale)



References

Fast Multi-Scale Face Detection 10 July 1998 74

A-2-2  Multiple Faces

Here we have a sample demonstration the face detectors capability of multiple face
detection. Since we applied arbitrating strategy three where only highly probable faces
get accepted, some may get lost in the detection process. To combat this behaviour, the
detection level was set slightly lower to allow more faces being detected. As a draw-
back we did also encounter more false detections. In addition, all persons are not at the
same distance from the camera, this influences also detections values in an unpredicta-
ble way, depending on what examples the neural network was trained on and how it
adapted to these.

FIGURE 52. Multiple Face Detection (one scale)
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A-2-3  Rotation, Scale-Changes (one resolution)

Even though we applied just a one resolution scan of the input frames, the object can
vary the distance from the camera and still get detected. That’s because the neural net-
work was trained on face image taken at slightly different distances as well, see “Train-
ing Database” on page 10. Sideward tilt of the head is possible, but both eyes must be
still visible, otherwise the face detector looses the face as can be seen in Figure 53.

FIGURE 53. Sidewards Tilt and Scale Changes (one scale)

Face detection of rotated faces is quite limited, see Figure 54. This was expected,
because there are only a few slightly rotated faces in the training database. This could
possibly be addressed by the method suggested in Section 10.6 on page 64.

Downwards tilted faces are easier detected than upwards tilted ones, this may be due to
the fact that more faces of the former type are in the training base. Further on, un
upwards tilted face seems to be smaller, than an upright one, leading to a non-detection
with a given sliding-window size having a superior size. Another reason may be that
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eyes are less shaded when the face looks up, so they are also less dominant. The upper
part of the face region is more important than the lower part as has been recalled in [4].

FIGURE 54. Rotation and Upwards/Downwards Tilt (one scale)

A-2-4  Scale Changes (two resolutions)

Figure 55 and 56 show frame scans performed at two resolutions: a face at close dis-
tance from the camera gets - upon successful detection - marked with a larger square
than when being further away. Note that the face detector works fine also with persons
wearing glasses (if the glasses are not too dominating).
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FIGURE 55. Scale Changes (two scales) 1

FIGURE 56. Scale Changes (two scales) 2
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B  Sources

B-1  Hardware

• Frame Grabber
The Sun Video Plus (Osprey-1500) card controls the video camera and provides
audio/video processing engines for a broad range of multimedia applications on Sun
PCI-based workstations. The Osprey-1500 is a video/audio processor designed as a
cornerstone for video communication systems.Through different microcode mod-
ules, video standards such as H.261, H.263, CellB, JPEG, MPEG-1 and uncom-
pressed formats can be supported with no change in the hardware.

• Video Camera
Just one relative low cost video camera will be used (no stereo-view of objects).

• Technical choices
- Operating system for the actual setup: Solaris 2.5.6 running on an Ultra-Sparc 30.
- Programming language: C

B-2  Software

• FFT Library
For this project FFTW (developed at the MIT by Matteo Frigo and Steven G. John-
son.) will be used, which is a C subroutine library for performing the Discrete Fou-
rier Transform (DFT) in one or more dimensions. The benchmarks performed on a
variety of platforms, show that FFTW’s performance (time needed by the FFT to
compute N x N images) is typically superior to that of other publicly available FFT
software.

• MLP
Source code of a simple Multi-Layer Perceptron from the Carnegie Mellon Univer-
sity was available, see 12.3. This helped greatly speeding-up the implementation of
a running fast neural network that initially performed face recognition and got later
converted into one doing face detection.

• Compiler
The cc C-compiler delivered the best results on the platform we used. Several opti-
mization flags were activated in order to minimize execution time of the face detec-
tors:
-DSOLARIS: Indicates the operating system we are using, works like the #define
preprocessing directive.
-fast: Selects the optimum combination of compilation options for speed, depending
on the platform in use. This provides close to the maximum performance for most
realistic applications. With the sparc platform, methods such as native (generate
code targeted for a certain processor and its instruction set) and dalign (allows the
compiler to generate double-word load/store instructions wherever profitable for
improved performance) are being activated automatically.
-xO5: Object code optimization. This flag generates the highest level of optimiza-
tion. It uses algorithms that take more compilation time or that don not have as high
a certainty of improving execution time.
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IDIAP is a non-profit research institute which was founded in 1991 on the occasion of
the 20th anniversary of the Dalle Molle Foundation. The foundation was originally
focusing on studies in algorithmic linguistics and became, in 1985, the Dalle Molle
Foundation for the Quality of Life. IDIAP is one of the three semi-public research cent-
ers founded by the Dalle Molle Foundation, after ISSCO in Geneva and IDSIA in
Lugano, primarily concentrating on automatic translation and fundamental artificial
intelligence.
IDIAP is primarily funded by long-term support from the City of Martigny, the Canton
of Valais, the Swiss Confederation and Swisscom among others. In addition, IDIAP
receives substantial research grants from the Swiss National Science Foundation
(SNSF) for national projects and the Swiss Office for Science and Education (SOSE)
for European projects. Today there is and average of about 25 scientists in residence at
IDIAP including permanent staff, postdoctoral fellows, PhD students and industrial
visitors. IDIAP’s research activities are of both theoretical and applied nature. Focus-
ing on a few, well defined research axes, IDIAP carries out fundamental research and
develops prototype systems to validate its models against the reality of applications.
The main research and development activities of IDIAP are centered on the general
issues of perception, cognition and pattern analysis (mainly to respond to the present
and future needs related to user-machine interaction). In 1996, the activities were split
up among three research groups:

• Machine learning, including artificial neural networks, data analysis and data
knowledge extraction

• Speech processing, including automatic speech recognition and speaker verification

• Vision, including visual speech/speaker recognition and handwriting recognition

Institute Eurécom was created, in 1992, jointly by Ecole Nationale Supérieure des
Télécommunications de Paris (ENST) and the Federal Polytechnic Institute of
Lausanne (EPFL) to offer a curriculum in communications system engineering. After
an undergraduate education in telecommunications, students from either school and
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from associated establishments (like Politecnico di Torino) join Eurécom for a three-
semester graduate curriculum constituting the final phase of their engineering studies.

This approach is designed to satisfy growing demand from corporate users, manufac-
turers and operators in the field of telecommunications, for high level generalist engi-
neers able to become the architects of future communications systems, i.e. able not
only to master the technologies of these networks, but also to match their services to
end-users' needs, taking related socioeconomic effects into account.

Students major in the following fields (Current research activities are indicated like-
wise):

• Corporate Communications
- High speed ATM networks
- Network security
- Simulation and network management
- Network infrastructure for multimedia applications

• Multimedia Communications
- Multimedia document indexing
- Image and video for multimedia applications
- Multimedia collaborative applications

• Mobile Communications
- Digital signal processing
- Radio system engineering
- Mobile internetworking

Each option is organized by a Research Unit. The relations and cooperation of the
Units with industrial partners insure the high level and practical applicability of the
courses.

Swiss Federal Institute of Technology - Lausanne

• Founded in 1853 (Ecole Speciale de Lausanne).

• Became E.P.F.L in 1969 (Swiss Federal Institute of Technology, Lausanne).

• 704 degrees awarded in 1992: 420 Engineers and Architects, 122 PhD, 162 Post-
graduate certificates.

• 1000 research and teaching assistants.

• Departments:
Architecture, chemistry, electrical engineering, civil engineering, rural engineering,
computer science, material science, mathematics, mechanical engineering, micro-
technics, physics.


