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Abstract� All�optical multilayer perceptrons di�er in various ways from the ideal neural network
model� Examples are the use of non�ideal activation functions which are truncated� asymmetric�
and have a non�standard gain� restriction of the network parameters to non�negative values� and
the limited accuracy of the weights� In this paper� a backpropagation�based learning rule is
presented that compensates for these non�idealities and enables the implementation of all�optical
multilayer perceptrons where learning occurs under control of a computer� The good performance
of this learning rule� even when using a small number of weight levels� is illustrated by a series of
computer simulations incorporating the non�idealities�
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� Introduction

An important feature of multilayer perceptrons 	MLPs
 is their massive parallelism of weighted in�
terconnections between layers of non�linear processing elements� Conventional digital computers�
however� cannot take advantage of the parallelism inherent in MLP computation� A promising altern�
ative is the use of optics which o�ers the potential of parallel three�dimensional interconnections in a
compact way� using� for example� spatial light modulators as two�dimensional weighting devices 
���
In addition to matrix�vector multiplication that is performed optically� e�cient optical MLP 	OMLP

implementations should incorporate a successful optical thresholding technique for non�linear pro�
cessing to preserve the parallelism inherent in optics� in contrast to the use of electronic non�linear
thresholding 
�� �� ��� Such a technique avoids photo�electric conversion of light and eliminates elec�
tronic thresholding� An adaptive OMLP trained under computer control which could implement this
was described earlier 
�� ��� This architecture consists of liquid crystal television screens to imple�
ment the inputs and the weights 
��� and liquid crystal light valves 	LCLVs
 to implement non�linear
thresholding�

The inclusion of commercially available LCLVs to implement optical thresholding into the back�
propagation rule for MLPs has been reported in a previous paper by the authors 
��� In speci�c� this
paper 
�� has resolved the constraints of non�standard non�linear thresholding and its adapted back�
propagation rule compensates for the gain 	steepness
 of the activation function by modi�cation of
the initial values of training parameters� showing good performance in computer simulations including
laboratory data for the LCLVs�

Following up the work on the adapted algorithm 
��� in this paper our method further resolves
the restriction on the weights to non�negative values and to a small number of discrete levels� while
integrating the use of LCLVs for optical thresholding� All�positive network parameters stem from
the intensity�modulation based OMLP processing scheme� The use of discrete weights is required
for hardware implementations in electronics for chip area minimization and in analog electronics and
optics for improved discrimination of analog quantities� These aspects are discussed in more detail in
section ��

The structure of the article is as follows� In Section �� the use of LCLV response curves for optical
thresholding is explained and it is shown how to compensate for their translation along the x�axis
and their non�standard gain� Section � starts with a discussion and description of the transformation
of the network weights to non�negative values to compensate for the lack of optical subtraction�
Then� the need of quantized weight values and a weight discretization method that is applicable to
OMLPs are described� Next� the benchmarks and parameters employed in the computer simulations
are outlined� A �rst series of simulations evaluates the use of LCLV response curves and subtraction
compensation for non�negative OMLPs trained with the 	adapted
 backpropagation algorithm� A
range of computer simulations with the LCLV response data demonstrates the suitability of the
adapted weight discretization method for non�negative MLPs� Finally� some �rst results of recall on
an optical perceptron for handwritten digit recognition are presented�

� LCLV Activation Functions

Foremost amongst optical thresholding devices are liquid crystal light valves with their non�linear�
sigmoid�like optical activation functions 
�� ���� in addition to their practical characteristics 	low
operating voltage� high contrast ratio at visible wavelengths� and low intensities required
 which make
them easy�to�use devices�

The response data of the LCLV� or the optical activation functions� consist of a set of non�negative
x� and y�coordinates representing the write light irradiance and the read�out light irradiance of the
LCLV� A comparison of properties 	translation� asymptotes� and steepness
 of �ve sigmoid�like re�
sponses of four di�erent LCLVs was made earlier 
�� based on close approximations 
��� ���� with a
generic sigmoid curve �t�
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Figure �� Response curve of a LCLV device�

LCLV� LCLV� LCLV� LCLV�a LCLV�b
� ����� ������ ����� ���� ����
Midpoint ���� ����� ���� ���� ����
Tangent ���� ����� ����� ���� �����
�new ���� ����� ����� ���� �����

Table �� Estimation of the gain based on the generic curve �t 	�
 and on measured LCLV response
data 	�new
�

The main di�erences between the LCLV response curves and the standard sigmoid� ��	��e�x
� are
that they are located in the non�negative quadrant and have a non�standard gain 	steepness
 	Figure �
gives a typical example
� The backpropagation algorithm has been adapted 
�� to compensate for these
di�erences� this solution is summarized in section ����

To perform computer simulations with the measured non�negative LCLV response data� a con�
tinuous approximation by linear interpolation is used here� The derivative of the response data curve�
which is needed in the backward pass of the backpropagation algorithm� is de�ned to be the derivative
of this linear interpolation� The midpoint of the interpolated data curves is de�ned as the x�value
corresponding to a normalized y�value of a half� in analogy with the standard sigmoid�

��� Adaptations for the LCLV Activation Functions

Simulation results 
�� have shown that the backpropagation algorithm 
��� with a standard choice for
the initial parameters 	typically weights in a small interval symmetric around zero and a learning rate
less than �
 fails to converge when using the LCLV response data as non�linear thresholding functions�
In this section� an adapted backpropagation learning rule is described that consists in modifying the
initial training conditions as well as compensating for the gain of the activation function�

The initial weights for a multilayer perceptron are best chosen uniformly distributed in an interval
symmetric around zero 
���� However� this initialization method leads to non�convergence results
when using a sigmoidal activation function which has been translated along the x�axis� like the LCLV
response curves� Therefore� a weight initialization method resulting in neuron inputs centered around
the midpoint of the activation function has been used instead 
���

The curve �tting of the �ve LCLV response curves with a generic sigmoid translated along the
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Network M Network N

Activation function �	x
 �	�x

Gain � �
Learning rate � ����

Weights w w��

Table �� The relationship between activation function� gain� weights� and learning rate when increasing
the gain with a factor ��

x�axis by � and along the y�axis by �� a range �� and a gain ��

�	x
 � ��

�
�

� � e��x��

�
�

showed that the gain parameters � of LCLV��� di�er greatly from the standard value of one 
�� 	see
the �rst row of Table �
� Such a non�standard gain cannot be combined with rules of thumb for
choosing the parameters of the backpropagation learning rule and does not guarantee convergence
of network training� This in�uence can be eliminated by applying a simple and precise relationship
	Table �
 that enables compensating for the non�standard gain in backpropagation neural networks by
changing the learning rate and the initial weights 
��� while maintaining equivalent network behaviour
during training� The change of the gain with a factor � 	as in network N in Table �
 can therefore
be compensated for by dividing the initial weights by � and the learning rate by ���

In this paper� the respective gains of the �ve LCLV response curves are directly calculated from
their sampled data and not based on the generic curve �ts as in our previous work 
��� This is founded
on the analogy between the LCLV response curves and a sigmoidal function that has been translated
along the x�axis�

�	x
 �
�

� � e��x��
	

This function has the property that its gain � is equal to � times the tangent in its midpoint 	which is
also its in�ection point
� This relationship can easily be applied to the measured LCLV response data
by determining their midpoints� estimating the tangents at these midpoints� and multiplying these by
� to get an estimate of the gain� The resulting values are presented in Table � and show once more
the non�standard gains �new of the LCLV responses� The advantage of these new gain estimates is
that they are not biased towards a decidedly negative lower asymptote� as is the case with the gain
estimates obtained from the generic sigmoid� It should also be noted that the di�erence between �
and �new is quite small 	less than a factor of �
� so that actual di�erence in performance as compared
with those in Ref� � is expected to be small�

� Discrete Non�Negative Multilayer Perceptrons� Theory and

Experiments

In this section� the subtraction compensation method is described and how it can be combined with an
adaptation of the weight discretization method 
���� The performance of these techniques is evaluated
in a series of experiments on training all�positive discrete MLPs with �ve di�erent LCLV response
curves as non�linear activation functions�
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��� On Subtraction Compensation and Weight Discretization

����� Subtraction Compensation

In optical neural networks where information is coded in light intensity� as in our ONN 
��� all variables
including the interconnection weights can only be represented by non�negative quantities� This lack
of negative values and the intricacy of an optical mechanism for irradiance subtraction are important
limiting factors for the development of optical neural networks� Optical subtraction based on super�
posing polarized light intensities has only been demonstrated in rather simple optical systems 
����
and it is practically impossible to realize in massively parallel optical neural networks� Some other
options are o�ered in the use of di�erent encoding schemes such as phase or wavelength encoding� but
these techniques are virtually unexplored� Subtraction is� therefore� usually realized as an electronic
di�erence of two photo�detected quantities that have been separated spatially 
���� temporally 
��� or
by polarization encoding 
���� Such schemes prevent all�optical neural processing at hidden layers and
necessitate serial processing for electronic thresholding instead of spatial parallelism using LCLVs� In
this publication� a method is used that is based on a mathematical technique for subtraction com�
pensation� which o�ers a scheme for implementing all�positive neural networks that are trained under
computer control as described earlier 
���� This solution is based on a transformation of the network
weights to the positive domain� enabling uninterrupted forward propagation of light in OMLPs�

The untransformed weight from neuron i to neuron j is denoted by wij� the untransformed bias of
neuron j is denoted by 
j � and its activation value is indicated as aj 	see the Appendix for a detailed
description of MLPs
� Transformed all�positive weights w��

ij have been obtained 
����

w��

ij � maxfw�

ij	��

�jP
iw

�

ijai

� �g� 	�


where

w�

ij � wij � wmin�

and


�j � 
j �wmin

X
i

ai�

where wmin is the minimum over all original weight values wij and bias values 
j � The all�positive
argument of the non�linear function � is�

X
i

wijai � 
j �
X
i

w��

ijai	

The �nal all�positive weights w��

ij can therefore easily be obtained by carrying out the transforma�
tions on a host computer and can then be mapped on a weight implementation device for matrix�vector
multiplication of the transformed weight matrix w��

ij and activation values ai� like a liquid crystal tele�
vision 	LCTV
�

An example of the resulting non�negative networks where the LCLV�b data curve is used as
sigmoidal activation function is shown in Figure �� This gives a solution of the XOR problem
	xor	x� y
 � xy � xy
 with only two hidden neurons and two non�negative weight levels� � and ������
Four di�erent networks are depicted corresponding to the fact that the non�negative weights� w��

ij�
depend on the 	four
 input patterns 	activation values ai in Eq� 	�

�

����� Weight Discretization

It is required to have discrete weights in electronic and optical neural network implementations� when
device operation is quantized and�or the quantization of network parameters is bene�cial for reducing
VLSI surface area� Examples are optically controlled photoconductive synapses 
���� the strength of
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Figure �� A solution for the XOR	�
 problem with two weight levels� the absence of a connection
corresponds to a zero weight otherwise the weight is equal to ������ Each network is depicted from
left 	inputs
 to right 	outputs
�

which can be modulated by changing the discrete pixel lengths of bars of light� and a polarization�
based implementation that represents each weight by �� spatially multiplexed binary valued pixels in
a ferroelectric liquid crystal 	hence allowing �� gray level weights
 
����

In the ONN architecture 
��� the interconnection weights are represented by the pixels of a liquid
crystal television screen that� in principle� provides ��� grey levels� However� a further reduction of
the number of di�erent weight values is bene�cial for various reasons� Firstly� the mapping of weight
values to an optical device is often non�linear 
�� ���� When only a few weight levels are used� it is
simpler to linearize such a weight mapping and reduce the inaccuracy� Secondly� a small number of
weight levels provides the possibility of using ferroelectric liquid crystals with binary valued pixels
to represent the weights in an e�cient way� Important additional advantages of such a device are
increased processing speed� a linear mapping of the weights� and compactness 
����

To obtain successful network learning in the presence of discrete weights� an existing weight dis�
cretization method based on backpropagation 
��� 	described in detail in the Appendix
 has been
adapted for a OMLP with optical thresholding� It is easily implemented� and is suited for chip�in�
the�loop learning� It integrates well with the subtraction compensation technique and can handle a
precision of as low as a few bits� The basic idea of our weight discretization method is to use discrete
weights in the forward pass and continuous weights in the backward pass� The continuous weights are
discretized by mapping them to the closest discretization level with a multiple thresholding function�

To combine discretization of the weights with the subtraction compensation scheme for non�
negative networks� a new multiple thresholding function has been designed for the discretization
method described in the Appendix� The discretization levels are chosen to be equidistant� the min�
imal discrete weight value is zero� and the discretization levels are based on the maximal value wmax

of the 	non�negative
 weights of the pre�trained continuous network� The size of the discretization
step can be controlled by changing the parameter Discr and the set of d discretization levels is�

�
	n � �
 � 	wmax


	d� �
 � 	Discr

j n � �� �� 			� d

�
� 	�
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Therefore� the maximal discrete weight value is equal to wmax�Discr� The combination with the
transformations described in section ����� is straightforward� each w��

ij is mapped to the closest dis�
cretization level using the multiple thresholding function 	�
�

��� Experiments

A set of benchmark problems including three real�world problems and the eXclusive OR 	XOR

problem has been used to evaluate with computer simulations the proposed techniques for training
discrete� non�negative MLPs� These benchmarks have been chosen because they are well�known in
the machine learning community and� in the case of the Digit benchmark� because of its practical
relevance as a test bed for an optical implementation�

eXclusive OR �XOR� The training set consists of the boolean exclusive OR function� It is the
classical example of a simple problem that is not linearly separable 
����

Sonar This data set was originally used by R� Gorman and T� Sejnowski in their study of the
classi�cation of sonar signals using a neural network� The task is to discriminate between sonar
signals bounced o� a metal cylinder and those bounced o� a roughly cylindrical rock 
���� Each
pattern is a set of �� numbers in the range 
�� ��� The corresponding output patterns are the two unit
vectors�

Wine is the result of a chemical analysis of wines grown in a region in Italy which are derived from
three di�erent cultivars� The analysis determined the quantities of �� constituents found in each of
the three types of wines� A wine has to be classi�ed using these �� values� which have been scaled to
the interval 
�� ��� The target patterns are the three unit vectors 
����

Digit This benchmark consists of a subset of ���� patterns out of a database of more than �����
digitized handwritten characters 
���� Each digit was scaled to �t into a �� � �� matrix� and each
pixel is represented by an eight bit value� To save computation time and space the ����� matrix has
been converted to an �� � matrix� by taking the average of �� � sub�matrices� and scaling the input
values to the interval 
�� ��� The target patterns are the ten unit vectors�

The benchmark characteristics and the training parameters are listed in Table �� Two benchmarks
	XOR and Sonar
 have been used to evaluate straightforward on�line 	weights are updated after each
pattern presentation
 and batch 	weights are updated after presentation of the whole training set
	epoch

 backpropagation training� In this case the criterion for training convergence was that for
all patterns in the training set the absolute di�erence between each of the actual network outputs
and their corresponding target values is at most �c� Actually� for the Sonar benchmark an �c has
been used when training the continuous network and a less restrictive �d when training the discrete
network� While the results on these benchmarks indicate the capability to learn and recall a mapping�
the other two benchmarks 	Wine and Digit
 are used to assess the generalization performance� that
is� the ability of the network to correctly classify examples that were not used during training� In this
case� the pattern set is split up in a training� validation� and test set as is explained in more detail in
section ������

All the simulation results are averaged over a number of runs 	��Runs� in Table �
 with a di�erent
random weight initialization from the initial weight range� Each of the computer simulations is
performed with the �ve interpolated curves of LCLV response data described in section �� In fact�
the � criterion has been slightly re�ned to take into account that the minimal y�value of the LCLV
response curves di�ers from zero 	with a maximum y�intercept of ���� for LCLV�
� Therefore� all
zero�valued targets in the benchmark sets have been replaced by these minimal values to be able to
compare the di�erent curves in a fair way�
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benchmark network pattern set sizes �Runs �c �d learning momentum initial
topology� train� valid� test rate weight range

XOR ����� � � � ��� ��� ��� ��	 ��
 ������

Sonar ������ ��� � � � ��	 ��� ��� ��
 ����������

Wine �	���	 �
 �� �� �� � � ��	 ��
 ����������

Digit �������� ��� ��� ��� � � � ��� ��� ����������


Table �� Summary of the benchmarks and parameters used in the experiments�

In all simulations two standard training acceleration parameters have been used� namely a mo�
mentum term � 
��� 	see Table �
 and a �at spot constant 
��� of �	�� A momentum term incorporates
previous weight updates in the weight update equation 	step � in the backpropagation algorithm de�
scribed in the Appendix
 to smooth out oscillations� The �at spot constant is a constant added to
the derivatives of the activation function ��j 	see also step �
 to prevent it from being too close to zero
which would lead to very small weight updates and slow training progress� It has been shown that
the gain theorem can easily be extended to include these parameters 
����

����� Measuring Generalization Performance

To validate the quality of a network during training and to test the performance afterwards� the
complete available pattern set was partitioned� respecting an equal distribution of the di�erent classes�
into three sets� a training set with ��� of the total patterns and a validation set� and a test set� each
of these with ��� of the patterns 	see Table � for the sizes of these sets for the Wine and Digit
benchmarks
� The evaluation of the generalization performance is done by cross validation with early
stopping � where the decision to stop training is based on the error on the validation set� This is a
good way to avoid over��tting of the network to the particular training set used� For the experiments
in this section� a description of cross validation with early stopping has been used as a basis 
���� The
network performance is indicated by the mean squared error percentage that is normalized for the
number of output neurons and the number of patterns�

E � ��� �
�

N � P

PX
p��

NX
n��

	opn � tpn

��

where N is the number of output neurons of the network� P is the number of patterns in the data set
considered� opn is the activation value of output neuron n for pattern p� and tpn its target value for
the problem at hand�

