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ABSTRACT

We propose a running demonstration of coupling between an
intermediate processing step (named CASA), based on the
harmonicity cue, and partial recognition, implemented with
a HMM/ANN multistream technique [2]. The model is able to
recognise words corrupted with narrow band noise, either
stationary or having variable center frequency. The principle
is to identify frame by frame the most noisy subband within
four subbands by analysing a SNR-dependent representation.
A static partial recogniser is fed with the remaining
subbands. We establish on Numbers93 the noisy-band
identification (NBI) performance as well as the word error
rate (WER), and alter the correlation between these two
indexes by changing the distribution of the noise.

1. INTRODUCTION

Speech recognition methods are sensitive to noise, because
matching between input acoustic vectors and templates, even
if intrinsically robust, does not support bias and variance
introduced by interfering sources. Because interferents are
generally non-stationary and their statistics unknown (i.e.,
no model of the interferent is available), one strategy is to
optimise the use of the available features. This is referred as
"speech enhancement". But enhancing the speech against a
background, before recognition,  requires a priori knowledge
about the reliability, the specificity, and the redundancy of
the features to be enhanced. The problem is: what kind of a
priori knowledge ?

1.1 CASA methods

The goal of CASA (Computational Auditory Scene Analysis)
is to model auditory integration of complex sounds presented
in an auditory scene context, and to understand how percepts
of these sounds are unified despite their apparent dispersion
in the auditory representation, even when several sources
interfere; i.e., how components belonging to each source are
extracted and grouped. Perceptually, this results in a
streaming effect [3]. Speech is a rich complex sound,
expected to be processed and streamed by the auditory system
in a similar manner to other complex sounds.

Since the task is to communicate, speech is decoded to
achieve identification. This involves phonetic features, so
the attributes of speech as a complex sound (i.e., the
primitive attributes) are not necessarily useful at the
recognition level, but these could participate in their
extraction and/or in the streaming effect. The goal of
coupling between CASA and speech recognition is to
improve identification of the speech in the presence of

interference. CASA could improve the extraction step to feed
the recogniser with enhanced speech and/or could participate
in the grouping of components belonging to different
sources.

1.2 Structure and Robustness

Robustness is conferred by the structure of energy
distribution observed in the time-frequency representation.
Since the energy of one speech source embedded in noise is
not uniformly distributed within this representation, salient
regions of speech appear, those having a positive local SNR
(Signal Noise Ratio). Spectrally, formants are robust
phonetic features because the local SNR of peaks is likely to
be better whatever the background. Temporally, bursts,
amplitude and frequency modulations are other structures
common to complex sounds. In the temporal domain,
enhancement is allowed by combining a temporal derivative,
preceded by spectral and temporal integration. This is a first
example of a primitive extraction mechanism (common to
complex sounds), in which energy is not the only factor of
robustness, since it is coupled with another characteristic.
This principle is the basis for the success of pre-processing
methods like RASTA-PLP [8]. A fine observation of the
acoustic structure of the speech provides other cues which
could be efficiently combined with energetic salience to
produce enhancement. The enhanced representation is named
S(E, A) where E is energy and A a supplementary attribute.
Here, we have S(E, dE/dt). We will show that harmonicity is
another cue, providing S(E, H), but needing an intermediate
representation to be processed.

1.3  Redundancy,  SNR-dependent
selection,  and partial recognition

Now, the extracted information is not necessarily in the
proper form to feed a normal recogniser. Because the speech
signal is redundant, a truncated acoustic representation is
sufficient to perform partial recognition, as demonstrated by
Green, Cooke et al. [4,6]. Using a Gaussian Classifier, the
most simple version is the "marginal" one, which ignores
missing values. A second method reconstructs the data in
order to evaluate the cepstral coefficients, to improve
recognition. Investigations [4, 6] using these tools show
that (1) deletions can be applied to the input time-frequency
representation without great degradation of performance (2)
for one mixture, a good selection criterion for time-frequency
regions is produced by computing local SNR between the
original signals, here clean signal and noise (the threshold
is fixed around 0 dB). This shows that energetically salient
regions carry a significant part of the information needed by
the recognition process, and that E is the main factor of



robustness. Selecting the regions where the local SNR is
high and ignoring the rest is equivalent to a speech
enhancement technique producing S(E, ø) without an additive
cue. But these are "simulations", and without reference
signals, the problem is to specify a SNR-dependent selection
process with similar performance. Green, Cooke et al. [4, 6]
suggest applying CASA methods to extract the same
features; for example to track formants with interference; but
this has never been shown. The purpose of this paper is (1)
to define a model of S(E, H) carrying sufficient phonetic
information to achieve robust recognition (2) to put forward
an operational partial recognition method.

