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Abstract. All-optical multilayer perceptrons differ in various ways from the ideal neural network
model. Examples are the use of non-ideal activation functions which are truncated, asymmetric,
and have a non-standard gain, restriction of the network parameters to non-negative values, and
the limited accuracy of the weights. In this paper, a backpropagation-based learning rule is
presented that compensates for these non-idealities and enables the implementation of all-optical
multilayer perceptrons where learning occurs under control of a computer. The good performance
of this learning rule, even when using a small number of weight levels, is illustrated by a series of
computer simulations incorporating the non-idealities.
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1 Introduction

An important feature of multilayer perceptrons (MLPs) is their massive parallelism of weighted in-
terconnections between layers of non-linear processing elements. Conventional digital computers,
however, cannot take advantage of the parallelism inherent in MLP computation. A promising altern-
ative i1s the use of optics which offers the potential of parallel three-dimensional interconnections in a
compact way, using, for example, spatial light modulators as two-dimensional weighting devices [1].
In addition to matrix-vector multiplication that is performed optically, efficient optical MLP (OMLP)
implementations should incorporate a successful optical thresholding technique for non-linear pro-
cessing to preserve the parallelism inherent in optics, in contrast to the use of electronic non-linear
thresholding [2, 3, 4]. Such a technique avoids photo-electric conversion of light and eliminates elec-
tronic thresholding. An adaptive OMLP trained under computer control which could implement this
was described earlier [5, 6]. This architecture consists of liquid crystal television screens to imple-
ment the inputs and the weights [7], and liquid crystal light valves (LCLVs) to implement non-linear
thresholding.

The inclusion of commercially available LCLVs to implement optical thresholding into the back-
propagation rule for MLPs has been reported in a previous paper by the authors [8]. In specific, this
paper [8] has resolved the constraints of non-standard non-linear thresholding and its adapted back-
propagation rule compensates for the gain (steepness) of the activation function by modification of
the initial values of training parameters, showing good performance in computer simulations including
laboratory data for the LCLVs.

Following up the work on the adapted algorithm [8], in this paper our method further resolves
the restriction on the weights to non-negative values and to a small number of discrete levels, while
integrating the use of LCLVs for optical thresholding. All-positive network parameters stem from
the intensity-modulation based OMLP processing scheme. The use of discrete weights is required
for hardware implementations in electronics for chip area minimization and in analog electronics and
optics for improved discrimination of analog quantities. These aspects are discussed in more detail in
section 2.

The structure of the article is as follows. In Section 2, the use of LCLV response curves for optical
thresholding is explained and it i1s shown how to compensate for their translation along the z-axis
and their non-standard gain. Section 3 starts with a discussion and description of the transformation
of the network weights to non-negative values to compensate for the lack of optical subtraction.
Then, the need of quantized weight values and a weight discretization method that 1s applicable to
OMLPs are described. Next, the benchmarks and parameters employed in the computer simulations
are outlined. A first series of simulations evaluates the use of LCLV response curves and subtraction
compensation for non-negative OMLPs trained with the (adapted) backpropagation algorithm. A
range of computer simulations with the LCLV response data demonstrates the suitability of the
adapted weight discretization method for non-negative MLPs. Finally, some first results of recall on
an optical perceptron for handwritten digit recognition are presented.

2 LCLV Activation Functions

Foremost amongst optical thresholding devices are liquid crystal light valves with their non-linear,
sigmoid-like optical activation functions [9, 10], in addition to their practical characteristics (low
operating voltage, high contrast ratio at visible wavelengths, and low intensities required) which make
them easy-to-use devices.

The response data of the LCLV, or the optical activation functions, consist of a set of non-negative
z- and y-coordinates representing the write light irradiance and the read-out light irradiance of the
LCLV. A comparison of properties (translation, asymptotes, and steepness) of five sigmoid-like re-
sponses of four different LCLVs was made earlier [5] based on close approximations [10, 11], with a
generic sigmoid curve fit.
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Figure 1: Response curve of a LCLV device.
LCLV1 | LCLV2 | LCLV3 | LCLV4a | LCLV4b

Ié; 0.087| 0.0062| 0.043 0.79 1.40
Midpoint 18.0 146.0 74.0 1.00 3.30
Tangent 0.03| 0.003| 0.011 0.32 0.263
Pnew 0.12] 0.012| 0.044 1.28 1.052

Table 1: Estimation of the gain based on the generic curve fit () and on measured LCLV response

data (6116\7\]).

The main differences between the LCLV response curves and the standard sigmoid, 1/(1+e~%), are
that they are located in the non-negative quadrant and have a non-standard gain (steepness) (Figure 1
gives a typical example). The backpropagation algorithm has been adapted [8] to compensate for these
differences; this solution is summarized in section 2.1.