The network is trained using only the training set and after every �ve epochs the validation set is
presented to measure the generalization error� Two di�erent measures have been used to decide when
to stop training� The �rst one is the training progress in a training strip of �ve epochs which gives
a measure of the change in the training error over �ve epochs� The second one is the generalization
loss which indicates the relative increase of the current validation error with respect to its minimal
value so far� These two parameters are measured every �ve epochs� after presenting the validation
set� Training is stopped when one of two di�erent situations occurred� training progress sank below
��� 	measured in parts per thousand
 or the generalization loss went beyond a threshold of ��� 	in
percent
 in ten consecutive measurements� This means that training is considered concluded either
when the training error stagnated or when a reduction on that error lead to a successive deterioration
in the generalization properties of the network� After stopping the training� the test set is presented
using the network weights that provided the lowest validation error� The results presented for the
benchmarks using generalization are all based on the values measured for that optimal network�

�Number of neurons in the input�hidden�output layers�
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LCLV Method 
Conv � of epochs

LCLV� On�line BP ���	 �����
Batch BP ���	 ����

LCLV� On�line BP �	�	 �����

Batch BP ���	 ����

LCLV� On�line BP ���	 �	���
Batch BP ���	 ����

LCLV�a On�line BP ���	 �����

Batch BP ���	 ����

LCLV�b On�line BP �		�	 �����
Batch BP ���	 �����

Table �� Results from the simulations 	aver�
age over ��� runs
 with XOR	�
�

LCLV Method 
Conv � of epochs

LCLV� On�line BP �		�	 �����
Batch BP �		�	 �����

LCLV� On�line BP �		�	 �		�	

Batch BP �		�	 �����

LCLV� On�line BP �		�	 ����	
Batch BP �		�	 �	���

LCLV�a On�line BP �		�	 �����

Batch BP �		�	 �����

LCLV�b On�line BP �		�	 �����
Batch BP �		�	 �����

Table �� Results from the simulations 	aver�
age over � runs
 with Sonar	�
�

LCLV Method � of epochs Square Error Percentage Percentage of Misclassi�cation
Train� Valid� Test Train� Valid� Test

LCLV� On�line BP ���� 	��� 	�	� ���� ��	� 	�		 ����
Batch BP ���	 	��	 	��� ���� 	��� 	�		 ����

LCLV� On�line BP ���	 	��� 	�	� ���� 	��	 	�		 ����
Batch BP ���� 	�	� 	��� ���� 	�		 	�		 ����

LCLV� On�line BP �	�� 	�		 	��� ���� 	�		 	�		 ����
Batch BP ���	 	�	� 	��� ���� 	�		 	�		 ����

LCLV�a On�line BP ���� 	��� 	��	 ���� 	��� 	�		 ����
Batch BP ���� 	�	� 	�	� ���	 	�		 	�		 ����

LCLV�b On�line BP ���� 	�	� 	�	� ���� 	�		 	�		 ����

Batch BP �	�� 	��� 	��� ��	� 	��� 	�		 ����

Table �� Results from the simulations 	average over �� runs
 with Wine	�
�

In addition� results on the classi�cation performance of the networks will also be presented� A
pattern is considered correctly classi�ed whenever the network output corresponding to the correct
one is higher in value than all the other outputs� This procedure is called winner�takes�all 	WTA


��� and can only be used in problems whose output is implemented as a ��of�NL representation�

����� Experimental Results for Training Non�Negative MLPs

The experiments described in this section have been performed to evaluate the combined use of the
measured LCLV response data as non�linearities and the transformation of the weights to the all�
positive domain� This means that in each forward propagation step� bipolar weights wij and biases 
j
are replaced by the all�positive w��

ij according to Eq� 	�
� Furthermore� the non�standard gain� �new
in Table �� of the LCLV response data is compensated for by changing the initial weight range and
the learning rate as described in section ���� the initial weights are divided by �new and the learning
rate by ��new� These results with continuous 	�oating point
 weights also give a basis for evaluating
the results in training networks with discretized weights 	section �����
�

The results of the series of experiments with a continuous network are in Tables � to �� where
��Conv� stands for the percentage of converged runs and the mean values are calculated based on
the converged runs only�

An important observation is that the results for the � di�erent LCLV response curves are quite
similar� The only exceptions are the relatively low convergence rate for the XOR	�
 benchmark
with LCLV�a and the high percentage of misclassi�cation for the Digit	��
 benchmark with LCLV��
For the LCLV�a response curve the reason might be its asymmetry 	with an almost absent lower
asymptote
 which perturbs training� for the LCLV� response curve it might be caused by the fact
that its y�intercept is quite big 	around ����
 so that network outputs are never clearly �o��� This
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LCLV Method � of epochs Square Error Percentage Percentage of Misclassi�cation
Train� Valid� Test Train� Valid� Test