2. CASA LABELLING

2.1 How to build S(E, H) ?

Now, we combine the harmonicity cue with the energetic
salience to derive S(E, H). Here, this representation is
designed to be compatible with the partial recognition
technique, and it is defined as a set of data selected from the
time-frequency representation (i.e., "masked" data [6]), and
not as a full "enhanced" representation. To understand the
principle, remark first that the Fourier spectrum of a
stationary voiced vowel is formed by two superimposed
structures having different spectral scales: a comb (fine
grain) carrying formant peaks (coarse grain). Here,
harmonicity is the additive structural information
represented by regularly spaced peaks. Harmonic structure
can be used as a pointer to formants, but a sieve process is
needed to decode it. This is the aim of the so-called "fo-
guided" methods which extract a harmonic comb after
characterising its fundamental frequency (fo). These remain
SNR-dependent because these fine structures are masked when
not sufficiently energetic. In auditory-scaled representations
and in the high-frequency region, harmonicity appears in the
temporal domain as beating, because these higher harmonics
are unresolved. In order to work with auditory
representations, we propose (as in [1]) to analyse
harmonicity after demodulation, which is based on half-wave
rectification (HWR) and bandpass filtering in the pitch
domain. The main advantage of demodulation is to extract
the envelope of beating harmonics to characterise it with
other signal processing techniques than the sieve. In the
modulation spectrum (i.e., a FFT applied after demodulation,
Fig. 1a), a harmonic signal is represented by a peak at fo
(with some harmonics, not figured), far easier to detect than
the initial series of peaks.

The modulation spectrum allows an enhanced full spectral
representation [1], but envelope analysis can be achieved in
order to build a mask. The method proposed by Gaillard et al.
[5] includes a variance estimate, the variance of zero-
crossing intervals, to define a local decision model (Fig.
1b). This approach strongly differs from classical fo-guided
methods based on the mean (eq. to 1/fo estimate). This
allows a decision criterion to label time-frequency regions,
in order to get a mask. Label 1 is assigned to regions where a
harmonic comb is energetically dominant, according to a
decision threshold. Otherwise, regions get the label 0.
Finally, S(E, H) is the set of regions receiving the label 1.
We show in Fig. 1 the principle of decision models based on
other intermediate representations after demodulation: the
modulation spectrum and the autocorrelation (Acorr).
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Figure 1 : Four SNR-dependent methods used to detect
locally in the time-frequency plane a dominant harmonic
comb (plotted +) competing with a background. Fundamental
frequency estimate is an abscissa value. All methods are
based on pre-processing by demodulation (HWR and
Bandpass filtering), allowing dependence on harmonicity.
Boundaries of the pitch domain are plotted. a) Modulation
spectrum: After FFT (eq. to AMmap  [1]). M1 is the peak
module, and Mo is the sum within the pitch domain, so that
M1/Mo estimates the modulation rate b) Zero Crossing
Interval Statistics: Based on mean µ and standard deviation σ
[5]. The threshold is defined to optimise harmonic comb
detection, to label 1: "harmonic-dominant region" or 0:
"other", noise-dominant or inharmonic, or interferent
(hyperbolic boundary) c) Modulation Acorr: After
autocorrelation (Acorr) R1 is the peak value taken within the
pitch domain and Ro the 0 lag value. The modulation index
R1/Ro of the noise sets a reference threshold d) Modulation
Acorr entropy: the entropy (H ) of the same full
autocorrelogram is a global index also depending on
periodicity.

The characteristics and performances of these techniques
differ (comparative results are not available yet). The
modulation index R1/Ro, used in this paper, and the entropy
of the full correlogram (tested in [7]) allow large time-
frequency regions to be labelled.