To perform computer simulations with the measured non-negative LCLV response data, a con-
tinuous approximation by linear interpolation is used here. The derivative of the response data curve,
which is needed in the backward pass of the backpropagation algorithm, is defined to be the derivative
of this linear interpolation. The midpoint of the interpolated data curves is defined as the x-value
corresponding to a normalized y-value of a half, in analogy with the standard sigmoid.

2.1 Adaptations for the LCLV Activation Functions

Simulation results [8] have shown that the backpropagation algorithm [12] with a standard choice for
the initial parameters (typically weights in a small interval symmetric around zero and a learning rate
less than 1) fails to converge when using the LCLV response data as non-linear thresholding functions.
In this section, an adapted backpropagation learning rule is described that consists in modifying the
initial training conditions as well as compensating for the gain of the activation function.

The initial weights for a multilayer perceptron are best chosen uniformly distributed in an interval
symmetric around zero [13]. However, this initialization method leads to non-convergence results
when using a sigmoidal activation function which has been translated along the z-axis, like the LCLV
response curves. Therefore, a weight initialization method resulting in neuron inputs centered around
the midpoint of the activation function has been used instead [8].

The curve fitting of the five LCLV response curves with a generic sigmoid translated along the
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Network M | Network N
Activation function | ¢(#) o(fBx)
Gain 1 8
Learning rate n n/3*
Weights w w/fB

Table 2: The relationship between activation function, gain, weights, and learning rate when increasing
the gain with a factor 3.

z-axis by é and along the y-axis by «, a range 7, and a gain 5:

¢(z) = a+ (mﬁ) ,

showed that the gain parameters 8 of LCLV1-3 differ greatly from the standard value of one [5] (see
the first row of Table 1). Such a non-standard gain cannot be combined with rules of thumb for
choosing the parameters of the backpropagation learning rule and does not guarantee convergence
of network training. This influence can be eliminated by applying a simple and precise relationship
(Table 2) that enables compensating for the non-standard gain in backpropagation neural networks by
changing the learning rate and the initial weights [15] while maintaining equivalent network behaviour
during training. The change of the gain with a factor 5 (as in network N in Table 2) can therefore
be compensated for by dividing the initial weights by 3 and the learning rate by 32.

In this paper, the respective gains of the five LCLV response curves are directly calculated from
their sampled data and not based on the generic curve fits as in our previous work [8]. This is founded
on the analogy between the LCLV response curves and a sigmoidal function that has been translated
along the z-axis:

1
R
This function has the property that its gain 3 is equal to 4 times the tangent in its midpoint (which is
also its inflection point). This relationship can easily be applied to the measured LCLV response data
by determining their midpoints, estimating the tangents at these midpoints, and multiplying these by
4 to get an estimate of the gain. The resulting values are presented in Table 1 and show once more
the non-standard gains fnew of the LCLV responses. The advantage of these new gain estimates is
that they are not biased towards a decidedly negative lower asymptote, as is the case with the gain
estimates obtained from the generic sigmoid. It should also be noted that the difference between £
and fpew is quite small (less than a factor of 2), so that actual difference in performance as compared
with those in Ref. 6 is expected to be small.

3 Discrete Non-Negative Multilayer Perceptrons: Theory and
Experiments

In this section, the subtraction compensation method is described and how it can be combined with an
adaptation of the weight discretization method [16]. The performance of these techniques is evaluated
in a series of experiments on training all-positive discrete MLPs with five different LCLV response
curves as non-linear activation functions.
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3.1 On Subtraction Compensation and Weight Discretization
3.1.1 Subtraction Compensation

In optical neural networks where information is coded in light intensity, as in our ONN [5], all variables
including the interconnection weights can only be represented by non-negative quantities. This lack
of negative values and the intricacy of an optical mechanism for irradiance subtraction are important
limiting factors for the development of optical neural networks. Optical subtraction based on super-
posing polarized light intensities has only been demonstrated in rather simple optical systems [14],
and 1t is practically impossible to realize in massively parallel optical neural networks. Some other
options are offered in the use of different encoding schemes such as phase or wavelength encoding, but
these techniques are virtually unexplored. Subtraction is, therefore, usually realized as an electronic
difference of two photo-detected quantities that have been separated spatially [17], temporally [2], or
by polarization encoding [18]. Such schemes prevent all-optical neural processing at hidden layers and
necessitate serial processing for electronic thresholding instead of spatial parallelism using LCLVs. In
this publication, a method is used that is based on a mathematical technique for subtraction com-
pensation, which offers a scheme for implementing all-positive neural networks that are trained under
computer control as described earlier [19]. This solution is based on a transformation of the network
weights to the positive domain, enabling uninterrupted forward propagation of light in OMLPs.