LCLV� On�line BP ���	 	��	 ���	 ���� ��		 �	��� ����
Batch BP ����	 	��� ���� ���� ���� ���� ���	

LCLV� On�line BP ���	 	��� ���� ���� ���	 ���� ����
Batch BP ��	�	 	��� ���� ��	� ���� ���	 ����

LCLV� On�line BP �	�	 ���	 ���� ���� ���� ����� �	���
Batch BP ����	 ���� ���� ���� ���� ����	 ����

LCLV�a On�line BP �	�	 	�	� ���� ��	� 	�	� �	��� ����
Batch BP ����	 	��� ���� ���� ��	� ���	� ���	

LCLV�b On�line BP ���	 	��� ���� ���� 	��� �	�	� ����
Batch BP ����	 	��� ���� ���� 	��� �	�	� ����

Table �� Results from the simulations 	average over � runs
 with Digit	��
�

LCLV Method 
Conv � of epochs

LCLV� On�line BP ���	 �	�	
Batch BP �	�	 ���

LCLV� On�line BP ���	 �����
Batch BP ���	 ����

LCLV� On�line BP ���	 ����
Batch BP ���	 �����

LCLV�a On�line B ���	 ����	
Batch BP ���	 ����

LCLV�b On�line BP ���	 �����

Batch BP ���	 �����

Table �� Discretization results from
the simulations 	average over ���
runs
 with XOR	�
� two weight
levels�

LCLV Method Percentage of Test Misclassi�cation
Weight Discretization Levels

C � � � � ��

LCLV� On�line BP ���� ����� ���� ���� ���� ����

Batch BP ���� ���	� ���� ���� ���� ����

LCLV� On�line BP ���� ���� ���� ���� ���� ����

Batch BP ���� ����� ���� ���� ���� ���	

LCLV� On�line BP ���� ����� ����� ����� ���	 	�
�

Batch BP ���� �	�		 �	��� ����� ���� ����

LCLV�a On�line BP ���� ����	 ����� ���� 	��� 	���

Batch BP ���� ����� ���� ���� ���� ����

LCLV�b On�line BP ���� ���	� �	��� 	�
� 	��� 	���

Batch BP ���� ����� ����� ����� ���� ����

Table �� Discretization results from the simulations 	average
over �� runs
 with Wine	�
�

illustrates that� in general� our adapted learning rule compensates successfully for the characteristics
of the LCLV response curves� Also� the di�erence between the use of on�line or batch learning is quite
small� On�line backpropagation shows the best results in terms of percentage of converged runs for
the XOR	�
 benchmark and in terms of number of iterations for Digit	��
� Batch learning� on the
other hand� shows fast convergence on XOR	�
 and gives the best classi�cation rate on the test set
for the Wine problem�

A comparison of these results with the ones obtained in a benchmarking study 	also including
Xor	�
� Sonar� Wine� and Digit benchmarks
 of di�erent adaptive learning rate algorithms for ordinary
MLPs 
���� shows that the in�uence of the optical non�idealities is as good as negligible and gives
comparable results�

����� Experimental Results for Training Discrete Non�Negative MLPs

For most benchmarks� the number of discretization levels� d� used in the simulations is subsequently
�� �� �� �� and ��� For the more di�cult Digit benchmark� d has been chosen equal to �� �� �� ��� ���
or ��� The networks resulting from continuous pre�training in section ����� have been used as initial
networks� Based on the results of some initial simulations the parameter Discr 	Eq� 	�

 was chosen
equal to one for the XOR	�
 benchmark and equal to two for all other benchmarks� The number of
epochs included in Tables � to �� is the number of epochs used for the discrete training only� and does
not include the continuous pre�training�

In Table �� an overview of the discretization results for the XOR	�
 benchmark with as little
as two weight levels is given� When comparing these with the results for continuous pre�training
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Figure �� The number of weight levels versus the percentage of converged experiments for XOR	�

with on�line backpropagation�

	Table �
� one observes that the percentage of converged runs for discrete training is considerably
lower 	most notably for LCLV� and on�line training where the percentage is halved
� The evolution of
the percentage of converged runs based on the number of weight levels is illustrated in Figure �� This
shows that the number of converged runs increases considerably with the number of weight levels�
This trend is clearly con�rmed by the results for the Sonar benchmarks 	Table ��
� In this table� the
cases in which all runs converged� like for continuous pre�training 	Table �
� have been set in bold
font� For the Sonar benchmark at least four di�erent weight levels 	� bits
 are needed for results
comparable to the continuous case� the LCLV�a curve being an exception for which at least �� weight
levels are needed� These results also illustrate that� in general� the number of epochs needed for
training discrete networks decreases with the number of weight levels�

For the benchmarks that assess the generalization performance 	Wine and Digit
� the percentage of
misclassi�cation on the test set has been set in bold font� whenever it was at most two percent higher
than for continuous pre�training� With such a small di�erence the performance is considered to be
satisfactory and comparable to the one obtained when using continuous weights� The generalization
results for the Wine benchmark are comparable with the results for the continuous network when the
number of weight levels is at least six� with the LCLV� curve as exception for which �� levels are
needed 	which might again be caused by its high y�intercept
� However� these results are biased by
the occurrence of several runs� where the network is not able to learn at all� This problem caused
by the discrete network getting trapped on an error plateau� is inherent to most weight discretization
methods and might be resolved by introducing a random 	annealing
 factor in the weight updates

���� To get a less biased idea of the possible performance� the average over the best �ve runs out of
ten is listed in Table ��� In this case� the results are close to the continuous ones with the number
of weight levels equal to � or �� For LCLV�� the solutions with only four weight levels even show a
lower misclassi�cation rate than in the continuous case� This might be interpreted as an illustration of
Occam�s razor which states that simple models 	for instance with discrete weights
 should be preferred
over more complicated ones�

The results for the Digit benchmark illustrate the challenging nature of this data set 	Table ��
�
For most LCLV curves� at least � or �� weight levels are needed to obtain classi�cation results that are
comparable to the continuous valued case� The on�line training with the LCLV� curve is an exception
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LCLV Method Weight Discretization Levels
� levels � levels � levels � levels �� levels


Conv �epochs 
Conv �epochs 
Conv �epochs 
Conv �epochs 
Conv �epochs

LCLV� On�line 	�	 � �	�	 ����� ����� ����� ����� ���� ����� ����

Batch 	�	 � �	�	 ���	�	 ����� ����� ����� ����� ����� �����

LCLV� On�line 	�	 � �	�	 ����� �	�	 ��	�� ����� �	��� ����� �����
Batch 	�	 � �	�	 �����	 �	�	 �����	 �	�	 ������ �	�	 �����

LCLV� On�line �	�	 �	���	 ����� ��	�� ����� ���� ����� ���	 ����� ���
Batch �	�	 ������ ����� ����� ����� ����� ����� ���� ����� ����

LCLV�a On�line 	�	 � 	�	 � 	�	 � �	�	 ����� ����� ���	
Batch 	�	 � 	�	 � 	�	 � �	�	 �����	 �	�	 �	����

LCLV�b On�line �	�	 ����	 �	�	 ����� �	�	 ����� �	�	 �	��	 �	�	 ����	
Batch 	�	 � �	�	 ����	 �	�	 ����� �	�	 ����	 ����� �����

Table ��� Discretization results from the simulations 	average over � runs
 with Sonar	�
�

LCLV Method Percentage of Test Misclassi�cation
Weight Discretization Levels

C � � � � ��

LCLV� On�Line BP ���� ���� ���� ���� ���� ����
Batch BP ���� ����� 	��
 	��
 ���	 	���

LCLV� On�Line BP ���� ���� 	��	 ���� ���� ����

Batch BP ���� ���		 ��
� 	��� 	��
 ����

LCLV� On�Line BP ���� ���	� ��	� ���	 ���	 ����

Batch BP ���� ���	� ����� ���	 ���	 	��


LCLV�a On�Line BP ���� �	��� ���� ���	 ���� ����

Batch BP ���� ����� ���� ���� ���� ����

LCLV�b On�Line BP ���� ��	� ���� ���� ���� ����

Batch BP ���� ����� ���� ���� 	��
 ���	

Table ��� Discretization results from the simulations 	average over the best � runs out of ��
 with
Wine	�
�

	due to its asymmetry
 and even �� weight levels are not su�cient in this case� It is interesting to note
that for LCLV�a and LCLV�b� the discretization results with �� weight levels the misclassi�cation
rate is even lower than for the continuous network� which o�ers yet another illustration of Occam�s
razor�

����� Experimental Results on an Optical Thresholding Perceptron

Initial experiments have been performed for 	��layer
 perceptron recall using an optical system with
LCTVs to implement the input layer and the interconnection weight matrices and LCLVs to imple�
ment non�linear thresholding 	the architecture is described in more detail in Refs� ����
� Training of
the perceptron was done with our adapted training algorithm 	including weight discretization� com�
pensation for the LCLV non�linearities� and transformation of the weights to the all�positive domain

and was simulated on a computer� The data set used was a small subset of �� digits from the Digit
benchmark 	inputs having �� gray levels
 and weights were discretized to � gray levels� The resultant
discrete weights were implemented on the LCTV of the optical perceptron for testing recall with ��
of the �� digits in the training set� The optical recall was satisfactory with quite a good agreement
with the values obtained in the computer simulations 
����

A binary perceptron� trained using our adapted training rule� implemented with binary inputs
and weights in the same optical system also showed satisfactory recall results 
���� The advantage
of having binary weights and input values is that they permit the use of ferroelectric liquid crystals
having thousandfold faster response times than nematic LCLVs� Binary neural networks also have
the inherent advantages of digital vs� analog implementations�
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LCLV Method Percentage of Test Misclassi�cation
Weight Discretization Levels

C � � � �� �� ��

LCLV� On�line BP ���� ����� ����� ����� ���� ���� ��	�

Batch BP ���	 ����� ���� ���� ���
 ���
 ���


LCLV� On�line BP ���� ����� �	��� �	�		 ���� ���� ����

Batch BP ���� ����� ���
 ���
 ���� ���� ����

LCLV� On�line BP �	��� ����� ����� ����� ����� �	�	� �����

Batch BP ���� ����� ���		 ����
 
�

 
��� 
���

LCLV�a On�line BP ���� ����� ���� 
��� ���� ��

 ����

Batch BP ���	 ����	 ���	 ���� ���� ���
 ��	�

LCLV�b On�line BP ���� ����	 ���� ��
� ���
 ���� ��
�

Batch BP ���� �	�		 ���� ���� ���� ��	� ����

Table ��� Discretization results from the simulations 	average over � runs
 with Digit	��
�

� Conclusions

A �exible weight discretization algorithm has been combined with a transformation of the weights that
enables all�positive forward propagation in optical multilayer neural networks� This algorithm allows
successful training when discrete weights are used in hardware� such as implemented by liquid crystal
television screens in optical neural networks� Moreover� we include our method to compensate for
the di�erences between non�standard activation functions as available in hardware and the standard
sigmoidal activation function� The feasibility of a discrete non�negative multilayer neural network
using real activation functions as available in LCLV hardware is con�rmed by the results of a series of
computer simulations� These simulations have been performed on four benchmark problems and using
the experimentally observed characteristics of �ve optical activation functions realized by o��the�shelf
liquid crystal light valves� We show that a weight accuracy of � to � bits is su�cient to get highly
satisfactory performance that is comparable with the results obtained when using continuous weights�
The results of the computer simulations are con�rmed by initial experiments on an optical system for
perceptron recall on a small set of handwritten digits� that show good performance in agreement with
the simulated values�
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Appendix� Weight Discretization Algorithm

A multilayer neural network can have an arbitrary number of layers� Adjacent layers are fully inter�
layer connected� Here� the weight from neuron i to neuron j is denoted by wij� the bias of neuron j
is denoted by 
j � its activation value is indicated as aj� and tj denotes the target pattern value for
output neuron j� The on�line backpropagation algorithm is described by the following �ve steps�

�� Initialization Weights and biases are initialized with random values 
����

�� Pattern presentation An input pattern� which is used to initialize the activation values of the
neurons in the input layer� and the corresponding target pattern are presented�

�� Forward propagation During this phase� the activation values of the input neurons are propag�
ated through the network� The input of a neuron j� not in the input layer� is de�ned as�
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yj � 	
X
i

wijai
� 
j 	

The new activation value of neuron j is�

aj � �	yj
�

where � is a di�erentiable activation function� for example� a sigmoid�

�� Backward propagation For each neuron an error signal � is calculated� starting at the output
layer and then propagating it back through the network�

�j � 	tj � aj
�
�

j	yj
 if j is an output neuron�

and

�j � 	
X
k

�kwjk
�
�

j	yj
 if j is not an output neuron�

After the calculation of all error signals� the weights are updated with learning rate parameter
��

wij �� wij � ��jai	

�� Convergence test If no convergence� the next pattern is presented 	goto Pattern presenta�

tion
�

The weight discretization method starts by fully training the network with the backpropagation al�
gorithm� Next� the continuous weights are discretized by mapping them to the closest discretization
level using a staircase shaped multiple thresholding function� The so�created discrete weights are then
used for the forward propagation pass through the network� The errors obtained� which are based
on the di�erence between the actual and desired network outputs� are subsequently used to update
the continuous valued weights during the backward propagation pass� Note that pre�training with
continuous weights is not necessary� but is often included for faster convergence� The discretization
of the weights described by Fiesler et al� 
��� uses d discretization levels with d��� �� �� �� or �� The
discretization levels are symmetric around zero� except ford � �and are equidistant�

�
n�

�
d� �

�

� ���� n � �� �� 			� d

�
�
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