2.2 Noisy Band Identification (NBI)

Now, when the mixture is speech with added localised noise,

the representation S(E, H) adapted to partial recognition

directly emerges from the selection of clean speech

components, i.e. from the noise/speech segmentation. Since

speech is composed of a majority of segments which are

more or less voiced, there are two main segmentation

strategies:  (1) determination of boundaries of the noise

region (2) differentiation between noise and harmonic

signal owing to the fine spectro-temporal structure. The

second strategy (which we use) is closer to an image texture

analysis. The role of fine-grain structures is clear when

compared with a low level detection strategy based on

spectral peak-picking. This directly depends on SNR, and it

is pertinent only if the task is to detect a sine-
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Figure 2 : Block-Diagram of the model. a) Four groups of subbands are built after FFT and spectral gating, indexed i=1..4.
The NBI process  (expanded in b)) selects one partial recogniser MLP(xyz) which performs recognition assigned to the center
frame. b)  For each group, after spectral gating, the demodulation process consists of Half Wave Rectification of the group-
wave recovered by iFFT followed by Band-Pass Filtering in the pitch domain.  The choice criterion is the modulation index
R1/Ro: the more modulated group-wave is likely not to include the noisy band. The corresponding group-wave is addressed to
the MLP(xyz).

wave, not a complex of peaks. The autocorrelogram of the
demodulated signal is able to serve as a basis for
differentiating between harmonic signal and noise with a
time window shorter than the phoneme duration, but needs a
large frequency bandwidth. A correlogram of a time-
frequency region including a noisy band is less modulated.
If the frequency domain is divided into four subbands, the
following methods can detect (one or more) noisy subbands
within the four: (1) use of a decision threshold to decide
locally, subband by subband, if noisy or not (2)  use of a
threshold to decide group-wave (group of three subbands,
see Fig. 2) by group-wave, if noisy or not (3) compare the
subband-waves (4) compare the group-waves. When there
is only one noisy subband, i.e. the task we have chosen,
the choice of one subband is forced and (4) is the best one:
this is robust because of the large frequency bandwidth and
moreover, this does not require the tuning of a threshold.
Consequently, we do not label the subbands independently,
and the result is a noisy band identification (NBI). To have
S(E, H), this subband, indirectly labelled 0, is removed
from the input time-frequency representation during a time
frame duration.  Finally, we show that this algorithm is
able to "pop-out" a band-limited noise corrupting harmonic
segments of the speech, before recognition and frame by
frame.

3. MODEL DESIGN

3.1 A static partial recogniser

We cut the frequency domain into four bands having limited
overlap [0, 901]Hz, [797, 1661]Hz, [1493, 2547]Hz,
[2298, 4000]Hz. Four partial recognisers MLP(xyz) are
trained with the four combinations of three of these
domains. After LPC pre-processing, input acoustic vectors
are formed by merging energy, 1st and 2nd derivatives, and

cepstral coefficients. Consequently, these four recognisers
are not independent, but this is an advantage because
covariance between subband data is taken into account.
This differs significantly from the use of independent
subband streams and we not intend to fuse their outputs.
Secondly, multistream is based on a hybrid HMM/ANN
recognition model [2] which is more robust than a Gaussian
classifier. Consequently, good performance is obtained
without reconstruction, even when large blocks are deleted
from the acoustic representation. Frame by frame, the
"best" MLP(xyz) is selected according to the evaluation of
S(E, H).  This is close to the simplest version, the marginal
one, of partial recognition methods based on a Gaussian
classifier. The main difference is we perform a static
partition. Finally, interfacing between NBI and recognition
is shown Fig. 2. It is dedicated to recognition of speech
added with a narrow band of noise. The computational load
is low, and our demonstrator is quasi-real time.

3.2 Implementation and testing

Recognition is implemented with the STRUT software
package, allowing choice of different pre-processing as
well as full-band and multistream recognition techniques.
During the recognition stage, a MLP (full-band or
MLP(xyz)) produces, frame by frame, a vector of 58 values.
These are good estimates of posterior probabilities; i.e.,
probabilities of the current acoustic vector to be a member
of each of the 58 phonetic classes. Training and test
procedures are carried out using Numbers93. This is a set of
2167 sentences transmitted by telephone, only including
numbers produced by 1132 speakers. A HMM is built for
each word, also including probability of transitions
between the phonetic states, to select the best word
candidate within a limited dictionary and to correct it.
Performance is expressed in WER (Word Error Rate).