The untransformed weight from neuron 7 to neuron j is denoted by wj;;, the untransformed bias of
neuron j is denoted by 6;, and its activation value is indicated as a; (see the Appendix for a detailed
description of MLPs). Transformed all-positive weights w;’ have been obtained [19]:

A

" _ J
Sowla;
IRt} et

)0}, (1)

= max{wj;(1

where

o
Wiy = Wij — Wmin,

/
6]' = 6] — Wmin g Qg ,

)

and

where Wy, 1s the minimum over all original weight values w;; and bias values ¢;. The all-positive
argument of the non-linear function ¢ is:

§ : § : "
Wi — 9]' = wi]»ai.
13 13

The final all-positive weights w;; can therefore easily be obtained by carrying out the transforma-
tions on a host computer and can then be mapped on a weight implementation device for matrix-vector
multiplication of the transformed weight matrix wg; and activation values a;, like a liquid crystal tele-
vision (LCTV).

An example of the resulting non-negative networks where the LCLV4b data curve is used as
sigmoidal activation function is shown in Figure 2. This gives a solution of the XOR problem
(zor(xz,y) = xy + Ty) with only two hidden neurons and two non-negative weight levels: 0 and 6.985.
Four different networks are depicted corresponding to the fact that the non-negative weights, wé},
depend on the (four) input patterns (activation values a; in Eq. (1)).

3.1.2 Weight Discretization

It is required to have discrete weights in electronic and optical neural network implementations, when
device operation is quantized and/or the quantization of network parameters is beneficial for reducing
VLSI surface area. Examples are optically controlled photoconductive synapses [20], the strength of
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Figure 2: A solution for the XOR(2) problem with two weight levels: the absence of a connection
corresponds to a zero weight otherwise the weight is equal to 6.985. Each network is depicted from
left (inputs) to right (outputs).

which can be modulated by changing the discrete pixel lengths of bars of light, and a polarization-
based implementation that represents each weight by 16 spatially multiplexed binary valued pixels in
a ferroelectric liquid crystal (hence allowing 16 gray level weights) [21].

In the ONN architecture [5], the interconnection weights are represented by the pixels of a liquid
crystal television screen that, in principle, provides 256 grey levels. However, a further reduction of
the number of different weight values is beneficial for various reasons. Firstly, the mapping of weight
values to an optical device is often non-linear [4, 21]. When only a few weight levels are used, it is
simpler to linearize such a weight mapping and reduce the inaccuracy. Secondly, a small number of
weight levels provides the possibility of using ferroelectric liquid crystals with binary valued pixels
to represent the weights in an efficient way. Important additional advantages of such a device are
increased processing speed, a linear mapping of the weights, and compactness [21].

To obtain successful network learning in the presence of discrete weights, an existing weight dis-
cretization method based on backpropagation [16] (described in detail in the Appendix) has been
adapted for a OMLP with optical thresholding. It is easily implemented, and is suited for chip-in-
the-loop learning. It integrates well with the subtraction compensation technique and can handle a
precision of as low as a few bits. The basic idea of our weight discretization method is to use discrete
weights in the forward pass and continuous weights in the backward pass. The continuous weights are
discretized by mapping them to the closest discretization level with a multiple thresholding function.

To combine discretization of the weights with the subtraction compensation scheme for non-
negative networks, a new multiple thresholding function has been designed for the discretization
method described in the Appendix. The discretization levels are chosen to be equidistant, the min-
imal discrete weight value is zero, and the discretization levels are based on the maximal value w4,
of the (non-negative) weights of the pre-trained continuous network. The size of the discretization
step can be controlled by changing the parameter Discr and the set of d discretization levels is:

{w | n:1,2,...,d}. (2)
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Therefore, the maximal discrete weight value is equal t0 wpnae/Discr. The combination with the
transformations described in section 3.1.1 is straightforward: each wg; is mapped to the closest dis-
cretization level using the multiple thresholding function (2).

3.2 Experiments

A set of benchmark problems including three real-world problems and the eXclusive OR (XOR)
problem has been used to evaluate with computer simulations the proposed techniques for training
discrete, non-negative MLPs. These benchmarks have been chosen because they are well-known in
the machine learning community and, in the case of the Digit benchmark, because of its practical
relevance as a test bed for an optical implementation.

eXclusive OR (XOR) The training set consists of the boolean exclusive OR function. Tt is the
classical example of a simple problem that is not linearly separable [12].

Sonar This data set was originally used by R. Gorman and T. Sejnowski in their study of the
classification of sonar signals using a neural network. The task is to discriminate between sonar
signals bounced off a metal cylinder and those bounced off a roughly cylindrical rock [23]. Each
pattern is a set of 60 numbers in the range [0, 1]. The corresponding output patterns are the two unit
vectors.

Wine is the result of a chemical analysis of wines grown in a region in Italy which are derived from
three different cultivars. The analysis determined the quantities of 13 constituents found in each of
the three types of wines. A wine has to be classified using these 13 values, which have been scaled to
the interval [0, 1]. The target patterns are the three unit vectors [24].

Digit  This benchmark consists of a subset of 1000 patterns out of a database of more than 20000
digitized handwritten characters [25]. Each digit was scaled to fit into a 32 x 32 matrix, and each
pixel is represented by an eight bit value. To save computation time and space the 32 x 32 matrix has
been converted to an 8 x 8 matrix, by taking the average of 4 x 4 sub-matrices, and scaling the input
values to the interval [0, 1]. The target patterns are the ten unit vectors.

The benchmark characteristics and the training parameters are listed in Table 3. Two benchmarks
(XOR and Sonar) have been used to evaluate straightforward on-line (weights are updated after each
pattern presentation) and batch (weights are updated after presentation of the whole training set
(epoch)) backpropagation training. In this case the criterion for training convergence was that for
all patterns in the training set the absolute difference between each of the actual network outputs
and their corresponding target values is at most £.. Actually, for the Sonar benchmark an £. has
been used when training the continuous network and a less restrictive €4 when training the discrete
network. While the results on these benchmarks indicate the capability to learn and recall a mapping,
the other two benchmarks (Wine and Digit) are used to assess the generalization performance, that
18, the ability of the network to correctly classify examples that were not used during training. In this
case, the pattern set is split up in a training, validation, and test set as is explained in more detail in
section 3.2.1.

All the simulation results are averaged over a number of runs (“4#Runs” in Table 3) with a different
random weight initialization from the initial weight range. FEach of the computer simulations is
performed with the five interpolated curves of LCLV response data described in section 2. In fact,
the ¢ criterion has been slightly refined to take into account that the minimal y-value of the LCLV
response curves differs from zero (with a maximum y-intercept of 0.06 for LCLV3). Therefore, all
zero-valued targets in the benchmark sets have been replaced by these minimal values to be able to
compare the different curves in a fair way.
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benchmark | network pattern set sizes | #Runs | . | eq |learning | momentum initial
topology® [ train. | valid. | test rate weight range
XOR 221 1 - - 100 J01]01] 03 0.9 [—1, +1]
Sonar 60-8-2 104 - - 5 0.3]0.4 0.1 0.9 [—0.5,—1—0.5]
Wine 13-6-3 89 44 45 10 - - 0.3 0.9 [—0.5,—1—0.5]
Digit 64-64-10 500 250 | 250 5 - - 0.1 0.5 [—0.5, —1—0.5]

Table 3: Summary of the benchmarks and parameters used in the experiments.

In all simulations two standard training acceleration parameters have been used, namely a mo-
mentum term p [12] (see Table 3) and a flat spot constant [26] of 0.1. A momentum term incorporates
previous weight updates in the weight update equation (step 4 in the backpropagation algorithm de-
scribed in the Appendix) to smooth out oscillations. The flat spot constant is a constant added to
the derivatives of the activation function ¢’ (see also step 4) to prevent it from being too close to zero
which would lead to very small weight updates and slow training progress. It has been shown that
the gain theorem can easily be extended to include these parameters [15].

3.2.1 Measuring Generalization Performance

To validate the quality of a network during training and to test the performance afterwards, the
complete available pattern set was partitioned, respecting an equal distribution of the different classes,
into three sets: a training set with 50% of the total patterns and a wvalidation set, and a test set, each
of these with 25% of the patterns (see Table 3 for the sizes of these sets for the Wine and Digit
benchmarks). The evaluation of the generalization performance is done by eross validation with early
stopping, where the decision to stop training is based on the error on the validation set. This is a
good way to avoid over-fitting of the network to the particular training set used. For the experiments
in this section, a description of cross validation with early stopping has been used as a basis [22]. The
network performance is indicated by the mean squared error percentage that is normalized for the
number of output neurons and the number of patterns:

1 P N ,
E = 100WZZ(Opn _tpn) )

p=1n=1

where N is the number of output neurons of the network, P is the number of patterns in the data set
considered, opy, is the activation value of output neuron n for pattern p, and t,, its target value for
the problem at hand.

The network is trained using only the training set and after every five epochs the validation set is
presented to measure the generalization error. Two different measures have been used to decide when
to stop training. The first one is the training progress in a training strip of five epochs which gives
a measure of the change in the training error over five epochs. The second one is the generalization
loss which indicates the relative increase of the current validation error with respect to its minimal
value so far. These two parameters are measured every five epochs, after presenting the validation
set. Training is stopped when one of two different situations occurred: training progress sank below
0.1 (measured in parts per thousand) or the generalization loss went beyond a threshold of 5.0 (in
percent) in ten consecutive measurements. This means that training is considered concluded either
when the training error stagnated or when a reduction on that error lead to a successive deterioration
in the generalization properties of the network. After stopping the training, the test set is presented
using the network weights that provided the lowest validation error. The results presented for the
benchmarks using generalization are all based on the values measured for that optimal network.

INumber of neurons in the input-hidden-output layers.