Coupling of the two steps, CASA and Multistream
recognition, is achieved with a forward model having
compatible frames (Fig. 2). The frame duration is 125ms,
sliding by steps of 12.5ms. NBI and recognition are
established  for the center frame of 25ms. Input signals are
sampled at 8KHz. The same group-wave (spectrally gated
signal) feeds both processes.

4. PERFORMANCE

The rectangular band of noise, 9dB global SNR and 400Hz
bandwidth, is centred in each of the subbands previously
defined. We establish statistics for NBI (Tab. 1) and WER
(Tab. 2) by varying the noisy subband, on the same test
database.

N s b 1 2 3 4

a / b / c 15/65/78 36/81/89 28/77/88 21/82/87

Table 1 : Statistics of NBI-correct over all frames of the
test database (from Numbers93) with stationary noise (9 dB,
400 Hz bandwidth). The noisy subband (Nsb) varies from 1-
4. NBI method is based on modulation index R1/R0 (pitch
within [90, 250]Hz). a/b/c rates (%) are respectively: a-rate
of  selection of this subband with clean signal, silence
excluded (threshold at 40dB); b-NBI-correct all frames
confused; c-NBI-correct silence excluded.

N s b 1 2 3 4

FB a/b 38/47 40/41 45/40 73/24

c / d / e 19/20/27 15/16/18 12/13/17 12/14/18

Table 2 : WER statistics over all words of the test
database. FB: full-band MLP in noise with 2 different pre-
processing methods. a/b WER are respectively a-LPC
(clean: 12%); b-LogRASTA-PLP (clean: 11%). c/d/e WER
are respectively: c-MLP(xyz) with clean signal; d-Nsb
given; e-model.

Table 2 shows a strong improvement relative to the full-
band methods, even robust methods such as LogRASTA-
PLP. NBI and WER are negatively well-correlated (cor=-
0.98) for stationary noise. To decorrelate them, i.e. to get
different WER with the same NBI (Tab. 3), the effect of
noise distribution is analysed with two conditions having
the same number of 125ms noisy frames in each subband:
(1) random uniform; (2) regular, with a circular variation
of the noisy band.

Random Regular

NBI-correct 62 62

Silence excl. 66 67

Table 3 : NBI statistics over all frames of the test database
with non-stationarity of the noisy subband (9dB, 400 Hz
bandwidth), random or regular. Rates (%) are respectively:
NBI-correct all frames confused; NBI-correct silence
excluded.

Random Regular

FB a/b 49/41 49/43

N s b - g i v e n 30 26

M o d e l 34 29

Table 4 : WER statistics over all words of the test
database with Nsb variation. FB: full-band MLP. a/b WER
are respectively: a-LPC; b-LogRASTA-PLP.

First, we have worse NBI and WER rates in the non
stationary condition. Secondly, the better rates observed in
the regular condition (Tab. 4) can be attributed to the higher
degree of stationarity, but also to the time redundancy of the
speech signal and to the larger time scale of word
recognition, whereas the NBI process is memoryless.

5. MODEL IMPROVEMENT

The current model is adapted to a very limited range of
interfering conditions (hence, it uses strong a priori

knowledge of the interference characteristics). However,
the underlying principles are promising and can be
extended by: (1) counting the number of noisy subbands,
by applying the decision model subband by subband; (2)
use of an extended set of partial recognisers; ( 3 )
optimisation of the control. For example, if counting is
zero, the frame is addressed to the full-band MLP, if > 1,
integrate over, considering that 2 subbands are not
sufficient to get reliable identification; (4) use of different
frame duration's for CASA and recognition, because NBI
frame duration can be shorten without great degradation;
(5)  building a probabilistic model of labelling (local
estimate of P(label 0) and P(label 1)); (6) tracking of the
noise, with some a priori knowledge; (7) use of some
supplementary processing between the two steps; (8) use
of other attributes: with a binaural input and when
interfering signals are spatialised, Interaural Delay
Difference is a cue to label the time-frequency
representation and to get a S(E, ITD) closely compatible
with the current design. Onset/Offset and amplitude
modulation cues are other potential attributes to exploit.
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