IDIAP-RR 97-02 9

| LCLV | Method | %Conv | # of epochs | | LCLV | Method | %Conv | # of epochs |
LCIV1 | On-line BP | 99.0 142.9 LCILV1 | On-line BP | 100.0 261.6
Batch BP 89.0 35.8 Batch BP 100.0 444.8
LCIV2 | On-line BP | 90.0 142.9 LCILV2 | On-line BP | 100.0 400.0
Batch BP 83.0 371 Batch BP 100.0 357.2
LCIV3 | On-line BP | 99.0 109.4 LCLV3 | On-line BP | 100.0 286.0
Batch BP 82.0 44.8 Batch BP 100.0 407.6
LCLV4a | On-line BP 74.0 116.3 LCLV4a | On-line BP | 100.0 955.6
Batch BP 68.0 33.6 Batch BP 100.0 411.2
LCILV4b | On-line BP | 100.0 132.2 LCILV4b | On-line BP | 100.0 412.6
Batch BP 78.0 112.8 Batch BP 100.0 499.8
Table 4: Results from the simulations (aver- Table 5: Results from the simulations (aver-
age over 100 runs) with XOR(2). age over 5 runs) with Sonar(8).
LCLV Method # of epochs | Square Error Percentage | Percentage of Misclassification

Train. | Valid. | Test Train. | Valid. | Test

LCIV1 | On-line BP 52.5 0.47 | 0.03 2.58 1.01 | 0.00 2.77

Batch BP 47.0 0.10 0.35 1.83 0.11 0.00 3.18

LCLV2 On-line BP 52.0 0.49 0.04 2.93 0.90 0.00 5.45

Batch BP 51.5 0.03 0.25 1.85 0.00 0.00 3.41

LCLV3 On-line BP 80.5 0.00 0.13 1.58 0.00 0.00 2.73

Batch BP 84.0 0.04 0.18 1.72 0.00 0.00 2.73

LCLV4a | On-line BP 93.5 0.12 0.10 2.71 0.22 0.00 4.77

Batch BP 87.5 0.01 0.03 2.10 0.00 0.00 3.86

LCLV4b | On-line BP 57.5 0.03 0.01 2.21 0.00 0.00 3.41

Batch BP 50.5 0.24 0.52 2.09 0.34 0.00 3.41

Table 6: Results from the simulations (average over 10 runs) with Wine(6).

In addition, results on the classification performance of the networks will also be presented. A
pattern is considered correctly classified whenever the network output corresponding to the correct
one is higher in value than all the other outputs. This procedure is called winner-takes-all (WTA)
[22] and can only be used in problems whose output is implemented as a 1-of-Ny, representation.

3.2.2 Experimental Results for Training Non-Negative MLPs

The experiments described in this section have been performed to evaluate the combined use of the
measured LCLV response data as non-linearities and the transformation of the weights to the all-
positive domain. This means that in each forward propagation step, bipolar weights w;; and biases 6;
are replaced by the all-positive w;; according to Eq. (1). Furthermore, the non-standard gain, fnew
in Table 1, of the LCLV response data is compensated for by changing the initial weight range and
the learning rate as described in section 2.1: the initial weights are divided by fpew and the learning
rate by Biew. These results with continuous (floating point) weights also give a basis for evaluating
the results in training networks with discretized weights (section 3.2.3).

The results of the series of experiments with a continuous network are in Tables 4 to 7, where
“G%Conv” stands for the percentage of converged runs and the mean values are calculated based on
the converged runs only.

An important observation is that the results for the 5 different LCLV response curves are quite
similar. The only exceptions are the relatively low convergence rate for the XOR(2) benchmark
with LCLV4a and the high percentage of misclassification for the Digit(64) benchmark with LCLV3.
For the LCLV4a response curve the reason might be its asymmetry (with an almost absent lower
asymptote) which perturbs training; for the LCLV3 response curve it might be caused by the fact
that its y-intercept is quite big (around 0.06) so that network outputs are never clearly “oft”. This
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LCLV Method # of epochs | Square Error Percentage | Percentage of Misclassification
Train. | Valid. | Test Train. | Valid. | Test
LCLV1 On-line BP 17.0 0.70 1.80 1.29 3.00 10.56 6.32
Batch BP 167.0 0.66 1.69 1.19 2.32 9.68 5.60
LCLV2 On-line BP 21.0 0.46 1.68 1.11 1.40 9.68 6.56
Batch BP 190.0 0.42 1.63 1.08 1.16 9.20 6.24
LCLV3 On-line BP 10.0 1.60 2.33 1.95 8.88 13.92 10.24
Batch BP 173.0 1.65 2.37 1.97 7.72 12.80 8.48
LCLV4a | On-line BP 90.0 0.03 1.71 1.04 0.04 10.48 6.16
Batch BP 176.0 0.55 2.14 1.61 1.04 11.04 6.40
LCLV4b | On-line BP 32.0 0.31 1.76 1.23 0.44 10.08 6.24
Batch BP 222.0 0.38 1.78 1.28 0.52 10.08 6.72

Table 7: Results from the simulations (average over 5 runs) with Digit(64).

| LCLV | Method | %Conv | # of epochs | LCLV Method Percentage of Test Misclassification
LCIV1 On-line BP 62.0 50.0 Weight Discretization Levels

Batch BP 80.0 8.3 ClT 2 [ 4] 6 ]38 |16
LCLV2 On-line BP 46.0 122.7 LCLV1 On-line BP | 4.77 || 15.68 | 6.82 | 5.91 | 7.27 | 6.59
Batch BP 72.0 15.7 Batch BP 3.18 || 37.05 | 5.00 | 4.77 | 4.09 | 5.00
LCLV3 On-line BP 79.0 37.3 LCLV2 On-line BP | 5.45 9.77 | 5.45 | 5.91 | 5.45 | 5.91
Batch BP 73.0 144.6 Batch BP 3.41 | 31.36 | 6.14 | 4.77 | 4.77 | 5.23
LCLV4a | On-line B 71.0 177.0 LCLV3 On-line BP | 2.73 || 63.18 | 31.14 | 14.32 | 7.50 | 3.86
Batch BP 67.0 31.8 Batch BP 2.73 || 60.00 | 50.45 | 19.32 | 9.55 | 4.55
LCLV4b | On-line BP 68.0 383.9 LCLV4a | On-line BP | 4.77 || 32.50 | 19.55 | 6.14 | 3.64 | 3.41
Batch BP 49.0 144.8 Batch BP 3.86 || 28.18 | 5.45 | 4.77 | 4.77 | 5.00
LCLV4b | On-line BP | 3.41 || 24.09 | 10.23 | 3.86 | 3.41 | 3.64
Batch BP 3.41 || 61.82 | 22.73 | 12.27 | 8.64 | 4.77

Table 8: Discretization results from

the simulations (average over 100 ) o ) .
runs) with XOR(2): two weight Table 9: Discretization results from the simulations (average

levels. over 10 runs) with Wine(6).

illustrates that, in general, our adapted learning rule compensates successfully for the characteristics
of the LCLV response curves. Also, the difference between the use of on-line or batch learning is quite
small. On-line backpropagation shows the best results in terms of percentage of converged runs for
the XOR(2) benchmark and in terms of number of iterations for Digit(64). Batch learning, on the
other hand, shows fast convergence on XOR(2) and gives the best classification rate on the test set
for the Wine problem.

A comparison of these results with the ones obtained in a benchmarking study (also including
Xor(2), Sonar, Wine, and Digit benchmarks) of different adaptive learning rate algorithms for ordinary
MLPs [27], shows that the influence of the optical non-idealities is as good as negligible and gives
comparable results.

3.2.3 Experimental Results for Training Discrete Non-Negative MLPs

For most benchmarks, the number of discretization levels, d, used in the simulations is subsequently
2,4, 6,8, and 16. For the more difficult Digit benchmark, d has been chosen equal to 2, 4, 8, 16, 32,
or 64. The networks resulting from continuous pre-training in section 3.2.2 have been used as initial
networks. Based on the results of some initial simulations the parameter Diser (Eq. (2)) was chosen
equal to one for the XOR(2) benchmark and equal to two for all other benchmarks. The number of
epochs included in Tables 8 to 12 is the number of epochs used for the discrete training only, and does
not include the continuous pre-training.

In Table 8, an overview of the discretization results for the XOR(2) benchmark with as little
as two weight levels is given. When comparing these with the results for continuous pre-training
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Figure 3: The number of weight levels versus the percentage of converged experiments for XOR(2)
with on-line backpropagation.

(Table 4), one observes that the percentage of converged runs for discrete training is considerably
lower (most notably for LCLV2 and on-line training where the percentage is halved). The evolution of
the percentage of converged runs based on the number of weight levels is illustrated in Figure 3. This
shows that the number of converged runs increases considerably with the number of weight levels.
This trend is clearly confirmed by the results for the Sonar benchmarks (Table 10). In this table, the
cases in which all runs converged, like for continuous pre-training (Table 5), have been set in bold
font. For the Sonar benchmark at least four different weight levels (2 bits) are needed for results
comparable to the continuous case, the LCLV4a curve being an exception for which at least 16 weight
levels are needed. These results also illustrate that, in general, the number of epochs needed for
training discrete networks decreases with the number of weight levels.

For the benchmarks that assess the generalization performance (Wine and Digit), the percentage of
misclassification on the test set has been set in bold font, whenever 1t was at most two percent higher
than for continuous pre-training. With such a small difference the performance is considered to be
satisfactory and comparable to the one obtained when using continuous weights. The generalization
results for the Wine benchmark are comparable with the results for the continuous network when the
number of weight levels is at least six, with the LCLV3 curve as exception for which 16 levels are
needed (which might again be caused by its high y-intercept). However, these results are biased by
the occurrence of several runs, where the network is not able to learn at all. This problem caused
by the discrete network getting trapped on an error plateau, is inherent to most weight discretization
methods and might be resolved by introducing a random (annealing) factor in the weight updates
[28]. To get a less biased idea of the possible performance, the average over the best five runs out of
ten is listed in Table 11. In this case, the results are close to the continuous ones with the number
of weight levels equal to 4 or 6. For LCLV2, the solutions with only four weight levels even show a
lower misclassification rate than in the continuous case. This might be interpreted as an illustration of
Occam’s razor which states that simple models (for instance with discrete weights) should be preferred
over more complicated ones.

The results for the Digit benchmark illustrate the challenging nature of this data set (Table 12).
For most LCLV curves, at least 8 or 16 weight levels are needed to obtain classification results that are
comparable to the continuous valued case. The on-line training with the LCLV3 curve is an exception
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LCLV Method Weight Discretization Levels
2 levels 4 levels 6 levels 8 levels 16 levels
%Conv | #epochs | %Conv | #epochs | %Conv | #epochs | %Conv | #epochs | %Conv | #epochs
LCLV1 On-line 0.0 - 80.0 477.2 100.0 328.6 100.0 88.4 100.0 58.6
Batch 0.0 - 60.0 2340.0 100.0 463.4 100.0 564.6 100.0 119.2
LCLV2 On-line 0.0 - 80.0 289.8 80.0 490.5 100.0 302.8 100.0 128.8
Batch 0.0 - 40.0 3662.0 80.0 2166.0 80.0 1378.2 80.0 134.2
LCLV3 On-line 80.0 1095.0 100.0 130.4 100.0 23.4 100.0 17.0 100.0 8.8
Batch 60.0 2241.7 100.0 794.2 100.0 151.2 100.0 51.4 100.0 13.6
LCLV4a | On-line 0.0 - 0.0 - 0.0 - 40.0 486.5 100.0 87.0
Batch 0.0 - 0.0 - 0.0 - 20.0 1949.0 40.0 3065.5
LCLV4b | On-line 20.0 965.0 60.0 374.3 60.0 517.3 20.0 104.0 60.0 182.0
Batch 0.0 - 60.0 969.0 60.0 579.7 80.0 239.0 100.0 135.6

Table 10: Discretization results from the simulations (average over b runs) with Sonar(8).

LCLV Method Percentage of Test Misclassification
Weight Discretization Levels
CJ 21 4 [ 6 ] 816

LCLV1 On-Line BP | 3.18 || 7.27 | 5.00 | 4.55 | 5.45 | 5.45
Batch BP 2.27 1 22.73 | 3.18 | 3.18 | 2.73 | 3.64
LCLV2 On-Line BP | 4.55 || 4.55 | 3.63 | 4.09 | 4.09 | 4.55
Batch BP 2.27 1/ 15.00 | 1.82 | 3.64 | 3.18 | 4.09
LCLV3 On-Line BP | 2.27 || 59.09 | 9.09 | 2.73 | 2.73 | 2.27
Batch BP 2.27 || 59.09 | 34.55 | 2.73 | 2.73 | 3.18
LCLV4a | On-Line BP | 3.18 || 20.45 | 8.18 | 2.73 | 2.27 | 2.27
Batch BP 3.18 || 11.82 | 4.09 | 4.09 | 4.09 | 4.09
LCLV4b | On-Line BP | 2.27 || 4.09 | 2.27 | 2.27 | 2.27 | 2.27
Batch BP 2.27 || 55.45| 5.91 | 4.55 | 3.18 | 2.73

Table 11: Discretization results from the simulations (average over the best 5 runs out of 10) with

Wine(6).

(due to its asymmetry) and even 64 weight levels are not sufficient in this case. It is interesting to note
that for LCLV4a and LCLV4b, the discretization results with 64 weight levels the misclassification
rate is even lower than for the continuous network, which offers yet another illustration of Occam’s
razor.

3.2.4 Experimental Results on an Optical Thresholding Perceptron

Initial experiments have been performed for (2-layer) perceptron recall using an optical system with
LCTVs to implement the input layer and the interconnection weight matrices and LCLVs to imple-
ment non-linear thresholding (the architecture is described in more detail in Refs. 5&29). Training of
the perceptron was done with our adapted training algorithm (including weight discretization, com-
pensation for the LCLV non-linearities, and transformation of the weights to the all-positive domain)
and was simulated on a computer. The data set used was a small subset of 50 digits from the Digit
benchmark (inputs having 16 gray levels) and weights were discretized to 8 gray levels. The resultant
discrete weights were implemented on the LOTYV of the optical perceptron for testing recall with 10
of the 50 digits in the training set. The optical recall was satisfactory with quite a good agreement
with the values obtained in the computer simulations [29].

A binary perceptron, trained using our adapted training rule, implemented with binary inputs
and weights in the same optical system also showed satisfactory recall results [30]. The advantage
of having binary weights and input values is that they permit the use of ferroelectric liquid crystals
having thousandfold faster response times than nematic LCLVs. Binary neural networks also have
the inherent advantages of digital vs. analog implementations.
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LCLV Method Percentage of Test Misclassification
Weight Discretization Levels

C [ 2 [ 4 [ 8 [ 16 [ 32 | 64
LCLV1 On-line BP | 6.32 || 21.92 | 12.32 | 11.76 | 9.36 | 7.92 | 7.36
Batch BP 5.60 ||12.48 | 6.96 | 6.24 | 6.48 | 6.08 | 5.68
LCLV2 On-line BP | 6.56 || 18.16 | 10.56 | 10.00 | 7.92 | 6.72 | 6.64
Batch BP 6.24 [[11.84| 7.28 | 6.48 | 6.64 | 6.40 | 6.40
LCLV3 On-line BP | 10.24 || 52.88 | 27.44 | 23.68 | 29.76 | 20.08 | 14.24
Batch BP 8.48 || 21.44 | 14.00 | 10.08 | 8.88 | 8.96 | 8.72
LCLV4a | On-line BP | 6.16 || 12.56 | 9.52 | 8.00 | 7.04 | 6.88 | 5.92
Batch BP 6.40 || 72.40| 960 | 7.12 | 7.04 | 6.48 | 6.32
LCLV4b | On-line BP | 6.24 (| 4760 | 9.52 | 6.80 | 6.48 | 6.40 | 5.84
Batch BP 6.72 [| 90.00 | 9.28 | 6.96 | 7.12 | 6.32 | 6.40

Table 12: Discretization results from the simulations (average over 5 runs) with Digit(64).

4 Conclusions

A flexible weight discretization algorithm has been combined with a transformation of the weights that
enables all-positive forward propagation in optical multilayer neural networks. This algorithm allows
successful training when discrete weights are used in hardware, such as implemented by liquid crystal
television screens in optical neural networks. Moreover, we include our method to compensate for
the differences between non-standard activation functions as available in hardware and the standard
sigmoidal activation function. The feasibility of a discrete non-negative multilayer neural network
using real activation functions as available in LCLV hardware is confirmed by the results of a series of
computer simulations. These simulations have been performed on four benchmark problems and using
the experimentally observed characteristics of five optical activation functions realized by off-the-shelf
liquid crystal light valves. We show that a weight accuracy of 1 to 4 bits is sufficient to get highly
satisfactory performance that is comparable with the results obtained when using continuous weights.
The results of the computer simulations are confirmed by initial experiments on an optical system for
perceptron recall on a small set of handwritten digits, that show good performance in agreement with
the simulated values.
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Appendix: Weight Discretization Algorithm

A multilayer neural network can have an arbitrary number of layers. Adjacent layers are fully inter-
layer connected. Here, the weight from neuron 7 to neuron j is denoted by w;;, the bias of neuron j
is denoted by @;, its activation value is indicated as a;, and ¢; denotes the target pattern value for
output neuron j. The on-line backpropagation algorithm is described by the following five steps:

1. Initialization Weights and biases are initialized with random values [13].

2. Pattern presentation An input pattern, which is used to initialize the activation values of the
neurons in the input layer, and the corresponding target pattern are presented.

3. Forward propagation During this phase, the activation values of the input neurons are propag-
ated through the network. The input of a neuron j, not in the input layer, is defined as:
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v = (D wijai) — 0.
i
The new activation value of neuron j is:

aj = ¢(yj)’
where ¢ is a differentiable activation function, for example, a sigmoid.

4. Backward propagation For each neuron an error signal é is calculated, starting at the output
layer and then propagating it back through the network:

6 = (ty — a;) 95 (y;) if j is an output neuron,

and
6 = (Z Srwir) o5 (v;) if § is not an output neuron.
k

After the calculation of all error signals, the weights are updated with learning rate parameter
7
Wyj = Wij + néjai.

5. Convergence test If no convergence, the next pattern is presented (goto Pattern presenta-
tion).

The weight discretization method starts by fully training the network with the backpropagation al-
gorithm. Next, the continuous weights are discretized by mapping them to the closest discretization
level using a staircase shaped multiple thresholding function. The so-created discrete weights are then
used for the forward propagation pass through the network. The errors obtained, which are based
on the difference between the actual and desired network outputs, are subsequently used to update
the continuous valued weights during the backward propagation pass. Note that pre-training with
continuous weights is not necessary, but is often included for faster convergence. The discretization
of the weights described by Fiesler et al. [16] uses d discretization levels with d=2,3,5, 7, or 9. The
discretization levels are symmetric around zero, except ford = 2 and are equidistant:

{n— {d;—lJ ‘ n:l,?,...,d}.
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